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Abstract

When selecting ideas or trying to find inspira-
tion, designers often must sift through hundreds
or thousands of ideas. This paper provides an
algorithm to rank design ideas such that the
ranked list simultaneously maximizes the qual-
ity and diversity of recommended designs. To
do so, we first define and compare two diversity
measures using Determinantal Point Processes
(DPP) and additive sub-modular functions. We
show that DPPs are more suitable for items ex-
pressed as text and that a greedy algorithm di-
versifies rankings with both theoretical guaran-
tees and empirical performance on what is oth-
erwise an NP-Hard problem. To produce such
rankings, this paper contributes a novel way to
extend quality and diversity metrics from sets
to permutations of ranked lists.

These rank metrics open up the use of multi-
objective optimization to describe trade-offs be-
tween diversity and quality in ranked lists. We
use such trade-off fronts to help designers se-
lect rankings using indifference curves. How-
ever, we also show that rankings on trade-off
front share a number of top-ranked items; this
means reviewing items (for a given depth like
the top 10) from across the entire diversity-to-
quality front incurs only a marginal increase in
the number of designs considered. While the
proposed techniques are general purpose enough
to be used across domains, we demonstrate con-
crete performance on selecting items in an on-
line design community (OpenIDEO), where our
approach reduces the time required to review di-
verse, high-quality ideas from around 25 hours
to 90 minutes. This makes evaluation of crowd-
generated ideas tractable for a single designer.
Our code is publicly accessible for further re-
search.

1 Introduction
When generating creative designs, both practicing de-
signers and researchers agree: “If you want to have good

ideas, you must have many ideas.” [1] Why? Because
having many ideas helps a designer—or a team of de-
signers—explore a design space and find new inspiration
from unlikely places. But is more always better? When
do ‘many ideas’ turn into ‘too many ideas’? Given thou-
sands of possible ideas to process and limited time, a
designer needs a much smaller “good” set of seed ideas
or, better yet, a good ranking of all ideas so that they
can decide when they have had enough.

But what, specifically, does it mean for a ranking of
ideas to be “good” and how does one compute such rank-
ings? This paper focuses on those two questions. Specif-
ically, the paper argues that when ranking ideas—e.g.,
for the purpose of inspiration, idea generation, or selec-
tion—a good ranking should not only show a designer
ideas that possess high quality—that is, ideas that per-
form better than other ideas (assuming one can measure
such differences accurately)—but also that possess di-
versity—that is, a designer should see ideas that cover
a design space well.

Why would one care about encouraging diversity when
ranking ideas? Why not just order ideas by individual
quality or merit and be done with it? Consider the fol-
lowing example design problem from a real-world design
competition1 which asked designers to generate ideas to
address “How might we better connect food production
and consumption?” Of 606 submitted ideas, let us take
a summary of just four ideas as an example:

1. Compost It!—A proposal to partner with the city
to create a closed loop composting system.2

2. Residential compost material – curbside pickup— A
state-wide initiative to encourage people to separate
compost material for pick up.3

3. The Art of Food Festival— A festival celebrating
local food and art with edible sculptures, inspired

1http://challenges.openideo.com/challenge/
localfood/

2challenges.openideo.com/challenge/localfood/
concepting/compost-it

3challenges.openideo.com/
challenge/localfood/concepting/
residential-compost-material-curbside-pickup

http://challenges.openideo.com/challenge/localfood/
http://challenges.openideo.com/challenge/localfood/
challenges.openideo.com/challenge/localfood/concepting/compost-it
challenges.openideo.com/challenge/localfood/concepting/compost-it
challenges.openideo.com/challenge/localfood/concepting/residential-compost-material-curbside-pickup
challenges.openideo.com/challenge/localfood/concepting/residential-compost-material-curbside-pickup
challenges.openideo.com/challenge/localfood/concepting/residential-compost-material-curbside-pickup


by french festivals. 4

4. Online local farming NFP organisation—Growing
and delivering fresh locally grown vegetables to a
community of online customers at a very low cost.
5

The above ideas have quality scores—provided by hu-
man raters—of 20, 12, 9, and 3 points respectively. Our
task is to show two “good” ideas to a designer where a
“good” set of ideas should help inspire the designer to
come up with new ideas. One naive way is simply to
order all ideas by their quality score and select the top
two ideas. However, in our example, this will select the
two ideas related to composting. Is this a good choice?

On the one hand, they are the two highest qual-
ity ideas of the four.6 On the other hand, they are
surprisingly similar to each other; both address the
fairly broad problem statement—connecting food pro-
duction and consumption—via a narrow set of solu-
tions—composting. As many researchers have shown,
generating good ideas requires both divergent and con-
vergent thinking, and it is not clear that ranking purely
by quality promotes such divergence. Likewise, if quality
ratings are biased or noisy, promoting coverage may pro-
tect against unfairly discounting certain ideas. Ideally,
selected ideas should have both high quality and good
coverage of possible options. This allows a designer to
gain maximal benefit from a large number of ideas—e.g.,
increased coverage and quality—within a given budget
of time or attention.

How does one find high quality ideas that also have
good coverage? One manual approach might first rank
ideas by quality and then just swap ideas which are sim-
ilar to each other with random ideas from the collection.
For our above example, the first two ideas are similar,
so we can swap the second idea with either the third
or fourth to get a diverse set of two ideas. But when
the number of ideas grow to hundreds or thousands this
approach does not scale; finding exactly which ideas to
swap in is laborious and depends on the other ideas you
already have in the set. Astute readers may notice that,
mathematically, this is equivalent to a combinatorial op-
timization problem called set covering which is a type
of boolean satisfiability problem. Optimizing such prob-
lems is NP-Hard. Second approach, and one which is
commonly used, is to define a objective function which
is a weighed average of diversity and quality. While this
approach is straightforward to implement, it is difficult
to know beforehand how much quality one is willing to
part with to encourage diversity. Finally, the approach
we use formulates a multi-objective optimization prob-

4challenges.openideo.com/challenge/localfood/
concepting/the-art-of-food-festival

5challenges.openideo.com/challenge/localfood/
concepting/online-local-farming-nfp-organisation

6Assuming (perhaps tenuously) that our measurement
system, be it humans, computational simulations, analytical
formulas, etc. is not noisy, biased, or fixated towards partic-
ular solutions like composting.

lem and treats coverage and quality as independent ob-
jectives. One benefit of doing so is that after computing
the trade-off front one can actually compute the loss in
quality for any given gain in coverage.

In addition, as different designers may have different
information needs, instead of selecting a smaller subset
of two ideas and showing them to a designer, one can also
rank order all ideas. This retains all ideas where the ones
appearing on top of the list are good (i.e., higher quality
with good coverage). Deciding what ranking is better is
non-trivial. Even for our simple example, it is hard to
argue which of the following rankings is clearly better:
[1,3,4,2] or [1,4,3,2] or [1,3,2,4]. While, at first glance,
ranking ideas may seem straightforward, including di-
versity transforms ranking into an NP-Hard problem.

This paper’s contributions We propose a practical,
efficient, computational method for ranking diverse and
high-quality items. In contrast with past work, we ap-
proach idea ranking as a multi-objective optimization
problem, which allows a designer to trade off rankings
between those that encourage diversity and those that
encourage quality. Specifically, the main research con-
tributions of this paper are:

1. We define a novel method for extending set-based
diversity measures [2] to rank-based diversity mea-
sures. Our key insight lies in how to preserve a
mathematical property called sub-modularity when
computing diverse rankings; without it optimization
becomes intractable.

2. We propose a polynomial-time greedy algorithm to
rank items by diversity. This algorithm has both
theoretical approximation guarantees and outper-
forms existing benchmarks.

3. We describe how to balance high-quality versus di-
verse idea rankings through a quality and diversity
trade-off front among rankings.

4. We evaluate two state-of-the-art approaches to com-
pute diversity of item sets—sub-modular clustering
and Determinantal Point Processes—uncovering the
conditions under which one out-performs the other.

Structure of the paper We want a way to rank
items that balances quality and diversity. While quality
rankings are well-researched and comparatively tractable
(see Sec. 4.2), Diversity measures—typically defined over
fixed-sized sets—are less straightforward. Before we can
combine quality and diversity for ranking (Sec. 4), we
need to first define diversity (Sec. 3), including what it
means to cover a space of ideas (3.1) and how to com-
pute that coverage for a set of ideas (3.2 & 3.3). We
then describe how to extend diversity and quality to
rankings (Sec. 4) rather than a fixed-size set. To com-
pute such rankings, we introduce both global (Sec. 5.2)
and greedy (Sec. 5.1) optimizers that take advantage of
properties of sub-modular functions to hasten conver-
gence and provide theoretical performance guarantees.

challenges.openideo.com/challenge/localfood/concepting/the-art-of-food-festival
challenges.openideo.com/challenge/localfood/concepting/the-art-of-food-festival
challenges.openideo.com/challenge/localfood/concepting/online-local-farming-nfp-organisation
challenges.openideo.com/challenge/localfood/concepting/online-local-farming-nfp-organisation


Section 6 demonstrates our approach on real-world de-
sign ideas created by a crowd-sourced design community
(OpenIDEO). Sec. 7 adds discussion on main insights,
addresses our key limitations and future work alongwith
implications for design research, which include impor-
tant choices in how we define similarity and quality as
well as handling the multimedia nature of design ideas
i.e., combinations of text, images, audio, etc.. The pa-
per’s supplemental material includes additional exper-
iment that demonstrates applicability to ideas repre-
sented as sketches. It also includes an experiment which
describe under what conditions one coverage metric out-
performs another.

2 Related work

Two seemingly disparate fields—Design and Computer
Science—have both explored ways to jointly rank qual-
ity and diversity. Design researchers have focused on ap-
propriate metrics for measuring item diversity and qual-
ity, while Computer Science researchers have focused on
representations and methods for scalably estimating or
ranking lists of diverse items. This work advances dif-
ferent efforts across both fields.

Within Design, researchers have primarily tackled how
to either (1) evaluate creative sets of ideas or (2) lever-
age large design databases to inspire designers. As an
exemplar of the former, Shah et al.[3] provide met-
rics for ideation effectiveness, where the main measures
for the goodness of a design method are how they ex-
pand the design space and how well they explore it.
Typically, work in this vein discusses diverse design
space exploration using terms like variety, measured
through, for example, coverage over trees of functions [3;
?], human expert assessment [4], or linear combinations
of design attributes [5]. One of the difference between
past engineering design variety literature and what we
propose is that many past variety measures require ex-
pert coding for all ideas, which may be infeasible for a
large collection.

The second main avenue of research concerns evalu-
ating large sets of ideas, typically by using crowds of
evaluators to scale up evaluation by partitioning ideas
among many people. As an exemplar of such approaches,
Kudrowitz and Wallace [6] suggest metrics to narrow
down a large collection of product ideas. Likewise, Green
et al.[7] propose methods for creativity evaluation using
crowd-sourcing, where researchers focused on inspiring
designers [8] and inspiring creativity [9].

Within Computer Science, researchers have tackled
diversification in two strongly inter-connected applica-
tions: information retrieval and recommender systems,
where researchers have developed ranking algorithms for
different settings. When recommending sets of items to
people (e.g., movies on Netflix) predicting exactly what a
user wants is difficult, so by recommending a diverse set
of items, chances increase that one of the recommended
items will match what the user wants. The intuition for
this approach stems from the portfolio effect [10] where

placing similar items together within a portfolio of items
has decreasing additional value for users. This diminish-
ing marginal utility property is well-studied in consumer
choice theory and related fields [11].

The main research questions within both recom-
mender systems and information retrieval are two-fold:
(1) how do we represent this diminishing marginal utility,
and once we do (2) how do we optimize over it efficiently?
For the former question, researchers have proposed al-
ternate scoring methods to diversify rankings. An early
exemplar of this was Ziegler et al.[12] who modeled the
topics in text documents and then tried to balance the
topics within recommended lists. Their large scale user
survey showed that a user’s overall satisfaction with lists
depended on both accuracy and the perceived diversity
of list items. Approaches that followed largely centered
around the notion of coverage—that a diverse set should
somehow cover a space of items well. The main dif-
ferentiators of past approaches are how this coverage is
measured and then combined with other objectives such
as document relevance.

Approaches to measuring coverage break into two
main camps, depending on what objects the coverage
is defined over. The most common approach defines a
vector space using properties of each item, e.g., word fre-
quency vectors or topic distributions over text. For ex-
ample, Puthiya et al.[13] take positively rated items from
a user, and then select sets from that list such that they
cover the distribution of words in the submission. Like-
wise, search diversification techniques such as xQuAD
[14] explicitly model the underlying aspects or subtopics
for a query and select documents based on a combination
of their relevance to the original query and relevance to
the aspects.

The second camp instead defines a similarity graph be-
tween items—for example cosine similarity between doc-
uments—and then computes properties over this graph
such that the selected items maximize some graph cov-
erage property. For example, one can use random-walk
based algorithms like PageRank [15; 16] to estimate how
central items are in a graph, and then re-order items
based on this score. For more examples of such variants,
Vargas et al.[17] and Castells [18] provide useful frame-
works and reviews of past approaches. Such approaches
apply to a broad set of applications like music discov-
ery [19], keyword-based summarization [20], ecology[21],
and document summarization [22].

Assuming we can answer the former question—how to
represent diminishing marginal utility of sets—the lat-
ter question concerns computing such rankings. Three
difficult and inter-related problems have motivated past
research: (1) there are different ways of computing cov-
erage over a space—under what conditions would we
prefer one over the other? (2) Coverage over sets of
items is a combinatorial problem (optimizing set-cover is
NP-Hard)—how can we guarantee certain performance
in polynomial time? And (3) diverse rankings require
some notion of optimal coverage across a ranking, which
is harder than guaranteeing coverage over a single fixed-



size set—how should we compare optimal coverage over
such rankings?

For the first problem of which coverage metric to use,
researchers have proposed many different options. How-
ever not much work has characterized and compared the
differences between these options; this is one of our pa-
per’s contributions. For the second problem, most work
has focused on using greedy approximations to the set
coverage problem. This means most of these methods
produce a list by progressively adding items to a set, with
some fixed weighted trade-off between diversity and rel-
evance [23]. While this efficiently produces diverse lists,
it is difficult to compare or customize such lists when
users have different preferences between diversity and
quality. One of this paper’s contributions is to provide,
to our knowledge, the first approach to compare entire
ranked lists between these two objectives and efficiently
create rank orders that span the trade-off between di-
versity and quality (Sec. 4). For the third problem,
past work typically considers rankings more diverse if
they minimize some notion of redundancy. For example,
whether ranked items occur in common elements in a hi-
erarchy [24], or how well rankings compare with human
relevance judgments of sub-topics such as ERR-IA [25],
α-nDCG [26], and S-precision or S-recall [27]. These
metrics are difficult to extend to cases where we do not
have human-provided labels. One of this paper’s contri-
butions is to extend coverage metrics used for fixed-size
sets to rankings, such that we can use those metrics to
evaluate diversity of ranked lists (Secs. 4.1 and 4.2).

Compared to information retrieval or recommender
systems, where the number of sub-topics is frequently set
in advance and users have a specific query they wish to
answer, design ideas are often unstructured, come from a
wide variety of sources, and a designer’s goal is to gain in-
spiration from a wide range of sources. This makes gen-
erating diverse, high quality lists particularly important
when providing ranked ideas to designers. If successful,
such techniques would have wide ranging consequences
for crowd-sourced or large-scale ideation techniques by
helping designers avoid premature convergence on a very
limited set of ideas and helping people explore vast de-
sign spaces.

3 Defining and Computing Diversity
for Fixed-Size Sets

Before we can address ranking ideas by diversity, we first
need to introduce how to quantitatively compute the di-
versity for simpler fixed-sized sets of ideas. For example,
when one needs to pick a diverse set of five ideas, but the
exact order in which one picks them does not matter.

Consider the example from the beginning of the pa-
per, where one needs to select two ideas out of four re-
lated to “connecting food production to consumption.”
In that example, one can intuitively tell that select-
ing the first two ideas—both relating to composting
strategies—seems less diverse than the first and third
ideas—one on composting, and one on food festivals.

Why does one conclude this? How can we make this
intuition more precise? Can we quantitatively capture
that intuition?

As with the related work summarized above, quanti-
tatively measuring diversity essentially comes down to
measuring how well a set of ideas covers a space of op-
tions. For our above example, one might look at the
four ideas and mentally place them into “buckets,” plac-
ing the two composting ideas into the “compost” bucket,
the food festival idea into an “events” bucket, and the on-
line farming group into an “online community” bucket.
Computing diversity—or how well a set covers a space of
options—might then translate into calculating whether
selected ideas come from different buckets.

Alternatively, one could imagine printing out the
ideas, placing them on a table, and moving them around
such that similar ideas were close to one another and dif-
ferent ideas were far away. Computing diversity might
then involve calculating whether selected ideas came
from different parts of the table, spanned a large area
of the table, etc. While different mathematical rep-
resentations of design spaces and how to quantify their
coverage may lead to different definitions of diversity, the
central idea remains the same.

The rest of this section first reviews how to rep-
resent the space of options—namely, via a similarity
function between ideas. Then it presents two existing
state-of-the-art methods to compute coverage over that
space—one that uses clustering (i.e., buckets) via addi-
tive sub-modular functions and one that uses on con-
tinuous spaces via Determinantal Point Processes. Our
supplemental material presents additional experiments
that compare the conditions under which one diversity
measure outperforms the other.

While we selected the below methods to demonstrate
our ranking approach on a concrete, real-world exam-
ple, it is important to note that this paper’s main con-
tributions—how to combine quality and diversity mea-
sures to efficiently compute ideas rankings—do not de-
pend on those specific choices. As we describe in more
detail below, our ranking approach (Sec. 4) applies to
any choice of design space representation and diversity
coverage measure, provided that they satisfy two mild
technical conditions.7

3.1 Representing ideas and their similarity

Before we can compute coverage over a space, we need
represent ideas such that we can compute similarity be-
tween them. This is generally done in one of two ways.

The first and most common way is to explicitly rep-
resent ideas within a Hilbert space—i.e., a space that
permits inner products, such as Euclidean space—and
then compute how similar ideas are by taking inner prod-
ucts between them in that space. For example, one

7In brief, 1) the space must allow one to compute a
positive-semidefinite similarity function between points in the
space and 2) the diversity function must be sub-modular (i.e.,
obey diminishing marginal utility).



can represent geometry or CAD objects using a vector
of parameters from a parametric model or using latent
semantic dimensions learned from the geometry [28; ?;
?]. For images or sketches, one can use image process-
ing techniques like SIFT features or deep learning (e.g.,
Sketch-a-Net [29]) to transform free hand sketches to a
vector space. For ideas expressed through text one can
use bag of words or latent vector space models, such
as Latent Semantic Analysis [30]. For mixed-media de-
signs, such as combinations of sketches and text, one can
even learn joint vector space models [31]. Similarity is
then computed through, for example, cosine, jaccard, or
squared euclidean distances between those two vectors.

The second way, and the one we have demonstrated
in supplement material is to compute similarity between
ideas directly using either a kernel function—a func-
tion that, given two ideas, computes the similarity be-
tween—or by having humans directly rate the similarity
between ideas [32]. The former is useful in design when
one wants to compute diverse, high-quality rankings of
structured objects—that is, designs expressed as graphs
or hierarchies, such as Function Structures [33] or Func-
tion Decompositions [34; 35] using Graph Kernels [36].
The latter is useful when ideas are too difficult or com-
plex to easily describe using a set of analytical functions,
but one has human experts on-hand who can provide
similarity judgments (e.g., idea A is closer to idea B than
C, etc.) [32]. Through asking human experts (or crowd-
sourcing the task), one can compute a kind a “Human
Kernel” that can provide sufficient information for our
below ranking technique to use. To further demonstrate
our method for sketches, we have shown an example in
supplement material with five sketches and human rat-
ings to compute the trade-off front.

This paper’s main contribution—an efficient ranking
algorithm for high quality and diverse ideas—is agnos-
tic to the above choice of similarity function. How-
ever, a similarity function or matrix, whether chosen
analytically or computed by humans, does need to sat-
isfy one mild technical condition—it must be positive-
semidefinite. In practice, most widely used methods of
computing similarity between vectors, such as cosine, ra-
dial basis function, or hamming distances satisfy this
condition. If one wants to use their own similarity func-
tion, this condition is also straightforward to verify.

For the rest of the paper, we will assume, without loss
of generality, that we can compute a symmetric similar-
ity matrix L whose entries Li,j correspond to the simi-
larity between ideas i and j, where Li,j = 1 means that
ideas i and j are identical and Li,j = 0 means that the
ideas are completely dissimilar.

The next two sections introduce two existing, com-
peting, state-of-the-art methods8 for computing diver-

8As measured with respect to success at a common bench-
mark task of automatic document summarization (e.g., at the
Document Understanding Conference [37; 38]), which require
selecting high quality non-redundant sentences to summarize
a document.

sity with respect to a similarity kernel. Specifically,
sub-modular clustering [37; 38] and Determinantal Point
Processes (DPPs) [39], which correspond, respectively,
to thinking about coverage over discrete “buckets” ver-
sus volumes in continuous spaces. Our supplemental ma-
terial provides additional experiments that characterize
the conditions under which one outperforms the other;
we found that DPPs were a more robust choice for dif-
ferent problems and we use them for our experimental
results later in the paper.

3.2 Clustering-based Diversification

One way to think about covering a space of ideas is
to think about ideas as falling into different categories,
types, clusters, or “buckets.” Diversity might then entail
promoting adding ideas to empty buckets and penalizing
selecting ideas all from one bucket. That is, we wish to
model diminishing marginal utility—that adding an idea
to a bucket where one already has lots of ideas is not as
valuable as adding a (similar quality) idea to an empty
bucket.

This is the approach Lin et al. [37; 38] use, where
they show that many existing diversity methods are in-
stances of a sub-modular function. Sub-modular func-
tions are similar to convex functions, but defined over
sets rather than the real line. Such functions are de-
signed to model diminishing marginal utility, which is
exactly the mathematical property one needs to model
diversity [5]. We propose a metric inspired by the di-
versity reward function used by Lin et al.[37] for multi-
document summarization, which rewards diversity of a
set of items as shown below:

Div1(S) =

K∑
k=1

√ ∑
j∈S∩Pk

1

N ×M
∑
i∈Pk

Li,j (1)

Here, V = v1, ..., vn is the set of all N items in a set.
Subset S ⊆ V = s1, ..., sm is the selected M items given
K clusters. Pi, i = 1,...,K is a partition of the ground set
V into separate clusters (i.e., ∪iPi = V and the Pis are
disjoint). That is, an item can only belong to one clus-
ter. The square root function automatically promotes
diversity by rewarding items from clusters which have
not yet contributed items.

To understand above metric, let us take our example,
where the collection has three known topics—compost,
food festivals, and online web communities. For illustra-
tion purposes, consider that adding an idea on one topic
introduces a value of “one” into the square root func-
tion. Suppose we want to find the diversity of a set of
three items. If all items in this set are on compost (i.e.,

a single cluster), the fitness will be
√

1 + 1 + 1 =
√

3, if
we have two items covering compost and one on food fes-
tivals, the fitness will be 1 +

√
2, while if all items cover

different topics we will achieve the maximum diversity
of magnitude 3. Hence, diverse sets are rewarded by
this additive sub-modular function. In Eq. 1, the value



∑
i∈Pk

Li,j implies that items more similar to other items

in their cluster (representative items) receive higher re-
ward when added to an empty set. This concept is simi-
lar to [40] used in recommender system, which identifies
a set of representative items, one for each cluster.

In general, finding the set of ideas that maximizes
Eq. 1 is difficult. In fact, it is NP-Hard since it is essen-
tially a combinatorial optimization problem where the
value of adding an idea depends on what other ideas one
has already added. When solving such problems, a well-
known limit due to Feige [41] is that any polynomial-
time algorithm can only approximate the solution to
Eq. 1 up to 1 − 1

e ≈ 67% of the optimal. However,
this is where choosing a sub-modular function for Eq. 1
comes in handy. It turns out that greedily maximiz-
ing a sub-modular function—i.e., selecting ideas one at
a time such that each choice maximizes Eq. 1 as much
as possible—is guaranteed to achieve that 1− 1

e bound.
This makes greedy maximization of Eq. 1 the best possi-
ble polynomial-time approximation to an otherwise NP-
Hard problem. Equation 1 uses this property to obtain
strong results, and we also leverage similar properties
of sub-modular functions later during ranking to create
greedy rankings, as well as to improve the convergence
of a global optimizer.

A key limitation of using clusters in Equation 1 is
that we need to know or estimate, which idea belongs
to which cluster. In general, we will not know cluster
assignments ahead of time and may need to estimate
them using different clustering algorithms like K-means
[42], Spectral Clustering [43], Affinity Propagation (AP)
or domain knowledge. However, as we show in our sup-
plemental material, the performance of Eq. 1 drastically
depends on both the number and accuracy of any clus-
ters. Moreover, ideas may not fall neatly into mutually
exclusive buckets. These limitations led us to consider
the next approach which does not require explicit clus-
tering but rather considers coverage as a kind of volume
measurement over a continuous space.

3.3 DPP-based Diversification

Determinantal Point Processes (DPPs), which arise in
quantum physics, are probabilistic models that model
the likelihood of selecting a subset of diverse items as
the determinant of a kernel matrix. The intuition behind
DPPs is that the determinant of LS roughly corresponds
to the volume spanned by the vectors representing the
items in V . Points that “cover” the space well should
capture a larger volume of the overall space, and thus
have a higher probability. Viewed as joint distributions
over the binary variables corresponding to item selection,
DPPs essentially capture negative correlations. They
have recently been used [39] for set selection problems
in machine learning tasks like diverse pose detection and
information retrieval [44].

While conceptually simple and fairly straightforward
to compute, DPPs suffer from a couple of subtle nu-
merical and optimization issues when used to rank-order
items. We review and solve these in Sec. 4.1, but, briefly,

the problems have to do with the sub-modularity and
magnitude of the determinant when comparing growing
set sizes. Similar to sub-modular functions, one of the
main applications of DPP is extractive document sum-
marization, where it provided state-of-art results. As
shown by Kulesza et al.[45], one of DPPs advantages is
that computing marginals, certain conditional probabili-
ties, and sampling can all be done exactly in polynomial
time.

For the purposes of modeling real data, the most rel-
evant construction of DPPs is through L-ensembles [46].
An L-ensemble defines a DPP via a positive semi-definite
matrix L indexed by the elements of a subset S. The
probability of a set S occurring under a DPP is calcu-
lated as:

Div2(S) =
det(LS)

det(L+ I)
(2)

LS ≡ [Lij ]ij∈S denotes the restriction of L to the en-
tries indexed by elements of S and I is N ×N identity
matrix. For any set size, the most diverse subset under a
DPP will have maximum likelihood Div2(S) or equiva-
lently the highest determinant (the denominator can be
ignored for maximizing diversity of a fixed set size). As
the similarity between two items increases, the proba-
bilities of sets containing both of them decrease. Unlike
the previous sub-modular clustering, DPPs only require
the similarity kernel matrix L and do not explicitly need
clusters to model diversity. This also makes them more
flexible, since we only need to provide a valid similar-
ity kernel (e.g., image or shape kernels), rather than an
underlying Euclidean space or clusters.

So what does this all mean for a designer? Let us get
back to our example earlier in the paper. If we repre-
sent the four ideas as TF-IDF vectors and compute their
cosine similarity, we find that first two ideas related to
compost have cosine similarity with each other of 0.61.
The similarity between other pairs of ideas is close to
zero (< 0.1). This is expected, as the first two ideas are
based on compost and have little in common with other
ideas that are based on food festivals and online web
communities. When we compute the determinant of the
sub-matrix for the first two ideas (numerator in Eq. 2),
it is ≈ 0.62, whereas for determinant of first and third
idea is ≈ 1. Hence, DPPs (via the numerator in Eq. 2)
penalize set that contain similar ideas, without requiring
us to define any explicit notion of a cluster. This flexibil-
ity (plus the strong comparative empirical performance
we note in our supplemental material) is why we will use
DPPs for our ranking algorithms and experiments in the
rest of the paper.

4 Ranking items

Thus far, we have compared and analyzed diversity met-
rics for sets of fixed size. In such cases, a diversity metric
like DPPs will give the same value for any permutation
of a set since it does not care about the order of the items
within the set. This is not desirable for rankings, where
users browse sequentially through an ordered list of items



up until they reach some (unknown) user-specific limit.
This section addresses how to adapt diversity and qual-
ity metrics to such cases and compute objective func-
tions over ranked lists (or, equivalently, permutations
over items in list). To the best of our knowledge, this is
the first time DPPs have been extended to such cases,
and doing so involves tackling some subtle but important
properties of DPPs over growing set sizes.

4.1 Extending DPPs to rank diversity on
ordered sets

To extend DPPs to ranked lists, we first need to review
some of the geometric intuition behind how the determi-
nant calculations central to DPPs change as we grow the
set size. Specifically, we need to look at the determinant
of LS , which is the portion of the similarity kernel (L)
formed by the selected items (S). This square matrix
grows as we add items to S. Mathematically, its deter-
minant is the product of the eigenvalues of LS . Geomet-
rically, the magnitude of the determinant is the volume
of the |S|-dimensional parallelepiped formed by the ele-
ments in set S. This implies that adding elements to a
set decreases the determinant.

This behavior creates two problems for ranking. First,
as we add items to a ranking, the determinants and
thus our diversity measure do not have similar length-
scales. This means we cannot directly compare or op-
timize rankings of different length, which matters if we
wish to assemble ranked lists in a greedy fashion by pro-
gressively adding elements.

To circumvent this problem, we re-define diversity
from Eq. 2 to Eq. 3 below:

Div3(S) = (det(LS))
1
n (3)

This essentially scales the diversity of a set of size
|S| = n by its size. Geometrically, Div3(S) is propor-
tional to the side length of a n-dimensional cube with
same volume as the parallelepiped. For a given set-size, n
is constant, so maximizing Div3(S) is equivalent to max-
imizing Div2(S). However, mathematically, Div3(S) is
the geometric mean of the eigenvalues of LS . It repre-
sents the central tendency or typical value of the set of
eigenvalues via their product.

A second problem with the determinant is that adding
the same item to a short list versus a long list can create
two issues: (1) Taking the sum of Div2(S) for a ranked
list would not be accurate as items at the beginning of
the list will have much larger impact on diversity com-
pared to items down the list. (2) If two almost identical
items are placed in the same set, then the determinant
quickly collapses to zero (or close to it), introducing nu-
merical errors that make it difficult to compare good
versus bad sets on a finite-precision computer. To ad-
dress this, we use the log-average to measure list fitness
for sets of increasing size:

DivR =

N∑
k=1

log(det(LS(k)))

k

LS(k) ≡ [Lij ]ij∈[1,2,..k]

(4)

The monotonic nature of logs does not change the opti-
mal set, but helps eliminate numerical and discounting
errors during the computation of the diversity score.

Despite those computational issues, the determinant’s
behavior does have a useful side-effect. Because the
determinant begins to collapse once the sets start to
cover the space (i.e., additional vectors begin to lie close-
by to existing vectors), it creates a natural diminishing
marginal utility condition where, once we add sufficiently
diverse elements, the rankings of further items are not as
strongly influenced by item diversity. What this means is
that, at some distribution-dependent point in the rank-
ing, items further down the list can be sorted by quality
only, with little to no change in the diversity score for the
total ranking. This has substantial computational bene-
fit because while computing diverse sets is NP-Hard and
thus needs to be approximated, at a certain point we can
switch over to a much simpler and optimal sorting task
to produce the remainder of the ranking.

4.2 Ranking Quality

The recommended list of items should not only be di-
verse, but also of high-quality. High quality items ensure
that they are relevant to the design problem. While find-
ing the best quality metric for a set of items is still an
active area of research, researchers have developed many
tractable solutions, including crowd-voting [47], expert
opinion [48] or similarity to prior high-quality ideas [49].
Unlike diversity, evaluations of quality are independent,
easy to parallel-process, and not combinatorial in nature;
this makes estimating quality (comparatively) tractable
using existing techniques. We assume that a quality rat-
ing is available for every item, or can be estimated (e.g.,
using our prior work on quality estimation [49]).

Given a quality rating for every item, we need to de-
fine the overall quality fitness for a ranked list. For
this purpose, we use normalized discounted cumulative
gain (nDCG) a standard ranking metric for relevance
judgments in ordered lists [50]. It varies from 0 to 1,
with 1 representing the ideal ranking sorted by relevance.
This metric is commonly used in information retrieval to
evaluate the performance of ranked lists by giving more
weight to results appearing at the top of list. If k is the
maximum number of entities that can be recommended,
then DCGk is given by:

DCGk =

k∑
i=1

2reli − 1

log2(i+ 1)
(5)

Here reli is the relevance of ith item on the list.
IDCGk is defined as the maximum possible (ideal) DCG
for a given set of items i.e., when items are sorted by rel-
evance. Hence normalized DCG is given by:

nDCGk =
DCGk

IDCGk
(6)

To get an intuitive understanding of nDCGk, consider
the following example. Assume that a challenge has 5
items and that we get two lists of 5 items each. Let the
relevance ratings be [11, 5, 3, 2, 1] for these items respec-



tively. We normalize these ratings to [1, 0.4, 0.2, 0.1, 0].
Now let us say that List 1 is represented as [1, 2, 3, 5, 4]
and List 2 is [4, 1, 2, 3, 5]. Using Equation 6, DCG5 for
List 1 equals 1.304 and DCG5 for List 2 equals 0.927.
Here, an ideal list will be one where all items are sorted
by the quality and IDCG5 is 1.307. Hence, nDCG5 for
List 1 is 0.998 while for List 2 is 0.709. Using this met-
ric, List 1 will be a preferred method as it provides more
relevant (higher quality) items early on. Hence, we use
nDCGN (r) as our measure of quality for different per-
mutations r of N items.

5 Optimization

Now that we have ways of comparing the diversity and
quality of different ranked lists, our task is to find the
‘best’ ranking (equivalently, permutation) that trades off
diversity and quality. One näıve approach is to equally
weigh diversity and quality, and then optimize over the
joint objective. However, such an approach is too restric-
tive since a designer may prefer a ranking that encour-
ages quality more than diversity, or vice versa. Also, in
one domain, it is possible that the highest quality ideas
are also the most diverse while in another domain, it may
happen that one can achieve significant diversity gains
by losing almost no overall quality.

It is difficult to unilaterally predict, for every domain,
the appropriate trade-off between quality and diversity.
Instead we approach ranking as a multi-objective opti-
mization where we generate a entire trade-off front of dif-
ferent rankings—from purely maximum quality rankings
to maximally diverse rankings—that allows a designer to
choose the extent to which he or she wishes to encour-
age diversity over quality or compute how much overall
quality (if any) he or she might sacrifice to encourage
diversity (our below results suggest that such sacrifices
are small).

Multi-objective optimization is used widely where op-
timal decisions need to be taken in the presence of trade-
offs between two or more conflicting objectives. Without
additional subjective preference information, all trade-
off solutions are considered equally good. Obtaining the
trade-off front gives choice to a designer. For example,
a designer may choose a highly diverse ranking during
early-stage ideation to explore the design space and then
later transition to rankings that more heavily weigh qual-
ity. Likewise, if a designer wants to ensure a minimum
quality threshold among all obtained ranked lists, our
approach allows such constraints. As far as we know,
our single proposed ranking algorithm is the first to per-
mit such flexibility when comparing and ranking ideas.

At first glance, getting even close to the optimal rank-
ing seems daunting, if not impossible. Not only is the
general optimization problem NP-Hard, but the fact that
we have two objectives (diversity and quality) implies
that we need to generate not one, but an entire trade-
off-front, of solutions. Mathematically, we know that
we will have to approximate the optimal solution to this
combinatorial problem (if we want to compute it in poly-

nomial time). To do this approximation, we employ a
stochastic global optimizer that relaxes the combinato-
rial problem into a search over real-valued scores. By
themselves, such optimizers do not perform well on per-
mutation problems such as ranking; however, due to our
careful choice of our diversity scores above, we are able
to leverage the properties of sub-modular functions to
construct a greedy algorithm that efficiently computes
diverse rankings. This substantially accelerates conver-
gence of the global trade-off-front.

5.1 Single Objective Greedy Optimization

A ranking optimized for quality can be easily obtained
by sorting ideas by quality. Hence, below we explore
the more technically challenging task of ranking ideas
for maximal diversity. Many diversification methods like
Maximum Marginal Relevance [51] use greedy search to
obtain a ranked list of diverse items. Likewise, we pro-
pose below a greedy algorithm for DPP-based diversity
to find a diverse list of items.

1. A = ∅
2. A = A ∪ {Si, Sj} s.t. [i, j] = arg min(L)

3. while (U 6= ∅) do

4. Pick an item Si that minimizes det(LA∪i)

5. A = A ∪ {Si}
6. U = U − Si

7. output A

Here, the method greedily adds members to the set by
maximizing the probability given by Equation 4. Sup-
pose U = {1, 2, 3, ..N} is a set of all N items and L
is the N × N similarity kernel matrix. We find a di-
verse solution by greedily adding items to the empty set
to maximize diversity of the obtained sets of increas-
ing cardinality. As the logarithm of the determinant
is sub-modular and monotonic, this greedy algorithm
is theoretically guaranteed to provide the best possible
polynomial time approximation to the optimal solution.
Our experimental results below also demonstrate that
this greedy approach to DPPs leads to a higher diver-
sity ranking compared to any random sample and even
MMR.

5.2 Multi-objective Global Optimization

To optimize a permutation of a set of items, we use
N continuous variables mapped to a ranked list where
each continuous variable 0 ≤ xi ≥ 1, i ∈ N is bounded.
The permutation is obtained by sorting the variables.
To understand the representation, consider the example
below. Let us assume that we have a set of 5 items
V = v1, ..., v5. Two possible candidate item score vec-
tors might be x1=[0.1, 0.3, 0.9, 0.5, 0.8] and x2=[0.8,
0.2, 0.1, 0.4, 0.0]. On sorting by value, the correspond-
ing ranks for x1 and x2 are r(x1) = [v1, v2, v5, v3, v4] and
r(x2) = [v5, v3, v2, v4, v1], respectively. By changing the
values of xi, we can obtain any permutation of items.



Note that the permutations are not unique and many
xi’s can map to the same permutation.

An ideal set of items should balance diversity and qual-
ity. In a classical optimization approach, we could max-
imize any one of these two objectives directly by finding
the best combination of items to recommend, subject
to a given metric. For both, however, we need to op-
timize across multiple, conflicting objectives. This in-
volves finding sets of solutions that represent optimal
trade-off between diversity and quality. We can then use
those trade-off solutions to help designers explore and
filter possible items.

In practice, one can use any multi-objective optimizer
to explore those trade-offs. We chose to use Multi-
Objective Evolutionary Algorithms (MOEAs), specifi-
cally the NSGA-II algorithm [52]. We generate the initial
population randomly with a real valued gene of lengthN .
The real value indicates the rank relative to other items
in the set. The optimizer selects the next generation
of the population using a solution’s non-dominated rank
and distance to the current generation to avoid crowding.
Specifically, we use a controlled elitist genetic algorithm
[52] with tournament selection, uniform mutation, and
crossover.

6 Results on Real-World Idea Data

We now demonstrate how the above methods can pro-
duce rankings for real-world design ideas. Specifically,
we tested the proposed ranking on idea submission from
OpenIDEO, an online design community where mem-
bers design products, services, and experiences to solve
broad social problems [53]. We first describe the dataset
and then demonstrate how to use our ranking method
to produce idea lists that blend quality and diversity.

6.1 Dataset

On OpenIDEO, each challenge has a problem description
and stages—e.g., Inspiration, Concepting, Applause, Re-
finement, Evaluation, Winning Concepts and Realisa-
tion—where the community refines and selects a small
subset of winning ideas, many of which get implemented
or funded. During the ‘Concepting’ stage, participants
generate and view hundreds to thousands of design ideas;
in practice, the number of submissions make exhaus-
tive review (even of the titles) impossible—e.g., for a
medium-sized challenge of ≈ 600 ideas, it would take a
person over 25 hours to read all entries.9

To demonstrate our multi-objective optimization re-
sults on a concrete example, we use a challenge from
OpenIDEO entitled ‘How might we better connect food
production and consumption?’ The Food production
challenge had total 606 ideas with a vocabulary size of
1, 656 words and total 88, 813 words after pre-processing.

9Assuming 200 words per minute at 60% comprehension
with the average OpenIDEO idea length of 500 words. This
is conservative since many submissions also include images
or videos.

For pre-processing the text data, we use standard nat-
ural language processing techniques to convert text
to normalized word-frequency vectors (called TF-IDF
vectors[30]). Specifically, we use a bag-of-words model to
represent items as TF-IDF vectors. For pre-processing,
we use Porter stemmer, Wordnet lemmatizer and remove
stop-words. All words with inter-document frequency
less than 1% and greater than 90% are ignored. We de-
fine the similarity between vectors (Li,j) by computing
the cosine-similarity between the TF-IDF vectors to get
the similarity kernel L or any sub-kernel LS for any sub-
set of ideas S ⊆ V .

For any given idea, OpenIDEO has multiple metrics
that indicate the quality of an idea: 1) Applause—users
can endorse an idea by pressing the ‘Applaud’ button;
2) Citation count—users can cite ideas that inspired
them, similarly to academic papers; 3) Comment or
View count—each idea tracks the number of comments
or views it receives; and 4) a small set of winners pro-
ceed to the next stages and win the challenge—those that
advance should correlate positively with quality. We use
applause as our measure of quality since OpenIDEO uses
applause as their own quality measure during Concept-
ing stage. Applause of any idea i (appi) is similar to
Facebook ‘Like’ feature, where community members en-
dorse an idea. We did not combine applause with views
and comment count metrics as there is no straightfor-
ward way to determine optimum weights for combining
these metrics. For example, it is difficult to argue if re-
ceiving more comments is more important as receiving
more views. Secondly, we found that Applause had a
Pearson’s linear correlation of 0.65 with views and 0.69
with comment count, so choosing a different quality mea-
sure does not substantially alter our results. We evaluate
our methodology using relevance defined in Equation 7.

reli =
appi −min(app)

max(app)−min(app)
(7)

6.2 Results

For 606 ideas, the number of possible permutations (i.e.,
rankings) is 606! ≈ 101424, which is impossible to com-
pute exhaustively to obtain the ideal trade-off front. We
use NSGA-II for bi-objective optimization to simulta-
neously maximize DCG Applause defined in Eq. 6 and
Diversity defined in Eq. 4.

We use a population size of 500 and run the optimiza-
tion for 1000 generations with crossover rate of 0.8 and
mutation rate of 0.01. Greedy solutions for applause
and diversity are introduced into the population at first
generation to speed up convergence. We get 175 unique
points on the trade-off front. The trade-off front between
quality and diversity is shown in Fig. 1. The values for
both objectives are scaled between 0 to 1, with the opti-
mization problem posed as minimization of both objec-
tives. Note that each point on the trade-off front is a per-
mutation of all ideas—that is, each point on the trade-off
front represents a different possible ranking (i.e., permu-
tation) of the 606 ideas.

While this trade-off front lets a designer choose differ-



ent rankings, depending on how much they prefer qual-
ity over diversity or vice versa, some designers may want
just one ranking of ideas. To achieve this, we propose
using indifference curves [54] for selecting an interme-
diate solution B on the trade-off front. After we nor-
malize the objectives, every circle that uses the origin
(i.e., the Utopia or Ideal point) as its circle center can
be considered to be a true indifference curve. The points
on smaller radius indifference curves are more desirable
than those on bigger radius indifference curves. There-
fore, the best solution is the point on the frontier that
is tangent to the smallest valued indifference curve. In
this way, indifference curves essentially weigh diversity
and quality equally to provide a single ranking—point B.
However, our approach can be easily adapted to differ-
ent ratios of preferences by altering shape of the radial
curves or even running a one-dimensional search along
the trade-off front using techniques like interleaved com-
parisons [55] or knee region detection[56].

To compare the types of rankings produced by our pro-
posed approach on a concrete example, let us take three
points on the trade-off front marked as A, B and C. The
maximum quality permutation C sorts ideas by applause
while the maximum diversity permutation A is the one
obtained by our above greedy search. We list the top 10
ideas in List A, B and C in Table 1. One can notice that
solution C (ranked purely by highest applause) has no
overlap with most diverse solution A. Reading through
the ideas in A (the most diverse ranking), one can no-
tice that despite being diverse, they are poorly written
and somewhat irrelevant to the challenge. For example,
idea titled “Branded Clothing” proposes referencing lo-
cal producers on hats and t-shirts. It is a two line idea,
without any details on implementation, practicality etc.
We found that these ideas often have poor quality scores
as they did not address the challenge requirements, were
not well written, and did not engage with the commu-
nity in improving these ideas. Although permutation A
is most diverse, suggesting such a set may not be useful
for inspiring a designer. In contrast, the highest qual-
ity permutation C has several redundant ideas. The top
10 ideas in C have two similar ideas on mobile applica-
tions and multiple similar ideas related to farms. Our
selected permutation B, by comparison, incorporates di-
versity by retaining seven high quality ideas from the
most applauded set (C) and introducing three, one of
which discusses schools adopting a program to source
local food, another one of replacing fences with planted
fruit trees, and a third one proposes traveling movie the-
ater with local food. Having such a balanced list of high
quality diverse ideas may be used to provide inspiration
to designers to come up with designs.

7 Discussion

Our ranking approach leads to two interesting observa-
tions: (1) A small selection of ideas is persistent along
the trade-off front, and (2) studying the determinants
of lists provides several insights into the nature of di-
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Figure 1: Trade-off front between diversity and quality
of ranked lists. Each point is a different permutation
of 606 ideas. A is the most diverse solution while C is
the solution with highest quality objective. Indifference
curves are used to find the Point B closest to the Ideal
Point.

versity and how diverse rankings compare to alternative
rankings like highest-quality, MMR, or random permu-
tations.

7.1 Some ideas persist

One key observation is that a small set of ideas persist
in the Top-10 ranked items across the trade-off front.
Taking the top 10 highest ranked items on all 175 lists
obtained on our trade-off front, we find that they con-
tain only 36 unique ideas as shown in Fig. 2. The titles
of these ideas are reported in the supplement material.
This means that a designer can read only 6% of the 606
ideas in the challenge, and still get a snapshot of ideas
ranging from highest quality to most diverse. This also
aligns with our previous observation in [2], where a small
subset of ideas were found to persist on the trade-off
front for a different design problem. It is also interest-
ing to note the ideas with very high frequency on the
trade-off front like “The Farmer and The Chef”. The
idea is both unique and high quality, due to which it is
present in Top 10 ideas for 97% of the lists on trade-
off front. One of this paper’s ancillary outcomes is to
identify such high quality unique ideas.

7.2 Diversity matters less for larger sets

Figure 3 shows the determinants for ordered subsets
of different permutations. That is, it plots det(LS(k)),
where as defined before, LS(k) ≡ [Lij ]ij∈[1,2,..k], or how
the determinant changes as you add ideas from pro-
gressively further down the ranked list. It includes the
highest quality ranking (C), the most diverse ranking
(A), and our intermediate ranking (B). To compare our
greedy algorithm with existing methods in the literature,



Figure 2: Ideas selected in Top 10 of different solution
sets on the trade-off front between quality and diver-
sity. The figure shows that only a small set of 36 unique
ideas appear on trade-off front (the lines in the figures).
On the bottom are ideas selected for high quality in the
trade-off front, while top of the figure has ideas with high
diversity

we also plot the maximum diversified permutation using
MMR [51] with λ = 0, as well as 5th and 95th percentile
from 5000 random permutations to compare to random
chance. Figure 3 provides four insights into using deter-
minants as diversity metric.

First, Fig. 3 shows that our diverse greedy list outper-
forms both randomized rankings and MMR, in terms of
promoting diverse rankings.

Second, We can see that the most applauded set is be-
low the 5th percentile of diverse sets. This shows that,
for this challenge, ranking ideas purely by quality pro-
duces a ranking that lacks diversity, even compared to
random rankings. On other hand, using the greedy so-
lution to obtain solution A (or even our intermediate
solution B) leads to big gains in diversity, significantly
even above the 95th percentile. This indicates that our
greedy algorithm is efficiently finding a diverse solution.

Third, the determinants collapse to zero for at most
100 items in the ranked list. This implies that there is
not much marginal gain in diversity once one has added
many items (i.e., beyond 100)—this makes sense since,
by that point, new items will not drastically change the
geometric mean of the volume spanned by the determi-
nant. This also allows us to save computational effort by
only maximizing Eq. 4 up to N = 100 and then sorting
by quality further down the list. This exact N cutoff will
be problem dependent; however, Fig. 3 is one criterion
for determining when that transition takes places.

Lastly, one can also notice that the determinant mag-
nitude decreases as set size increases. This intuitively
makes sense since Eq. 4 scales the diversity of sets of
different sizes by using geometric mean. Thus, simple
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Figure 3: Determinant of subsets for different ranked
lists. The 5th and 95th percentile solutions show that
marginal gain in diversity after 60 solutions is very low.
The most diverse solution (A) from trade-off front se-
lected using greedy solution is significantly more diverse
than random permutations

area under this curve will prioritize diversity in elements
early on in the ranking.

7.3 Limitations and Future Work

We provided a tractable, computational ranking method
that simultaneously maximizes a trade-off between qual-
ity and diversity of items. As a byproduct, this ranking
can also produce diverse, high-quality subsets (such as
top 10 lists). However, the method has a few limitations
where more research focus is needed.

First, selecting the “correct” diversity kernel to iden-
tify similar items is key to the success of any diversifica-
tion method. At a conceptual level, our main assump-
tion is that the kernel that encodes what makes ideas
similar or different is good or accurate. We used a stan-
dard cosine similarity kernel for comparing text, however
applying machine learning techniques to learn this ker-
nel based on human perception of diversity may improve
performance [44]. Also, this method is only able to com-
pute the diversity of ideas within the set of the current
data. If all global ideas are considered, the similarity
kernel and clustering will change, which will affect the
diversity metric evaluations.10

Second, we assume that high quality items measured
by crowd-voting is desirable for inspiring designers to
come up with new designs. The rationale was that items
which are more creative and better at addressing the

10To some extent, using humans to construct the diversity
kernel may capture this global context, however one open
research problem is determining when or for what types of
problems that is true.



design problem are voted up by the crowd and are good
candidates to inspire a designer. This assumption may
become invalid if there are other latent factors affecting
crowd-voting. However, the main contributions of the
paper are not really affected by choice of quality metric,
since we assume a quality function (however one wants
to define it) is available and the contributions are really
how to do optimal ranking given such functions.

Third, but related to the second, is that we assume
that we have quality estimates for all items. When this is
not the case (i.e., the cold-start problem) we would need
to approximate quality by content-based features like
item uniqueness. For example, Ahmed et al.[2] showed
that for OpenIDEO challenges, uniqueness of item and
applause are strongly correlated and hence latter can be
used in absence of former.

Lastly, our experiment only used text content to rep-
resent ideas. This representation was used to facilitate
straightforward similarity computation and to demon-
strate the key contributions of the paper. In real cases,
however, many ideas are a combination of text, im-
ages and videos, and only computing similarity using
text may give an incomplete picture. The proposed
method works for design ideas expressed in a variety of
ways (text, sketches, function structure graphs, mixed-
media, etc.) as all of the important contributions of
our method—including how we calculate diversity, the
sub-modularity conditions, our greedy approximation,
the ranking algorithm, etc.—ultimately only depend on
a similarity matrix between ideas (which we called L).
If one believes that humans might be the only reli-
able means to achieve some ground truth understand-
ing of true idea diversity, then this is not a problem
for our ranking method; simply use any existing metric-
or kernel-learning algorithm to construct L from human
evaluators and then apply our ranking method to that
new L.

Future research can focus on better methods to com-
pute similarities. For example, one could compute metric
spaces over visual designs [28; ?; ?] and combine those
with text similarity. In cases where it is difficult or unde-
sirable to compute item features directly, one could use
human judgments to compute item similarity (e.g., us-
ing techniques like ordinal embedding [57]) and directly
substitute this similarity measure into Eq. 1 above.

7.4 Implications for Design Research

Our proposed ranking method applies whenever a de-
signer, team, or decision maker in an organization needs
to sift through many ideas. This problem occurs in sev-
eral design situations: 1) during ideation when multi-
ple designers might generate many hundreds of possible
ideas—be they text- or sketch-based ideas; 2) when large
organizations wish to gather possible ideas or solutions
from employees of their companies, for example via in-
ternal innovation tournaments [8]; 3) when companies or
designs wish to solicit ideas from crowd-sourcing or on-
line communities; and 4) when a designer wishes to use
some kind of computational design synthesis system [58]

to generate thousands of possible solutions and then re-
view the output such that he or she understands the
scope or diversity of the solutions the system produces.
For those above situations, our paper has the following
implications.

First, our method is the first to enable polynomial
time ranking of ideas by both quality and diversity with
both provable performance guarantees and flexible con-
trol over how importantly the algorithm weighs diversity
with respect to quality. Such capabilities matter when,
for example, designers wish to promote diversity early
on in a design process to enable divergent thinking, but
then slowly move towards quality convergence over time.
Our method provides an easy-to-understand parameter
(namely the location along the trade-off front) that al-
lows a designer to adjust how much they care about idea
diversity.

Second, our approach provides a concrete metric
(namely the difference in the determinant curves in
Fig. 3) that allows a designer to assess the differences
between the most-diverse and highest-quality rankings,
and after how many ideas they have sufficiently covered
the available space of ideas. Such observations can pro-
vide useful knowledge about a given design problem do-
main. If our diversity metric plateaus very quickly, it
indicates that the domain has very few unique topics.
On the other hand, if it plateaus much later, the space
of ideas likely has many different topics. Likewise, while
not the focus of this paper, our method permits a new
straightforward comparison of design exploration meth-
ods for a given problem; that is, given two methods, by
comparing their curves in Fig. 3 we can quantitatively
study the extent to which different exploration methods
cover wider portions of a design space. This allows us to
gain new knowledge about both a given design domain
as well as different processes designers use to explore it.

Lastly, while our paper only addressed trade-offs be-
tween quality and diversity, there is no technical rea-
son why our proposed ranking algorithm and methodol-
ogy could not also incorporate other useful design objec-
tives—e.g., novelty, feasibility, etc.—provided such ob-
jectives can be evaluated efficiently on a large number
of ideas (e.g., via expert or crowd ratings, or using com-
putational evaluation where possible). To enable prac-
titioners deploy this method for their own domain, we
have provided the source code 11 and encourage inter-
ested readers to use it. To get a trade-off front for any
collection of design ideas, a practitioner needs only two
inputs— quality ratings for all ideas and a positive semi-
definite similarity kernel, showing how similar ideas are
to each other. However, the similarity kernel should be
chosen carefully, as the diversity is evaluated on the same
attributes for which similarity is calculated. For exam-
ple, let us say a practitioner wants to apply our method
to a collection of sketches. Suppose they use similarity
kernel based on a surface feature like the color used to

11https://github.com/IDEALLab/ranking_diversity_
jmd_2017
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sketch the idea. In such a case, the diverse ranking will
also output a ranked list, which has sketches of different
colors at the top of the list. In contrast, if they use sim-
ilarity based on some feature like the mechanism used,
the ranked list will reflect the same attribute.

8 Conclusion
In this paper, we proposed a method to measure diver-
sity of sets and ranked lists of items. These measures
were combined with quality to simultaneously maximize
the quality and diversity of a ranking. Specifically, the
paper added the following new pieces of knowledge: 1)
how to extend set-based diversity metrics to rank-based
diversity measures, 2) how to rank ideas by diversity in
polynomial time using a greedy strategy with theoreti-
cal performance guarantees, 3) how to trade-off quality
and diversity when ranking ideas, and 4) how one can
use the determinant of a design space to uncover prop-
erties of that space (such as how much quality one has
to sacrifice to gain diversity) and the extent to which
one can achieve compression in the ideas one considers
(via comparisons along the quality-to-diversity trade-off
front).

We demonstrated and validated the above contribu-
tions using both benchmark datasets and 606 real-world
design ideas from an OpenIDEO challenge. We showed
that our method produces higher quality, more diverse
rankings than competing techniques. Our findings have
several implications both for ranking items and studying
ideation at large scale.

First, Fig. 2 showed that, out of 606 ideas, only
36 unique solutions appeared across any portion of the
trade-off front in Top 10 ideas, from high-quality to high-
diversity. This implies that, even without picking a lo-
cation on the trade-off front, we can achieve substantial
compression in the “minimal set” of inspiring ideas a de-
signer might consider—roughly 6% in our example. In
the real-world scenario we analyzed, this meant reducing
designer effort from roughly 25 hours to 90 minutes.

Second, when trading off diversity and quality, we
found that maximizing diversity without considering
quality produced less useful ideas than considering the
combination. This implies that we need better auto-
mated quality metrics for ideas—similar to those re-
searchers have proposed for diversity or variety—if we
hope to scale up our ability to evaluate or inspire cre-
ative ideas.

References
[1] Pauling, L., and Kamb, B., 2001. Linus Pauling:

selected scientific papers, Vol. 2. World Scientific.

[2] Ahmed, F., Fuge, M., and Gorbunov, L. D., 2016.
“Discovering diverse, high quality design ideas from
a large corpus”. In ASME International Design En-
gineering Technical Conferences, ASME.

[3] Shah, J. J., Kulkarni, S. V., and Vargas-Hernandez,
N., 2000. “Evaluation of idea generation methods
for conceptual design: effectiveness metrics and de-
sign of experiments”. Journal of Mechanical Design,
122(4), pp. 377–384.

[4] Hennessey, B. A., and Amabile, T. M., 1999. “Con-
sensual assessment”. Encyclopedia of creativity, 1,
pp. 347–359.

[5] Fuge, M., Stroud, J., and Agogino, A., 2013. “Au-
tomatically inferring metrics for design creativity”.
ASME Paper No. DETC2013-12620.

[6] Kudrowitz, B. M., and Wallace, D., 2013. “As-
sessing the quality of ideas from prolific, early-stage
product ideation”. Journal of Engineering Design,
24(2), pp. 120–139.

[7] Green, M., Seepersad, C. C., and Hölttä-Otto, K.,
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A Application to Sketches

To demonstrate the applicability of our method to non-
text design problems, we take a simple example of rank-
ing five sketches. We adopt the design problem discussed
in [59], where one has to sketch semi-autonomous device
to collect golf balls from a playing field and bring them
to a storage area. Inspired by the sketches in [59], five
sketches for possible devices are sketched by one person,
as shown in Fig. 4. The sketches are numbered 1 to 5.

Figure 4: Five sketches of semi-autonomous device to
collect golf balls from a playing field.

To apply our method, we need the quality ratings and
similarity kernel for these sketches. Unlike text ideas,
these sketches are not represented as vectors. Hence, we
solve a sub-problem of estimating the similarity between
sketches using a human rater.

To do so, we decide to learn an embedding of data
based on similarity triplets of the form, “Sketch A is
more similar to Sketch B than to Sketch C”. To find the
similarity between these sketches, we ask a human rater
to give his relative preferences as shown in Table 2. The
rater is asked to provide ten comparisons, where he spec-
ifies which sketch is closer to the base image. So rating
provided in row 1 of Table 2 implies that Sketch 3 is more
similar to Sketch 1, compared to Sketch 2. Using these
triplet ratings, we learn two dimensional embedding for
all sketches using t-Distributed Stochastic Triplet Em-
bedding (t-STE) [60]. The model is used to obtain a
truthful embedding of the underlying data using human
judgments on the similarity of objects. Essentially, the
model takes as input the triplet embeddings shown in
Table 2 and generates a lower dimensional vector em-
bedding for each sketch.

Fig. 5 shows the output of t-STE model—a two di-



Sketch A Sketch B Sketch C
1 3 2
1 4 2
1 5 2
1 3 4
1 3 5
1 4 5
2 3 4
2 3 5
2 4 5
3 4 5

Table 2: Triplet embedding ratings provided by human
rater. For each row, item in Sketch A column is more
similar to item in Sketch B column than Sketch C column

mensional embedding for the five sketches. From the em-
bedding, one can conclude that Sketch 1 is quite unique
(far away from all other sketches). Using distances from
this embedding, we calculate a similarity kernel shown
in Fig. 6. From the similarity kernel and the two dimen-
sional embedding, one can notice that the rater found
Sketch 3 and 4 similar to each other, while sketch 1, 2
and 5 are relatively unique. Having obtained the posi-
tive semi-definite similarity kernel, next we find quality
ratings for all the sketches.

We ask a human rater to provide quality ratings for
the sketches on a scale of 1 to 10, with 10 being the
highest quality idea. The quality rating provided by the
rater for these sketches are 3, 2, 7, 8 and 6 respectively.
Using these ratings, if we sort these sketches in descend-
ing order of quality, we obtain the following ranking: 4,
3, 5, 1 and 2.

Using the quality ratings and similarity kernel as in-
puts to our method, we calculate the trade-off front be-
tween diversity and quality as shown in Fig. 7. There
are 17 unique solutions on the trade-off front. We also
find the intermediate solution using indifference curves
(shown using red marker). Below are the highest qual-
ity, highest diversity and the intermediate rankings on
trade-off front:

• Ranking by Quality: 4, 3, 5, 1, 2.
• Intermediate Ranking: 4, 5, 2, 1, 3.
• Ranking by Diversity: 2, 5, 1, 4, 3.

From the rankings obtained, one can verify that rank-
ing by quality (left extreme of trade-off front) has
sketches sorted by quality ratings. For the most diverse
ranking (right extreme of trade-off front), the method
gives higher ranking to the unique sketches 2, 5 and 1,
followed by similar sketches 4 and 3. Finally, the inter-
mediate ranking balances quality with diversity.

While this example was simple and only 120 permu-
tations were possible for a small set of five sketches,
it demonstrated a straightforward way to adapt our
method for a sketch based design problem by first es-
timating the quality and similarity and then generating
the trade-off front.
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Figure 5: Two dimensional embedding of five sketches
calculated using t-Distributed Stochastic Triplet Embed-
ding. It shows sketches 3 and 4 are similar to each other,
while 1, 2 and 5 are unique.
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B Comparing Diversity Measures

To select the right diversity metric, we compare how
accurately the DPP-based Div2(S) and sub-modular-
function-based Div1(S) metrics capture diversity on a
two-dimensional data set, where results can be verified
by known ground-truth clusters. This helps us in dis-
cussing each method’s advantages and disadvantages.



0 0.2 0.4 0.6 0.8 1

Quality

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
D
iv
e
rs
it
y

Figure 7: Trade-off between Quality and Diversity for
Ranking of five sketches

B.1 Fixed Set Size Comparison

We use an existing clustering dataset shown in Fig. 8. It
is a two-dimensional dataset with 500 data points across
15 clusters and has traditionally been used to compare
clustering algorithms [61]. We use it to compare pro-
posed diversity metrics under the criteria that a set is
diverse if it has items from different clusters. This clus-
tering interpretation is widely used in recommender sys-
tems for partitioning user profiles [62] and information
retrieval for grouping search intents [25]. In Fig. 8 each
point is allocated to a cluster and the cluster centers are
plotted by black square markers.

Suppose we want to select a diverse set of 8 points.
Under our criterion, we would prefer to pick points from
8 different clusters; selecting multiple points from the
same cluster would be less diverse. Mathematically, this
cluster coverage can be quantified using Shannon entropy
[63]. Entropy measures the level of impurity in a group
and will be maximum when each cluster has same num-
ber of elements and will be minimum if a single cluster
has all the elements and other sets are empty. We con-
sidered a diversity metric ‘better’ if it provides a higher
fitness to a more entropic set (i.e., favors points from
different clusters in our gold standard cluster datasets).
To assess this, we created two sets of points, Set 1—high
entropy, diverse, plotted using black squares—and Set
2—lower entropy, less diverse, plotted using red diamond
markers. We then compare under what conditions the
two methods agree that Set 1 is more diverse than Set
2.

Figure 9 compares the above metrics by plotting two
set of 8 points each. Set 1 (the sub-modular clustering
method) uses black square markers while Set 2 (DPPs)
uses red diamond markers. Set 1 is more entropic than
Set 2 it has 8 points belonging to 7 unique clusters while

Set 2 has 8 points belonging to only 5 unique clusters.
For the DPP similarity measure between points we

use a radial basis function (RBF) similarity kernel. This
similarity measure used gives score close to 1 to points
which are nearby and low scores to distant points. For
Eq. 1, we need the similarity matrix and the cluster la-
bels for each data point. As a fair comparison, we use
the same similarity kernel used for DPPs, but varied
the clustering method and number of clusters since this
method’s performance depends on the clustering labels
used for each data point. Specifically, we tested using the
already known ground truth cluster labels (i.e., knowing
the true clusters ahead of time), and the more realistic
condition of computing the clusters using two methods:
Spectral Clustering with 5, 10, 15, or 20 clusters, and
Affinity Propagation (AP), which estimates the number
of clusters from the data (it estimates 37 clusters for this
data set).

When we use the true 15 Gold standard clusters pro-
vided with the data set, as expected, the measure agrees
with Entropy, which is also defined using the same la-
bels. When we use the similarity matrix defined before
and apply Spectral clustering on it for 5, 10, 15 and
20 clusters, the results vary in agreement with entropy.
Surprisingly, when the clustering is done with 15 clus-
ters but using Spectral Clustering instead of pre-known
clusters, the method finds Set 2 more diverse. We also
use Affinity Propagation for clustering, which does not
require pre-specifying the number of clusters and it finds
37 clusters in the dataset.

For the DPP metric, we find that
det(LSet1) > det(LSet1), implying Set 1 more di-
verse than Set 2 as shown in Table 3. This agrees with
our entropy criterion. For sub-modular clustering, its
performance was particularly sensitive to number of
clusters used. When provided with the true cluster
labels, as expected, it agrees with entropy. When
it had to estimate the cluster labels, performance
varied. Surprisingly, even when told to estimate the
correct number of clusters (15), this particular choice of
clustering algorithm negatively affected performance. It
is possible that a different clustering algorithm (other
than Spectral or AP) might offer more robust perfor-
mance; our point here is that sub-modular clustering is
particularly sensitive to how points are clustered and it
is not immediately obvious how to verify one has made
the “right” choice on a problem with unknown ground
truth.

B.2 Growing Set Size Comparison

How does the above performance difference change if we
change the size of the set? Intuitively, if we are given
two sets of two points each, it should be easier to esti-
mate which is more diverse compared to when we have
20 points in each set. Figure 10 compares DPPs with
sub-modular clustering methods as we vary the set size
from 2 to 20. We randomly picked 1000 sets of that size
and divided those sets into two groups of 500 each. We
then conduct 500 comparisons using one item from each



Method Set 1 Fitness Set 2 Fitness
Unique Clusters 7 5
Entropy 1.91 1.73
DPP 0.0611 1.8509e-04
5 Clusters 0.2201 0.2123
10 Clusters 0.2824 0.3043
15 Clusters (Gold) 0.3289 0.3043
15 Clusters 0.2989 0.3043
20 Clusters 0.3289 0.3043
37 Clusters 0.3289 0.3043

Table 3: Diversity fitness value using different metrics

group. We calculate the fitness using each method and
record how often each methods agrees with entropy (our
ground truth measure). Better metrics should agree with
entropy more often and should consistently agree as the
set size increases. For clarity, we have shown four cases
in Fig. 10. For sub-modular clustering, using five clus-
ters performs as poor as random chance, while using the
known gold standard 15 clusters obtains the best perfor-
mance, as expected. The DPP diversity metric performs
similar to Sub-modular diversity with 37 clusters found
using Affinity Propagation algorithm.

What do this results imply? Given the known clus-
ters, sub-modular clustering has better agreement with
our entropy success criterion than those based on DPPs.
However, DPPs had more robust performance; that is, if
we do not know the exact clusters ahead of time, DPPs
perform better on average than sub-modular clustering.
In real world datasets, gold standard cluster labels are
rarely available. Even estimating the number of clusters
in a collection of design items is difficult. Hence, in such
scenarios the parameter-less DPP method is a more ro-
bust choice for measuring diversity since using the incor-
rect number of clusters causes sub-modular-based met-
rics to perform poorly. However, if a good estimate of
number and label assignments for clusters is available,
then sub-modular clustering diversity performs well. In
the paper, we use DPPs as our diversity metric since we
assume that we do not know the number of clusters.

Title of idea
(UPDATED) ’I am not from far away’ label
The Farmer and The Chef
Regional Food System+Commercial
Kitchen+Food Entrepreneur Incuba-
tor=Collaborative Community
Volunteer Farms Corp - like peace corp . . .or
voluntary armed forces
Trick yourself into sustainable buying
Closing the Farmers Market Loop
Intensive two- week Internship on farms : Interns
will teach others when they come back to the city
Dentell
Fruit Trees instead of Fences
The treatment of a tomato
Redesign the supermarket layout based on food
miles... UPDATED
Hack Cooking to Make it Appealing
back to basics: bento recyclable trays to transport
food instead of plastic bags.
Traveling Movie Theater on Farms
Roll-out Veg Mat
Incentivizing Shifts from Lawn Service to Edible
Gardening
Create Instant Farms on Vacant Lots
Install Greenhouses at Train Stations
Shopping list audit – incentives for new shopping
behavior
Carbon credit for local produce
Make Veggie Topiaries
A new youth movement: Healthy Eating and liv-
ing
The Importance of villages
fruity roofs
50 Within 50
Eatcyclopedia: A Phone App to Help Connect
and Inform
Market Days + Food Trucks = Serving Low-
income Neighborhoods
A celebration of imperfection
Branded Clothing
Hold Seasonal ”Open House” Days at Local Farms
Trade & resell network for CSA share-holders.
Specific to central pick-up location for many CSA
programs.
Zoning Bylaws To Permit Urban Beekeep-
ing/Chickens
iPhone, iPhone, what shall I cook tonight?
Building ’Transparency’ App (updated)
Window to the Farm
Public Kitchen

Table 4: All 36 ideas on trade-off front shown in Figure
2 in paper
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Figure 8: Dataset with 500 points in 15 clusters
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Data

Set 1
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Figure 9: Two sets of 8 points. Set 1 is more diverse
than Set 2, as it has points in 7 clusters while Set 2 has
points in 5 clusters
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Figure 10: Comparison of Sub-modular and DPP Di-
versity metrics for percentage agreement with Entropy.
Random clusters of different sizes are used.
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