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Machine Learning Algorithms for
Recommending Design Methods
Every year design practitioners and researchers develop new methods for understanding
users and solving problems. This increasingly large collection of methods causes a prob-
lem for novice designers: How does one choose which design methods to use for a given
problem? Experienced designers can provide case studies that document which methods
they used, but studying these cases to infer appropriate methods for a novel problem is
inefficient. This research addresses that issue by applying techniques from content-based
and collaborative filtering to automatically recommend design methods, given a particu-
lar problem. Specifically, we demonstrate the quality with which different algorithms rec-
ommend 39 design methods out of an 800þ case study dataset. We find that knowing
which methods occur frequently together allows one to recommend design methods more
effectively than just using the text of the problem description itself. Furthermore, we dem-
onstrate that automatically grouping frequently co-occurring methods using spectral
clustering replicates human-provided groupings to 92% accuracy. By leveraging existing
case studies, recommendation algorithms can help novice designers efficiently navigate
the increasing array of design methods, leading to more effective product design.
[DOI: 10.1115/1.4028102]

1 A Wealth of Design Methods

Every year, researchers and practitioners alike continue to
devise different methods for solving increasingly complex design
problems. This wealth of design methods is both a blessing and
a curse: on one hand, having a wider set of methods deepens
our problem-solving toolbox, allowing us to find better solutions;
on the other hand, the array of choices quickly becomes over-
whelming. For example, the largest current database lists over 300
different design methods [1]—a conservative estimate that easily
exceeds any designer’s ability to learn or even manually search
through.

Dealing with this abundance of methods begs several questions:
What makes methods similar, and how does one effectively cate-
gorize them? How does one apply methods in different situations,
and which differences help designers decide which method to
apply? How should designers approach new, unused methods?
Past attempts to answer these questions have meticulously
reviewed method collections or design case studies (summaries
of a particular design problem along with which methods the
designer used) to uncover why some methods work in some con-
texts, but not in others [2–5]. While those types of studies provide
a valuable foundation, they necessarily only cover a narrow slice
of design methods—scaling that type of analysis to the plethora of
current methods requires prohibitive effort.

This paper offers a scalable solution to that problem: it proposes
algorithms that automatically learn patterns in design method use
by computationally analyzing design case studies. By using case
studies as training data, the proposed algorithms can recommend
the method or set of methods that are most suitable for a given
case. Fortuitously, the wealth of data that previously impeded the
analysis of design methods instead now acts as an asset, improving
the quality of method recommendations over time.

We evaluate several recommendation algorithms over a corpus
of 800þ design case studies from HCD Connect, an online
community where designers post case studies of problems they

faced along with the user research methods they used to address
them. Front-end user research methods have important implica-
tions for later design stages [6,7] and Van Pelt and Hey [8] note
that decisions made using human-centered design methods
directly inform more function-driven methods such as TRIZ [9].
The users on HCD Connect include both IDEO designers along
with non-IDEO users working in the social or development design
sector such as freelance designers, design students, managers, and
entrepreneurs.

The front-end design methods contained in the HCD Toolkit
exemplify methods designed to gather and process information
about the user requirements of the design. They contrast with
later-stage methods, such as axiomatic design, function decompo-
sition, and morphological charts, in that they do not prescribe a
step-by-step process for completing a later stage of mechanical
design, but rather present methods for understanding user needs
and design requirements. Throughout the rest of the paper,
“design methods” refers to these earlier-stage methods. Section 5
revisits how one might apply the techniques described in this
paper to later-stage design methods.

By analyzing whether methods frequently co-occur with one
another or not (method covariance), we find two main results:
First, predictions based on method covariance have higher preci-
sion–recall performance than predictions based on problem con-
tent, and that the combination of the two does not significantly
improve performance over just using covariance. Second, by
using spectral clustering on the method covariance data, we can
automatically divide methods into expert-given groupings with
92% accuracy.

By using the wealth of case studies and methods as an asset,
rather than a burden, this paper creates a scalable way of helping
novice designers find appropriate methods for a given problem.
Moreover, our approach provides a means of exploring the struc-
ture of design methods through the use of case study covariance.
We have made all of our code and case study data freely available
to promote further research to that effect.

2 Background and Related Work

This paper builds off of prior work in two areas: recommender
systems and categorizations of design methods.
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2.1 Recommender Systems. Recommender systems refer to
a class of algorithms that recommend content to a user. Some pop-
ular applications include Netflix, which uses a person’s movie
watching habits to recommend new movies, or Google, which
uses keywords as well as past browsing behavior to recommend
webpages. There is a vast amount of research on this topic, includ-
ing yearly conferences, such as ACM’s RecSys,2 and we direct
interested readers to two recent review papers by Resnick and
Varian [10] and Adomavicius and Tuzhilin [11] for a more com-
plete overview. For the purposes of this paper, related efforts can
be broken down into three camps, depending on the type of data
they use to produce their recommendations: content-based filter-
ing, collaborative filtering, and hybrid filtering.

Content-based filtering bases its recommendation solely on
the content of the item itself. For example, if a user says they
like comedic movies, Netflix might recommend movies tagged
with “comedy” more frequently than those tagged with “drama.”
This was one of the earliest approaches to recommending con-
tent, with its roots in the Information Retrieval community [12].
Popular examples include Google’s Page-Rank algorithm [13] as
well as text-modeling approaches, such as latent semantic analy-
sis (LSA) [14,15] and latent Dirichlet allocation [16], which
build content features by summarizing text content. In the con-
text of design methods, these content features might include the
method’s textual description or the time required to execute the
method. A related field of research which is gaining popularity
is the field of “Learning to Rank,” which formulates item rank-
ing as a statistical learning problem and uses classification and
regression techniques from machine learning to solve ordinal
ranking problems. For example, RankNet [17] and ListNet [18]
both utilize artificial neural network architectures to determine
ranking functions over content features. For a comprehensive
overview of learning to rank methods, Liu [19] provides an
excellent review. Over the past decade, solely content-based
approaches have fallen out of favor for either collaborative fil-
tering models or hybrid models that combine both approaches,
as we discuss below.

In contrast to content-based filtering, collaborative filtering
bases its recommendation solely on the covariance between users
and items. For example, if user A likes the movies “Titantic” and
“Caddyshack,” and user B likes “Titantic,” then the algorithm
might conclude that user A and user B are similar, and thus user B
might also like “Caddyshack,” regardless of the content of the
movie itself. For design methods, this would be which cases use
which methods—if case study A uses methods 5 and 17, then the
algorithm learns something about the relationship between 5 and
17 that it can leverage for future predictions, despite not knowing
anything in particular about method 5 or 17. The earliest collabo-
rative filtering methods were neighborhood methods, such as that
of Herlocker et al. [20], which used weighted averages of scores
from similar users to estimate a new item score. These techniques
have been largely replaced by matrix factorization approaches
that uncover a latent set of user and item features, representing the
score as a cross-product between the two. Their wide-spread usage
and popularity are due in part to their independence from content
features and in part to the “Netflix Prize” competition, which
spurred research from academia and industry alike. Notable exam-
ples that emerged from that area include the Bell-Kor system [21],
which won the Netflix Prize, as well as techniques, such as Bayes-
ian probabilistic matrix factorization [22], variants of which are
currently under active research. A complementary approach used
by Nazemian et al. [23] extends standard collaborative-filtering
models by encoding new similarity metrics based on transitive
properties of user trust to share information beyond the immediate
user neighborhood.

Hybrid filtering mixes the above two models by using
both content and collaborative features to inform the

recommendation, often at the cost of additional computation
and complexity. For example, if user A likes “Titantic,”
“Caddyshack,” and “The Shawshank Redemption”; user B likes
“Titantic”; and “Titantic” is considered a drama, then a hybrid
filtering algorithm might conclude that user A and user B are
similar and enjoy dramas, and thus user B might prefer “The
Shawshank Redemption” over “Caddyshack,” since it is both
similar to what user A selected, but also within the “drama” cat-
egory. This hybrid approach ameliorates some of the disadvan-
tages of the above two models: for new items which do not have
collaborative features (referred to as the “cold-start” problem),
hybrid models can use content information to improve recom-
mendations; likewise, hybrid models can use collaborative infor-
mation when item content is not available or informative. Most
modern, successful recommender systems use some form of
Hybrid Filtering [10,11,21]. For example, Badaro et al. [24] uti-
lize weighted combinations of content- and collaborative-
filtering approaches, while Ghazanfar and Prugel-Bennett [25]
use neighborhood-based content and collaborative features that
are combined using boosting [26]. Hybrid approaches are not
without their own problems, however; Yujie and Licai [27] high-
light the fact that the increased number of parameters and data
sparsity among those parameters can make it difficult to accu-
rately train hybrid methods without sufficient data.

2.2 Categorizing Design Methods. Motivated by a ground-
breaking conference on design methods in 1962 [28], research-
ers have collected and discussed design methods to understand
how people design. Collections of design methods, both in print
[2–5] and on the web [1,29], manually group methods into vari-
ous categories by appealing to the author’s opinion. We do not
know of any studies that validate their categorizations in any
formal way such as using inter-rater reliability across multiple
raters.

In contrast, this paper uses case studies to train an algorithm
that can both group existing methods as well as recommend new
methods for a given problem—all without requiring the manual
organization needed by previous research. Unlike prescriptive
design method categories, this paper takes a descriptive lens (sim-
ilar to case-based reasoning techniques), by assuming that meth-
ods and cases provided by practicing designers represent the
ground truth. This complements existing literature on design
methods and acts as a means to compare what designers do with
what they say they do.

To our knowledge, no previous studies have used computa-
tional techniques to categorize and recommend design methods
in this way. Within the broader context of engineering design,
Panchal and Messer [30] investigate using hierarchical clustering
techniques to structure tags on collaborative design platforms, and
Li and Ramani [31] parse design documents and concepts to
extract a design-specific ontology and retrieve specific design
cases. Neither of these applications deals with design methods,
specifically.

We should also highlight that there are many kinds of methods
used at different stages of the design process. This paper uses
methods from IDEO’s HCD toolkit, which primarily focuses on
early stage design, wherein the goal is to research the appropriate
user needs to drive later functional requirements. In contrast, other
popular design methods, such as TRIZ [9], axiomatic design [32],
or functional decomposition [33], focus on later stages of the
design process, once the requirements are set. While the dataset
we use in this paper focuses on the front-end design, the method
recommendation strategies we propose are not tied to this particu-
lar dataset; you can apply the described techniques to methods
across a broad scale of design stages, provided that you have case
studies that use those methods. Presently, Roschuni et al. [1] are
developing such a set of cases, and that dataset could also use the
recommendation strategies we describe herein for a wider range
of stages in the design process.2http://recsys.acm.org/
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3 Methodology

To evaluate different algorithms for design method recommen-
dation, we used data from IDEO’s HCD Connect platform,3 an
online community of design practitioners who upload design case
studies along with which methods they used to address the prob-
lem—at the time of our experiment, the site contained information
about 886 design cases. Table 1 lists some illustrative case study
examples. Each case study used some subset of the 39 methods
(Fig. 1) available through IDEO’s Human-Centered Design Tool-
kit,4 and contained four pieces of information (Fig. 2): (1) a tex-
tual description of the design problem; (2) the location of where
the problem originated from; (3) one or more “focus areas” such
as “healthcare”; and (4) a description of the user who contributed
the problem. Some cases also included photos, dates, and follow-
ups from HCD Connect users, but we did not use those attributes
in our experiments.

It should be noted that individual cases in HCD Connect can
utilize multiple methods. As we will see below, this is because
different methods complement each other; for example, a project
evaluating mobile phone applications for healthcare might use
interviewing methods to gather user feedback on a prototype,
while a storyboarding method could evaluate a user’s workflow.
In such situations, methods would be positively correlated with
one another. In other situations, one might expect methods to
substitute for one another; for example, if someone has already
conducted an individual interview then they might be less likely
to perform other types of interviews. In that case, methods
would be negatively correlated with one another. For the 39
methods in IDEO’s HCD Toolkit, we found almost no incidence
of methods being negatively correlated with one another, mean-
ing that IDEO’s methods did not frequently substitute for one
another.

3.1 Content-Based Filtering. Our content-based filtering
strategy for recommending design methods involves summarizing
the problem descriptions and then using that text to predict which
methods are most relevant for a given problem—the intuition
being that design problems that have similar problem descriptions
may use similar methods. We use latent semantic indexing (LSI is
also referred to as LSA) to quantify that similarity [12]. LSI
employs the bag-of-words model for representing a text docu-
ment, which ignores word order and grammar, and considers only
frequency of word occurrence. Given the 886 case study descrip-
tions, we use singular value decomposition to project the word

count matrix into a latent space of 50 topics. The resulting
886� 50 matrix M contains a row for each case study and 50 col-
umns representing the case’s similarity to each of the 50 topics.
The algorithm then uses this topic matrix to train a classifier,
which outputs the probability that a given method m will be used
in each design case c.

We evaluated four different algorithms:

Random forests: an ensemble classification technique that fits a
number of decision tree classifiers to randomized subsam-
ples of the dataset; it uses these subsamples to rule out non-
useful features and gives us a straightforward method of
discarding unimportant text topics.

Support vector machines: nonlinear classifiers that construct a
hyperplane in high-dimensional space; it identifies complex
boundaries between topics and their interactions.

Logistic regression: a type of generalized linear model used
for the classification; it provides a simple method for deter-
mining important text topics (like random forests) and is
computationally efficient as the number of cases increases.

Naive Bayes: a probabilistic classifier that assumes feature in-
dependence across variables and applies Bayes’ rule to label
categorical data; it also provides a simple method for

Table 1 Examples of the 886 design method case studies from HCD Connect. They contain problem descriptions as well as the
human-selected methods used to solve that problem and the tagged “Focus Area” of the problem.

Example problem statements HCD Connect methods used in case study

As we worked side by side with small-holder farmers in Peru to harvest
coffee, we learned that there were many things we could improve to make
our device easier to use.
Focus area: agriculture

Individual interview, in-context immersion, community-driven discovery,
capabilities quick sheet, and participatory codesign

Butcher block furniture is popular in the United States. However, in India,
there is a whole market for recycling waste wood. This recycling can be
better if the wooden pieces are adhered together and then made into
furniture. As in butcher block furniture, here also pieces of wood are put
together to for a plank for furniture.
Focus areas: environment and community development

Storytelling with purpose, try out a model, individual interview,
inspiration in new places and innovation 2� 2

In collaboration with the American Refugee Committee and IDEO.org
design team, IDEO.org colead, Jocelyn Wyatt, shares her experiences
facilitating codesign sessions with women in the Democratic Republic of
Congo in order to gain insights on bringing health, water, and nutrition
solutions to the community.
Focus areas: water, community development, and health

Storyboards, role-play, track indicators, and evaluate outcomes

Fig. 1 HCD Connect users use different methods with different
frequencies. Error bars represent 95% confidence bounds
around the frequency estimates, calculated using bootstrap
resampling. The gray line represents the average method
frequency (�14%).

3http://HCDConnect.org/
4http://www.ideo.com/work/human-centered-design-toolkit/
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determining important text topics as well as easily scaling to
a larger number of cases.

For all algorithms, we optimized any hyperparameters using
randomized search with cross validation using the Scikit-Learn
library [34]. Interested readers can download our experiment code
and data to reproduce our results or get more specific information
about which parameters we optimized over.5

3.2 Collaborative Filtering. Instead of using problem con-
tent to determine which methods are most relevant for a given
problem, collaborative filtering approaches analyze the methods
that commonly occur together. Such an approach is valuable when
the collaborators, in this case, the contributors to HCD Connect,
provide high quality content. Our results benefit from a well-
curated dataset, consisting primarily of cases contributed by
IDEO designers [35].

To visualize the co-occurrence, we calculate the method covari-
ance matrix—this matrix describes how different methods covary
with one another, capturing common usage patterns (similarly to a
correlation coefficient). Specifically, we use the graphical Lasso
[36] because the empirical covariance produces poor eigenvalues
estimates (necessary for the spectral clustering we describe next).

To gauge the suitability of method covariance, we performed
spectral clustering on the covariance matrix and colored the
resulting clusters to visualize method groups (Fig. 3)—colors refer
to clusters and opacity refers to the covariance. Using three clus-
ters, we compare the groupings to those of HCD Connect, who
grouped their 39 methods into three categories (Hear, Connect,
Deliver). Our clusters agreed with the HCD Connect provided
clusters to an average of 92% accuracy (36 of 39 methods).

Given the utility of method covariance in clustering, we con-
struct a collaborative filtering model for recommendation inspired
by the BellKor solution to Netflix Prize Challenge [21]:

f ðc;mÞ ¼ bc þ bm þ hvc; vmi (1)

where f(c, m) represents the score for a particular method m when
applied to case c. bc represents a baseline score for a given case
(some cases use more methods than others), and similarly bm

represents a baseline score for a given method (some methods are
more popular than others, regardless of the case).

The inner product hvc, vmi captures the interaction between
methods and cases; vc and vm refer to latent dimensional vectors
of length k, with a separate vector for each case and method,
respectively. For example, using k¼ 2 places each case and
method onto a 2D plane. If the two vectors lie close to one another
in the 2D space, they get a large positive score; if far away, a large
negative score. One can optimize the exact dimension k, which
we address below.

The algorithm determines the values for k, bc, bm, vc, and vm, by
minimizing prediction error: the mismatch between the methods
that it recommends and the methods that were actually used. To
encode this error, we use a logarithmic loss of the following form,
where yðc;mÞ 2 f1;�1g represents whether or not the case actually
used the method

Lðf ðc;mÞ; yÞ ¼
X
c2C

X
m2M

ln 1þ expð�yðc;mÞ � f ðc;mÞ
� �

(2)

Evaluating Eq. (1) for each c, m pair yields the expected recom-
mendation score, and Eq. (2) encourages that score towards þ1
for appropriate methods, and towards –1 for unused methods.
The algorithm uses quadratic (L2) regularization to prevent the
latent factors from overfitting the training data (improving per-
formance on future data). Combining the loss function in Eq. (2)
with the regularization, the total loss function across the entire
dataset becomes

Lðf ðc;mÞ; yÞ þ k
2

X
c

kvck2 þ b2
c þ

X
m

kvmk2 þ b2
m

" #
(3)

In our experiments, we use stochastic gradient descent to mini-
mize the combined loss function in Eq. (3), though any descent-
based optimizer would suffice since the loss function is convex.

3.3 Hybrid Models. Our hybrid model incorporates both
content and collaborative information by adding case-dependent
“focus-area” terms into our collaborative filtering model. Focus
areas (tags given by the HCD Connect community) describe
which areas the case focuses on, such as “health,” “education,” or

Fig. 2 Each case page on HCD Connect contains a textual description about the
design problem (1), as well as contextual labels such as location (2), focus area (3),
and user occupation (4)

5www.markfuge.com/hcdconnect
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“development” among others (see the first column of Table 1 for
examples).

To add these content features to our collaborative filtering
model, we give each focus area its own k-dimensional latent vec-
tor (like the methods and cases) and then optimize the locations of
those vectors for each focus area. We chose to use focus areas as a
content feature because, intuitively, the useful methods for one
focus area (e.g., agriculture), may not be the most useful in a dif-
ferent focus area (e.g., healthcare). This adds an additional term
(vcont) to the collaborative filtering model in Eq. (1):

f ðc;mÞ ¼ bc þ bm þ hvc; vmi þ vc;
X

cont2c

vcont

* +
(4)

where the last summation refers to the addition of all content vec-
tors present in the case. The innerproduct hvc, vconti acts like the
previous innerproduct hvc, vmi, measuring the similarity between
the case vector and the combined content vectors. With the excep-
tion of the added content vectors, all other aspects of the model
are identical to the collaborative filter.

4 Results

On all models, we used an 80/10/10 stratified random split of
the data for training, optimization, and testing, respectively. For
hyperparameter optimization, we performed 100 iterations of

randomized search with fourfold cross validation over all model
parameters in each model. For each algorithm, we tested the best
performing parameter choices on the remaining unseen testing
data to compute their respective performances.

We evaluated each algorithm’s performance using a
precision–recall curve, a standard way of comparing different rec-
ommender systems [37,38]. The curve trades off two quantities:
precision and recall. Precision is the percentage of recommended
methods that were actually used in a case—if the algorithm rec-
ommends ten methods, but only five of those ten were used in the
case study, the precision would be 50%. Recall is the percentage
of methods actually used in a case that were recommended by the
algorithm—if the case actually used eight methods, and the algo-
rithm only correctly recommended six of those methods, then the
recall would be 75%. By changing the number of methods, the
algorithm was allowed to recommend (i.e., from 0 to 39 methods);
we evaluated the system’s performance over a range of precision
and recall values—this created a precision–recall curve, which we
plotted to evaluate algorithm performance. This curve essentially
summarizes how well the algorithm presented users with mean-
ingful methods for their design problem. (Companies such as
Google use similar metrics to evaluate performance for related
tasks like webpage ranking [39].) In our use case, higher degrees
of precision are more important than higher degrees of recall.
Namely, a small set of highly relevant methods is a more valuable
recommendation than a complete set including many lower-
ranked methods.

Fig. 3 We performed spectral clustering on the 39 3 39 method covariance matrix
revealing groups of methods that covary together. Lighter tones represent low
covariance, while darker tones represent high covariance. The different hues
denote different clusters, with a dark gray box around each cluster of methods.
The clusters found by spectral clustering accurately reflect the expert-given
categories used by IDEO in their HCD Toolkit; from left to right, the boxes on the
diagonal correspond to “Deliver,” “Hear,” and “Create” methods, respectively.
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For comparative purposes, we also tested the performance
of two baseline algorithms: randomized recommendation and
popularity-based recommendation. Randomized recommendation
randomly selects k of the 39 methods for recommendation.
Popularity-based recommendation rank-orders the most frequently
used methods and simply recommends the first k most popular
methods, regardless of the case.

Figure 4 shows the precision–recall curve for each algorithm.
Figure 5 demonstrates the 95% confidence bounds (using boot-
strap resampling) for the area under those curves—higher area
indicates better average precision, and thus better recommenda-
tions. As expected, all models outperform the randomized base-
line. Popularity performs slightly below that of text-based
analysis using random forests, while using only a single, efficient
predictor. Collaborative filtering uniformly outperforms both the
popularity baseline as well as the text-based content features;
the added content features in the hybrid model do not discernibly
improve the performance. (We expect that future research will
uncover different content features that positively affect
performance.)

In addition to general performance, one might also be more
interested in how the algorithms perform on more specific or
uncommon methods. A designer would likely use popular
methods regardless (possibly out of habit), but might only use
certain uncommon methods when particularly appropriate—a
successful method recommendation algorithm should perform
well over uncommon methods, as well as popular ones. To test
this, we compute the precision–recall performance on the ten
least frequently used of the 39 methods, and integrate the area
under the precision–recall curve in Fig. 5; this total area is
called the area under the curve (AUC) and measures overall

recommendation performance (Higher AUC is better). Collabo-
rative and hybrid filtering still perform significantly better than
the alternatives.

5 Implications for Recommending Design Methods

Our results offer up several possible implications for design
method recommendation systems. First, one should not ignore
collaborative features in favor of text features, especially when
the collaborators have a reasonable level of expertise. Second,
future research needs to maximize the benefits of combining con-
tent and collaborative features. Finally, collaborative features help
in not only recommending methods, but also in grouping and
understanding the methods themselves.

5.1 Collaborative Features Have Higher Predictive Accu-
racy Than Text-Based Features. Comparing the precision–recall
performance, collaborative-based approaches perform substan-
tially better than the content-based approaches that relied solely
on text features. We did not expect this, given the prevalence of
text-based recommendation for ranking documents. However,
given the use case, this is also understandable—the time needed
to apply a method or the people required to execute it (among
many other factors) could both affect a method’s usage in ways
not discernable from the case’s description.

One possible explanation for the fact that the content-based fea-
tures offered little improvement is that the methods and focus
areas could be too general to meaningfully distinguish themselves.
For HCD Connect, prior studies have demonstrated that a small
subset of methods do occur more frequently depending on the spe-
cific focus area [35], so we would expect the addition of focus
areas to have a meaningful effect. That said, a more thorough
description or ontology of methods that accounts for these differ-
ences between methods or categories may improve future per-
formance of content-based recommender systems, and some
recent work has begun to collect this information [1]. Incorporat-
ing improved content features would be a fruitful area of future
research. Regardless, we recommend starting with collaborative
filtering as a baseline.

5.2 Combinations of the Features Offered Only Marginal
Improvement. In our experiments, combining content features
(in the form of focus areas) with collaborative filtering did not
offer a detectable improvement in performance. This could be
attributed to our choice of content features, or possibly to our
choice of model in Eq. (4) (although similar models are effective
in other domains [21]). We recommend choosing a hybrid model
over models that rely solely on method or case content, since the
techniques useful for improving content-based recommendation
can also be applied to improve hybrid models. More advanced
collaborative filtering models, such as Bayesian probabilistic ma-
trix factorization models, could also improve recommendation
performance by incorporating prior knowledge or more sophisti-
cated content features [12,22].

5.3 Collaborative Features Offer a Useful Means of
Grouping Methods for Further Analysis. We found that collab-
orative features, such as method covariance, accurately grouped
related methods together—in this case replicating human-given
groupings to 92% accuracy. When attempting to decompose
methods into different types, we recommend exploring method
co-usage as a similarity criterion. Future work could certainly
explore more complex methods of clustering or grouping meth-
ods, including using a combination of collaborative and content
features to define method similarity.

5.4 Additional Applications. Although we have chosen to
evaluate this recommendation system against the HCD Connect
dataset and the corresponding methods, the proposed algorithms

Fig. 5 The area under the precision–recall curve (AUC) across
the models. The error bars represent the 95% empirical confi-
dence bounds about the median AUC for each method, calcu-
lated using bootstrap resampling. The hybrid and collaborative
filtering models perform substantially better than the popularity
baseline. The Random Forest classifier produces a detectable,
but small, improvement over the popularity baseline.

Fig. 4 Precision plotted as a function of recall. The higher the
AUC, the better the algorithm’s performance.
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do not depend on the choice of methods used in the dataset; they
are agnostic towards the choice of methods and evaluate only the
relationships between cases and methods. This means that design
method recommendation systems can be generalized beyond HCD
Connect and user research methods at the beginning of the design
process. Design practitioners can use these techniques for other
classes of design methods, such as design decision methods
[40], mechanical design techniques [41], functional synthesis [42],
design affordance techniques [43], design team formation [44],
and more, so long as one can find appropriate case studies that use
those methods. An appropriate dataset for that scope of analysis is
the DesignExchange [1], and we intend to expand these proposed
algorithms to their larger dataset in the future. One possible area of
future work would involve extending design method recommenda-
tion systems beyond the realm of product case studies and into
applications like analyzing methods used in different patents (simi-
lar in spirit to TRIZ [9]); this is beyond this paper’s scope, but
could be an interesting future application.

6 Conclusion

This paper explored different machine learning algorithms
for recommending design methods. Collaborative filtering
approaches that leverage information about method covariance
had better precision–recall performance than models that used
exclusively textual descriptions or method popularity. A hybrid
model that blended collaborative filtering with the focus area of
the design problem did not offer a large improvement—more
informative content features (e.g., those based on structured
ontologies [1]) may increase the performance of hybrid models
in future research. Finally, spectral clustering using method co-
variance grouped methods to 92% accuracy with human-
provided groupings. Future research can build off this paper by
using our code and dataset to further explore how methods con-
nect to one another.

The results imply that merely looking at textually similar prob-
lems cannot discern what design methods to use for a given prob-
lem—a strategy employed by most search engines or information
retrieval systems. Rather, looking at methods covariance provides
a stronger basis for making recommendations. While there may be
content features that make hybrid models more successful, we
saw no benefit from including focus area specializations, such as
“energy” or “health” in our collaborative filtering model—future
research should extend our understanding of possible alternate
features.

Our research enables novice designers to quickly come to grips
with which methods to use by recommending design methods for
a given problem. In addition, our research helps further the under-
standing of how design methods relate to one another by propos-
ing covariance as a meaningful basis for similarity. Both of these
have benefits not only for practicing designers, but also for educa-
tion and training—they provide a scalable way to make the
increasing web of design methods more manageable.
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