
Proceedings of the ASME 2015 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2015
August 2-5, 2015, Boston, USA

DETC2015/DTM-46840

A SCALPEL NOT A SWORD: ON THE ROLE OF STATISTICAL TESTS IN DESIGN
COGNITION

Mark Fuge
Department of Mechanical Engineering

University of Maryland
College Park, Maryland 20742

Email: fuge@umd.edu

ABSTRACT

The number of design studies using statistical testing has
increased dramatically over the past decade. While this has ben-
efits, statistical testing requires scrutiny to protect against com-
mon errors and misconceptions. To illuminate how these issues
affect design, this paper provides a comprehensive analysis of
the past decade of studies within the DTM community. Specif-
ically, the paper 1) reviews the background of statistical testing
across multiple fields, highlighting recommended practices, 2)
discusses its use in the Design community, and 3) provides con-
crete methods for authors and reviewers to evaluate statistical
tests employed in Design Cognition studies.

The analysis identifies recurring issues with: ignoring mul-
tiple comparisons; deficiencies in study and result reporting; in-
adequate defense of modeling assumptions; unavailable plots,
data, and analysis files for replication; and lack of interpretation
of statistical results with respect to practical outcomes or alter-
nate forms of scientific inquiry. Based upon practices already
adopted in other research communities, we put forth: 1) check-
lists that help authors and reviewers verify data reporting, analy-
sis, and statistical assumptions; and 2) design guidelines for cre-
ating more reproducible design experiments. Ultimately, we ar-
gue that design researchers, reviewers, and editors should view
statistical testing less like a sword and more like a scalpel—a
specialized tool best used in concert with other techniques—to
gain a more complete picture of Design Cognition.

INTRODUCTION
Engineering Design is complex, and design researchers

choose among many kinds of scientific inquiry to investigate its
physical and social phenomena. One type of inquiry has be-
come increasingly popularly over the past half-decade: Null-
Hypothesis Statistical Testing (NHST), or the use of statistical in-
ference techniques to draw causal conclusions from data. (DTM
studies incorporating NHST have risen from 9% in 2003 to 50%
in 2014—Fig. 1.) Its increased use coincides with a rise in De-
sign Cognition and Design Behavior research [1]: studies that
borrow techniques from psychology to help us understand phe-
nomena ranging from analogical reasoning [2] to creativity [3]
to prototyping behavior [4, 5]. Our field has gained innumerable
benefits from these advances, opening up many fruitful avenues
for understanding design cognition.

However, researchers should approach any wide-spread
adoption of particular techniques with careful consideration and
sufficient understanding: What strengths and weaknesses does
one approach to scientific inquiry have over another? How can
we adopt best practices while ameliorating any known down-
sides? What can the history of these techniques tell us about
pitfalls or opportunities for advances?

This paper offers some history and perspective on NHST
techniques, reviews the usage of NHST techniques in Design,
and highlights how the use of NHST techniques does not fol-
low best practices encouraged by the statistical community. It
initiates a critical conversation around research practice within
the DTM community in the same spirit as others have done for
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FIGURE 1. The percentage of studies using NHST has increased sub-
stantially over the past half-decade, to almost 50% of papers at the 2014
DTM conference.

Psychology [6], Medicine [7], Management [8], and Human-
Computer Interaction [9].

The paper first summarizes the NHST debate across multiple
fields. Then it reviews the papers from the past decade of the In-
ternational Design Engineering Technical Conference’s Design
Theory and Methodology track. The review answers the follow-
ing questions:

1. How has DTM’s use of NHST changed over time?
2. To what extent do statistical issues present in other fields

occur within design experiments?
3. How can design researchers avoid repeating other fields’

mistakes in the future?

The paper then offers up some guidelines to make it easier for
design researchers, reviewers, and editors to evaluate statistical
testing and prevent issues rampant in other fields from propagat-
ing to Design Cognition (and Design more broadly).

RELATED WORK
Throughout the history of NHST, but particularly over the

past two decades, researchers have debated what role NHST
should play in scientific inquiry. These debates fall roughly
into three major categories, which we order by approximate
scope: 1) how should one correctly execute a particular statis-
tical method, 2) how should one use statistics to support an ar-
gument, 3) what role should statistical testing play with respect
to other forms of scientific inquiry? We refer to these three types
of debates as execution issues, design issues, and interpretation
issues, mirroring the divisions used by [10] and [11].

Execution issues concern whether or not a particular statis-
tical method is justified, given the data and study design. Exam-
ples include concerns over whether data match assumptions that
a method uses; e.g., using tests which assume normality when
the data are non-normal [12]. Or whether a given sample size
suffices to claim results of a particular strength at a particular
power [13–15]. Or how researchers interpret the a statistical re-
sult (such as the conflation of NHST as proposed by Fisher versus
Neyman-Pearson [16, 17]).

Design issues concern whether the study design and statis-
tical model are appropriate (regardless of the methods used to
calculate the outcome). Examples include using linear or logis-
tic regression models in observational data, when the data are
neither linear or exogenous [18]. Or the Multiple Testing Prob-
lem—simultaneously using multiple statistical tests and not ad-
justing the threshold (α) to compensate for the increased false
positive rate—causing spurious statistical results [19,20]. Or se-
lective result reporting that makes it difficult for others to com-
pare across studies (e.g., for effect size) and hide researcher
degrees-of-freedom (such as only selectively reporting experi-
mental conditions), biasing the results [6].

Both Execution and Design issues result from a researcher’s
methodological errors. It has led to calls for greater statistical
literacy [21, 22] and changes in professional guidelines [23, 24].
Design issues are more systemic, requiring fundamental changes
in the statistical models a community uses. For example, re-
searchers still use linear regression models on non-randomized
data, despite clear evidence (including mathematical proofs) that
those models can be misleading [12, 18, 25]. Research com-
munities have pushed towards increasing replicability of exper-
iments by publishing data [26, 27], instituting editorial check-
lists [22, 28, 29], pre-registering experiments [30, 31], and even
independently replicating common experimental results [32–34].

Debates extend beyond methodological arguments to philo-
sophical questions about the role of NHST in the scientific pro-
cess. These debates come in two forms: outcomes and methods.

For outcomes, the central question has been “If an outcome
is statistically significant, does that mean it is practically signif-
icant?” [10, 11, 35] NHST opponents argue that measures like
Effect Size are more useful than rejection of a null hypothe-
sis [10, 35], or that the null models used are not realistic enough
to be useful [8]. NHST proponents argue that statistical signifi-
cance can imply practical significance, depending on the goal of
the research, and that thoughtfully performed testing with appro-
priate models is an indispensable scientific tool [11, 36].

For methods, the central question has been “What is the most
appropriate mechanism for establishing truth and forward scien-
tific progress?” Essentially, researchers and philosophers have
debated the relative merits of the Hypothetico-Deductive model
(of which NHST is a corner-stone) compared to other models,
such as deductive or abductive methods [37–39].

This relates to Design in that we use many quantitative
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and qualitative techniques that correspond to different scientific
methods. This paper views this diversity as one of the strengths
of our field. Researchers have sought to improve design research
practice, such as incorporation of placebo controls within de-
sign studies [40], comparing lab studies with project and industry
practice [41,42], and enumerating validation strategies for design
models [43]. However, none of those have looked specifically at
NHST’s role within Design Cognition.

METHODOLOGY
This paper’s corpus consists of all articles presented in the

Design Theory and Methodology Conference from years 2003
to 2014, totaling 603 articles. Many articles do not perform any
statistical testing. To identify just those articles that use statistical
testing, we used the following procedure:

1. An automated script analyzed each article’s text for any
words that matched the following case-insensitive patterns:
“statistic*” or “signific*”. Of the 603 articles, 493 matched
those patterns, and the matched sentences were output to a
text file.

2. The author manually skimmed the extracted sentences from
each of the 493 articles to determine, in the context of the
sentence, whether the sentences may have been referring to
a statistical test or a conclusion from such a test. If the ex-
tracted sentences did not contain sufficient information to
make that judgement, we read the entire article to verify
whether it used any statistical tests.

We identified 130 articles out of 603 (≈ 22%) that used some
form of statistical test. From these, we reviewed two-thirds
(≈ 88) in detail by reading the methodology, results, and dis-
cussion sections of the articles, and annotating each article with
codes from the three major categories mentioned above: Ex-
ecution issues, Design issues, and Interpretation issues. The
codes were derived from existing reporting checklists or guide-
lines [22, 28, 29, 44–46].

Execution Issues
These codes address execution of specific statistical models:

Sample Size: Coded “Yes” if: the study mentions how the sam-
ple size was determined. Coded “No” if: otherwise.

Power: (i.e., sensitivity or type-II error) Measures a test’s abil-
ity to detect an effect of a particular size when one actually
exists. Coded “Yes” if: the text mentions the intended power
of the study. Coded “No” if: the text does not mention the
intended power.

Effect Size: Coded “Yes” if: text clearly states the effect size
in either absolute or relative (e.g., Cohen’s d) terms. Coded
“No” if: otherwise.

R2: (i.e., Explained Variance) Measures a statistical model’s
goodness-of-fit to data. Coded “Yes” if: text provides
R2 values for any relevant statistical models in the article.
Coded “No” if: otherwise. Coded “N/A” if: the tests used do
not have a straightforward interpretation of explained vari-
ance.

Tests Assumptions: Coded “Yes” if: the paper attempts to ver-
ify any assumptions underlying any of the statistical tests
used (e.g., normality, heteroscedasticity, etc.). Coded “No”
if: otherwise.

Design Issues
These codes address the design, choice, reporting, or inter-

pretation of statistical models given experiment data:

Intention-to-treat (ITT): Coded “Yes” if: any text mentioned
whether participants dropped out of the study. Coded “No”
if: otherwise. Coded “N/A” if: dropout was irrelevant to the
study design.

Exclusion Criteria: Coded “Yes” if: text describes whether any
data were discarded when calculating the final statistics (or
states that no data were excluded). Coded “No” if: text did
not state whether it excluded any data.

Multiple Comparisons: Coded “Yes” if: multiple tests were
performed and any were adjusted to account for the in-
creased false positive rate. Coded “No” if: multiple tests
were performed, but no adjustment was conducted or men-
tioned. Coded “N/A” if: only a single test was conducted.

Data Plots: Coded “Yes” if: the article provides data plots for
at least one statistical test. Coded “No” if: otherwise.

Accessible Data: Coded “Yes” if: article provides a link to data
used in statistical tests, or describes why such data cannot be
provided (e.g., medical records). Coded “No” if: otherwise.

Accessible Analysis or Code: Coded “Yes” if: article provides
a link to data analysis code, or describes why such code can-
not be provided (e.g., non-disclosure agreements). Coded
“No” if: otherwise.

Interpretation Issues
These codes address the interpretation of the study:

Interprets Magnitude Outcomes of Effects: Coded “Yes” if:
article attempts to put the NHST results into a real-world
context (e.g., talking about the practical magnitude of the
size of an observed effect in real-world terms). Coded “No”
if: only “Significant or not Significant” interpretations were
provided.

Included Alternate Forms of Inquiry: Coded “Yes” if: article
presents any data or interpretations beyond NHST, by them-
selves or used in conjunction to explain the quantitative re-
sults. Coded “No” if: only NHST results were present.
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TABLE 1. Percentage of Studies with Given Code Labels. Higher
numbers in “Yes” or “N/A” are better than those in “No.”

Category Annotation Yes No N/A

Execution

Sample Size 7 93 –

Power 2 97 1

Effect Size 6 94 –

R2 21 71 8

Tests Assumptions 8 86 7

Design

Intention-to-treat 19 69 11

Exclusion Criteria 40 37 23

Multiple Comparisons 7 86 7

Data Plots 79 21 –

Accessible Data 1 99 –

Accessible Analysis 1 99 –

Interpret.
Outcome Significance 22 78 –

Alt. Forms of Inquiry 22 78 –

RESULTS AND DISCUSSION
We divide our analysis into three parts: 1) annotation codes

across the corpus, 2) distribution of statistical tests used, and
3) qualitative excerpts from individual papers in the corpus that
reveal representative attitudes about statistical tests in Design
Cognition studies. We have made all data and analysis files avail-
able on the paper’s companion website, for those who wish to
replicate our results.1

Summary of Annotation Codes
Using the coding scheme defined in the above section, Ta-

ble 1 lists the code prevalence across the corpus. We designed
the codes so that “Yes” or “N/A” codes were preferred to “No.”

Execution Issues

Sample Size: Most papers (93%) did not mention how they
selected their sample size or stopping rules for collecting
data. The American Psychological Association (APA) rec-
ommends including this information [45, Table 1].

Power: Most papers (97%) did not mention the intended Power
of the employed statistical tests. Of those that did, most cal-
culated the power of the test after the observed effect size,
which over-estimates the actual power of the test [13, 15].

1http://ideal.umd.edu/dtm_stats. We anonimized the specific
paper titles and authorship as a courtesy to other authors. We can provide decod-
ing keys upon request to authors who wish to conduct a full replication.

The APA encourages disclosing power calculations for study
design and sample size calculations prior to data collec-
tion [45, Table 1].

Effect Size: The vast majority of papers did not mention the ex-
pected or observed Effect Size for their primary outcomes,
instead listing only “Significant” or “Not Significant” re-
sults. The APA encourages reporting both test statistics (t/p-
values) as well as effect size measures and power calcula-
tions, since researchers need that information to compare
effects across studies [45, Table 1].

R2: For studies that fit statistical models to data (e.g., regression
models), 86% failed to report the variance explained by the
model. Readers need this information to determine whether
a model is appropriate, since p-values, power, and effect size
alone do not provide that information.

Tests Assumptions: Few papers verified any of the assumptions
required by their statistical tests. Certain tests are more sen-
sitive to model assumptions violations than others (e.g., F-
Tests, regressions [12, 18]). A small number of papers used
model diagnostic tools (e.g., Normality tests, equal variance
tests, etc.). Generally, such diagnostic tests can fail to reject
inappropriate models with sufficiently high power [25, 47],
so statisticians recommend providing data plots for addi-
tional verification [12, 48].

Design Issues

Intention-to-treat (ITT): Most papers (69%) did not mention
whether or not participants dropped out or switched treat-
ment groups during the study. The APA encourages re-
porting participant drop-out or switching, even if none oc-
curs [45, Table 1]. In cases of dropout, certain types of sta-
tistical models need to be adjusted [49].

Exclusion Criteria: Certain papers were structured such that
participant data might be excluded from the final analysis
(e.g., outliers, lack of participant reporting, unreadable data,
etc.). Of these, roughly half did not describe the criteria
by which data was excluded or mention whether data was
excluded. Since certain statistical tests are biased by data
exclusion [49], the APA encourages authors to report exclu-
sion criteria, even if no data is excluded [45, Tables 1&4].

Multiple Comparisons: Most articles used less than 20 simul-
taneous tests, however several utilized over 100 simultane-
ous tests without correcting for the (substantially) increased
False Positive rate [6,19,20]. Many journals now require ad-
justing for multiple comparisons [19,50] prior to publishing
an article (e.g., Nature [28]).

Data Plots: Most papers provided at least one visual plot of the
data. This is important for determining appropriate statisti-
cal methods [12, 48].

Accessible Data: Only one paper in the corpus provided access
to the data required to verify the authors’ results. This stands
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in contrast to calls from government agencies [51] and jour-
nals [27, 46, 52] for the availability of (anonimized) data to
increase research transparency.

Accessible Analysis or Code: Only one paper in the corpus
provided access to the computer programs or analysis files
required to verify the authors’ results. This stands in con-
trast to calls from journals for replicability and transparency
in scientific reporting [27].

Philosophical Issues

Interprets Magnitude Outcomes of Effects: Most papers
(78%) did not interpret the magnitude of their statistical
tests in terms of practical effects, preferring to only state
whether an effect was “Statistically Significant” or not.
While it is true that laboratory effects will differ from those
seen in real-world practice, we view this oversight as a lost
opportunity for a more thorough interpretation of whether
an intervention or behavior is worth investigating further.

Included Alternate Forms of Inquiry: Most papers (78%) did
not perform alternative forms of scientific inquiry beyond
analyzing NHST results. Those that did typically provided
one or more of the following: 1) qualitative interview ex-
cerpts from participants, 2) specific case studies on one or
more data points, or 3) refinement and interpretation of a
computational model separate from those used to generate
the NHST results.

Distribution of Statistical Tests
Table 2 summarizes the distribution of statistical tests used

in each study. The counts are not mutually exclusive within stud-
ies: if a study used both t-tests and linear regression we added a
count to each entry. The most popular statistical tests were the
T-Test (32), One-Way ANOVA (26), Pearson Correlation Coef-
ficient (29), and various Generalized Linear Model Regressions
(GLR) (20). In general, researchers used T-Tests and ANOVA
when comparing new interventions (e.g., design methods) in lab-
oratory settings, while they used Correlations and Regressions
for observational data (e.g., classroom or historical data studies).
That said, there were a large variety of study designs outside of
those two cases, and a full review of articles’ content is outside
the scope of this paper (See [1] for an overview).

Given the prevalence of the above tests, it is useful to un-
derstand some of the assumptions underlying these tests, as per
Freedman [12, pg. 101]:

“Estimation and significance testing require statistical
assumptions. Therefore, you need to think about the
assumptions—both causal and statistical—behind the
models. If the assumptions dont hold, the conclusions
dont follow from the statistics.”

Regardless of whether the goal is to identify causation or correla-
tion, researchers need to understand the underlying mechanics of
the models they use and when they might be in error. Below we
highlight key notes about the application of each of these tests
and point out which assumptions tend to be robust to violations.

Type Test # Studies

Location
T-test 32

Proportions t-test 3

Category
Pearson’s Chi Squared 7

Fishers Exact Test 1

ANOVA

F-test/one-way 26

two-way 3

MANOVA 1

ANCOVA 2

Regressions

Linear Regression Coeff. 9

Ordinal Logistic 4

Stepwise Regression 2

Probit Regression 1

Logistic Regression 4

Correlation
P. Correlation Coeff. 19

Spearman Rank Correlation Coeff. 8

Non-Parametric

Kruskall-Wallis 6

Conf. Intervals 5

Permutation test 1

Mann-Whitney U / Rank Sum Test 9

Kolmogorov-Smirnov (K-S) 1

Inter-rater

Cronbach’s Alpha 4

Pearson Correlation 10

% Agreement 1

Intraclass correlation 2

Krippendorff’s alpha 2

Fleiss Kappa 1

Cohen’s Kappa 12

Other

Cohen’s D 1

F-Test Variance 1

Bionomial-CDF 1

Levene Test 3

Logit 1

Factor Analysis 1

Shapiro-Wilk test 3

Mauchlys test 1

Fisher’s Least Sig. Diff. 2

Unclear Test 2

TABLE 2. The most common tests used in the study corpus were:
T-Tests (32), One-Way ANOVA (26), Pearson Correlation Coefficient
(29), and various Generalized Linear Model Regressions (20).
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T-Test, ANOVA F-Test, and Generalized Linear Regression
The T-Test is one of the most wide-spread hypothesis tests for
differences in mean of two variables. ANOVA (and family) are
multi-variate extensions of it. They all assume each observation
is the sum of causal effects plus-minus some errors that are in-
dependent of each other, are identically distributed around 0, and
have finite variance. For n data points with p variables (p = 1
for t-test, p > 1 for ANOVA and GLR), n− p should be large
(Central Limit Theorem) or the errors in the test statistic should
be normally distributed [12, pg. 70]. If the errors are not dis-
tributed around 0, then the estimates will be biased. If the errors
are distributed around 0, but they are not independent of each
other or the treatment levels then the estimator will be unbiased,
but formulas for the standard error (and therefore p-values) will
be inaccurate [12, pg. 68].

There are three common situations in design experiments
where the above assumptions would causes issues. First, when
the number of participants per treatment group is small, assump-
tions about normality of errors would be difficult to verify, even
with diagnostic tests [47]. In these cases either run studies with
more participants or use tests that do not rely on the normality
assumption.

Second, when the treatment conditions are not randomized,
assumptions regarding treatment-error independence (exogeni-
ety) do not hold, causing misleading standard error estimates.
This is common in design cognition studies based on observa-
tions of in-class or semester-long activities (or any other case
where participants have not be randomly allocated to conditions).
In these cases, ANOVA, Regression Coefficients, and the F-Test
can mistakenly “reject” a null hypothesis based on inaccurate
standard error formulas. Without randomization (or some other
means of establishing exogeniety, such as Instrumental Variables
[12, pg. 181]), one cannot draw causal conclusions from obser-
vational data using statistical testing alone.

Third, even when assumptions regarding normality, etc. are
reasonable, many papers draw conclusions about particular as-
pects or coefficients of a model by arguing that the omni-bus F-
test statistic for the entire model is significant (rather than break-
ing down the model into simpler effects, contrasts, or post-hoc
tests controlled for multiple comparisons on particular coeffi-
cients). Freedman [12, Ch. 5.7] succinctly highlights why this
might be a problem:

“If F is significant, that is often thought to validate the
model. Mistake. The F-test takes the model as given.
Significance only means this: if the model is right and
the coefficients are 0, it was very unlikely to get such
a big F-statistic. Logically, there are three possibilities
on the table. (i) An unlikely event occurred. (ii) Or the
model is right and some of the coefficients differ from 0.
(iii) Or the model is wrong. So?”

Pearson Correlation Coefficient NHST tests whether a cor-
relation coefficient is non-zero. The Pearson Product-Moment
Correlation Coefficient assumes linear dependence between two
variables and that the data has constant variance (homoscedastic-
ity); when dependence is non-linear or heteroscedastic, the corre-
lation coefficient will be inaccurate [48,53]. When estimating the
probability that a coefficient is non-zero, researchers can employ
several tests, each with its own assumptions; in our corpus most
papers did not report the specific method used to estimate the
desired probability. Common options include permutation tests,
which assume exchangability, or t-tests and Exact tests which as-
sume normality. The Pearson Correlation Coefficient is sensitive
to data containing outliers [53].

Qualitative Excerpts
Several papers made specific statements that highlighted

some cultural reasons for why NHST has been so rapidly adopted
in our field (Fig. 1). We want to discuss the rationale behind some
of these statements and dispel some common misconceptions re-
garding NHST. These break into three main categories: using
causal language to describe correlational observations, confusing
what a rejected statistical test means, and using statistical testing
as substitute for other forms of scientific inquiry.

We found common confusion between correlation and cau-
sation, which typically occurred in a two-part pattern. First, the
result section would present graphs, correlations, regressions,
etc. that described how certain behaviors correlated with out-
come measures (e.g., grades, creativity scores, self-assessment,
etc.). Next, the discussion and conclusions section would inter-
pret those correlations as causal; for example through statements
such as “Our results demonstrate that designers should do X to
achieve Y” or “Our results support Z’s research that X increases
Y”. The papers would not usually validate the model’s causal-
ity prior to making this tenuous leap of faith from correlation to
causation. While one might be tempted to give this gap in logic
the benefit of the doubt, it creates a problem for our community,
since, once published, false claims tend to persist in literature
despite copious subsequent contradictory evidence [54].

A second common confusion stemmed from what statisti-
cal tests allowed one to claim. Several papers stated that be-
cause NHST rejected the null, the intervention was “statistically
proven” to be effective; this common misconception is incor-
rect [17]. Likewise absence of evidence was taken as evidence
of absence:

“Interestingly, however, analysis showed that there
was no statistically significant correlation between *re-
moved for anonymity* and the scores that the teams
received in their evaluation. In other words, there
seemed to be no grading bias based on *removed for
anonymity*.”
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Generally, failing to reject a result does not indicate no effect; it
more commonly indicates a lack of power in the test [15].

Lastly, certain papers used NHST as a substitute for other
forms of scientific inquiry:

“Unlike many studies of actual design processes, we
use powerful statistical analysis tools to gain insight
into the data rather than qualitative, case-based tech-
niques.”

We view this mutual exclusion as counter-productive. While sta-
tistical techniques are indeed powerful (when used correctly),
one needs to balance that power with an appropriate degree of
control and caution. Rather, it is in our best interest to combine
multiple forms of inquiry where possible, recognizing the limi-
tations of each [55].

Implications on Results of Published Articles
Given the statistical issues noted above, what does this im-

ply for the knowledge contained in existing articles? Depending
on the particular case, this ranges from provoking inconvenience
to invalidating certain results. Of the 13 issues shown in Table 1,
three broad categories could have different impacts on each arti-
cle’s contributions.

First, unavailability of data plots, raw data, and analysis files
creates inconvenience for readers and researchers, but does not
affect the accuracy of knowledge contributed by an article (as-
suming the authors did not selectively present or filter the data
used in their article). We should strive for transparency and more
useful reporting in the future, but past articles raise no immediate
concern.

Second, issues relating to Effect Size, Power, measures of
outcome significance, and alternative forms of inquiry, make it
harder for readers to evaluate the external validity of the knowl-
edge. This does not imply incorrectness, but rather difficultly in
correctly interpreting a study beyond just “statistically significant
or not,” reducing the article’s utility.

Third, issues relating to sample size, R2, testing assump-
tions, multiple comparisons, intention-to-treat, and exclusion cri-
teria can raise questions regarding an article’s internal validity
(i.e., a result’s accuracy). In these cases, results might over-
estimate effects or, in the worst case, be plainly inaccurate. These
types of issues could cast serious doubt on the knowledge con-
tained in an article.

RECOMMENDATIONS FOR DESIGN RESEARCH
The above results indicate several areas specific to Design

Research where we might focus our efforts as a community:

Pair statistical results with additional evidence. Certain de-
sign research studies cannot use randomization or other tech-

niques to isolate causal behavior, for example, 1) studies con-
ducted in classroom or workplace environments where re-
searchers cannot randomize interventions (e.g., new design meth-
ods or practices) to blind conditions; or 2) studies analyzing
past design data where researchers performed no direct interven-
tion (e.g., regressions on company or team performance, such as
stocks, design awards, grades, or behavioral patterns). In these
cases, relying solely on evidence from statistical models will be
misleading, since many assumptions (exogenity, independence,
etc.) may not hold and will be difficult to verify. In these cases,
we recommend conducting additional forms of data collection
(e.g., qualitative analysis or interviews, critical reviews of es-
tablished theoretical models, supporting computational models,
etc.) that can build a diverse portfolio of evidence for the desired
phenomenon.

Match statistical assumptions to study designs and limit con-
clusions where appropriate. Certain study designs require
careful analysis and interpretation: Were participants random-
ized to conditions? Could they stop using a particular design
method (drop-out), or switch to a different one than they were as-
signed (cross-over)? Could participants do something that would
disqualify their results (e.g., leave a workshop, drop a class)?
Are you testing multiple different outcomes simultaneously (e.g.,
Novelty, Variety, Quantity, and Quality of ideas produced) or
across a range of time periods (e.g., multiple weeks during a
semester, multiple time windows in a 30-minute session, etc.)?

All of those (and more) can limit the type of statistical mod-
els one can use and how one is allowed to interpret the results. In
some cases, the data can identify causal behavior if corrected us-
ing appropriate techniques (e.g., in Multiple Testing, or in drop-
out), and in other cases the data might be drastically misleading
(e.g., in cross-over, or when analyzing past observational data
that was not properly randomized). In either case, design re-
searchers carry the burden of describing where and how our sta-
tistical models might be in error.

Standardize or better explain design outcome measures. To
permit statistical analysis, design researchers quantify desired
outcomes (e.g., ideation, behavioral patterns, participant self-
assessments, educational outcomes, company performance etc.)
through a variety of measures (e.g., creativity metrics, task or
protocol frequency, Likert-style surveys, grade distributions on
assignments or courses, biological signals such as fMRI and
EEG, and stock performance, among others). This variety makes
design interesting and diverse. However, it also requires careful
interpretation about how (and by how much) interventions affect
designers, what those changes mean, and to what extent “statis-
tically significant” might not be “practically significant”.

For example, if one created a new design method, tested that
method on randomized participants, and recorded a statistically
significant difference in the variety of the ideas generated, one
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would still have to ask “where did this significance come from
(low within-sample variance, or large difference in means), and
what does this difference mean in practical terms?” If the differ-
ence was +0.4 points on some chosen variety metric, what does
that change represent in real-world terms? Is it worth the effort
required to implement the method? Does a +0.4 increase mean
the same thing at different locations on the measurement scale
(e.g., on Likert-scales from 0-10 points)? These are important
questions that help us connect the statistical results to practical
ones. While purely statistically significant results might be all
that we are after in some cases, the burden still rests upon the
researcher to discuss the utility that their results might achieve in
practice.

Increase ease of replication by sharing data and study designs
At present, most reported design studies do not publish their data
or study designs for future analysis. This makes it difficult for
others to analyze past data (e.g., for meta-analysis studies), to
compare one-self with prior work, or accurately replicate previ-
ous effects. Fields such as Computer Vision, Machine Learning,
and Network Analysis have benefited immensely from common
experimental datasets and procedures shared by the community.
Some efforts have been pursued to do the same for design (e.g.,
ASU’s Design Protocol Repository [56], Oregon State’s Design
Repository [57], and in [58–60]), however our field and review
process has yet to establish the expectations and culture around
replication and sharing seen in other data-intensive fields.

CONCLUSIONS AND RECOMMENDATIONS
This paper explored how Null Hypothesis Statistical Test-

ing (NHST) has been used in Design Cognition studies, specifi-
cally, those in the Design Theory and Methodology conference.
It did this via annotating articles using codes commonly used
in review checklists and guidelines from other fields that apply
NHST [22, 28, 29, 44–46]. It reviewed the most common sta-
tistical modeling assumptions, drawing on scenarios in design
research where those assumptions will likely be violated.

From this, it found several issues that our community needs
to address to conform with recommended statistical practices:
ignoring multiple comparisons; deficiencies in study and result
reporting; inadequate defense of modeling assumptions; unavail-
able plots, data, and analysis files for replication; and lack of in-
terpretation of NHST results with respect to practical outcomes
or alternate forms of scientific inquiry. Despite this, we do be-
lieve that NHST is useful to the scientific process, when con-
ducted correctly, and we encourage researchers to familiarize
themselves with the advantages and limitations of NHST. We
hope this article can start a conversation within our community
about collecting an appropriate and diverse toolbox of scien-
tific methods for studying Design; one that builds on our multi-
disciplinary strengths without adopting the historical mistakes of

those who came before us. One area for future research would
be to followup on subsequently published journal articles and
to compare the reporting standards between the two; one might
expect the journal review process to ameliorate some of these
issues.

In closing, we recommend the following actions for authors,
reviewers, and editors to improve NHST use in Design Cogni-
tion studies and Design more broadly. These were built upon
guidelines recommended by others [22, 23, 26, 29, 37, 61].

For Authors
Encourage Statistical Literacy: Encourage fellow researchers

to take a graduate-level course in applied statistics offered
by a statistics department. Consult graduate-level textbooks
[12, 25] and modern reporting guidelines, such as the APA
[45]. Many universities also offer free Statistical Consulting.

Use a Review Checklist: When planning and writing your re-
search, use one of many published reporting checklists (e.g.,
Nature’s [28]) to catch common issues before submission.

Separate Out Confirmatory from Exploratory Testing: If
you observe a set of possibly interesting effects, use a direct,
targeted replication study to confirm an effect.

Consider Study Pre-Registration: If you do plan on conduct-
ing a mix of confirmatory and exploratory tests with one ex-
periment, consider pre-registering [31] your study to avoid
multiple testing or researcher degrees-of-freedom issues [6].

Consider Combining Forms of Inquiry: Conducting addi-
tional forms of inquiry, such as case-studies, qualitative
analysis, or computational modeling can complement your
NHST results.

Encourage Comparisons or Replications Across Contexts:
Whether across labs at different universities, or across
academic versus industrial environments, running parallel
studies helps provide useful insight about robustness of
design interventions (e.g., Hernandez et al. [41]).

Encourage Transparency and Reproducibility: Where possi-
ble, make your analysis procedures and data available to oth-
ers for review and later analysis. It encourages transparency,
helps in meta-analysis studies or others types of reviews, and
improves the impact of your articles [26, 27, 52].

Provide Graphs of Critical Data: Plotting data provides more
insight than simply enumerating statistical properties [48].
Often many concerns raised during the review process can
be avoided through proper display of primary data.

For Reviewers
Use a Review Checklist: When reviewing articles, use one of

many published reviewing checklists (e.g., Nature’s [28],
APA’s [45]) to ensure authors provide recommended exper-
imental detail in accordance with best practices.

Reviewer Statements: If you are concerned about possible
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backlash or unblinding of the review process, there are sev-
eral standardized reviewer statements that can be included
in all of your reviews (e.g., the Center for Open Science’s
“Standard Reviewer Statement for Disclosure of Sample,
Conditions, Measures, and Exclusions”2).

Encourage Transparency and Reproducibility: Request that
analysis procedures and data be made available for review
and later analysis. This is becoming common practice in
many journals (e.g., Nature [26, 27]).

Request Graphs of Critical Data: For critical statistical tests,
request illustrative plots of that data, instead of just enumer-
ation of statistical properties [48]. This helps future readers
verify some common assumptions.

Emphasize Additional Forms of Scientific Inquiry: Using
NHST as the sole arbiter of truth ignores many other
potential forms of scientific inquiry. Encourage authors to
expand on NHST results with other forms of inquiry to add
depth to numerical results.

Shift the Discussion to Alternate Measures: Encourage dis-
cussion not just around “significant or not significant” (and
at what level) but rather around the sizes of observed effects
and their practical implications.

For Editors and Associate Editors
Institute Review Checklists for NHST Reporting: Many

other journals provide a review checklist for papers involv-
ing NHST [28, 45]. These remind reviewers to check for
NHST pitfalls. Some journals even require pre-registration
of important experimental trials [30, 31].

Encouraging Responsible Data Sharing: Many journals en-
courage sharing of experimental data and code, subject to
appropriate IRB and privacy restrictions [46, 51, 52]. This
increases the research transparency and citation count (and
thus impact) of individual articles and the journal.

Equip Your Journals to Accommodate Non-Print Media: If
your journal does not yet allow so, encourage a mechanism
for storing and indexing data or code associated with
published articles (e.g., a supplemental data submission
procedure).
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