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ABSTRACT

This presentation 1) reviews the outcomes of a one-day sym-

posium on Data-Driven Design held at the University of Mary-

land on October 16th, 2016; and 2) discusses the implications

of those outcomes on new Design Theory and Methodology re-

search. These outcomes include opportunities and challenges for

Data-Driven Design, ranging from modeling to verification to es-

tablishing researcher culture. This presentation organizes those

opportunities and challenges and then poses a series of questions

to the DTM community to catalyze discussion about how to pri-

oritize, address, or add to these challenges. My intent is for the

presentation to enable group discussion during the conference

and gather feedback about key challenges and calls to action for

the DTM community. In this respect, I intend for this presenta-

tion to raise more questions and discussion than it answers.

INTRODUCTION

The use of Data-Driven models—statistical and computa-

tional models that take in data from designs or designers to draw

conclusions about design—have become increasingly common

in design. This has grown in different forms and names through-

out different communities; within ASME IDETC this includes

subsets of ”Design Informatics” in CIE, ”Data-Driven Design”

in DAC, and ”Design Computing” in DTM. However, identify-

ing what approaches are Data-Driven or not is confusing; after

all, are not all design decisions ultimately driven by some data?

To help identify common and important challenges to apply-

ing Data-Driven models for understanding design, the University

of Maryland hosted a one-day symposium on Data-Driven De-

sign on October 14th, 2016. This symposium brought together

academic, industrial, and government researchers from various

fields—Mechanical Engineering, Aerospace Engineering, Man-

ufacturing, Human Factors, Computer Science, and Naval Ar-

chitecture, among others—to discuss different opportunities and

challenges that arise when using Data-Driven models to under-

stand and influence design.1

This technical presentation summarizes that discussion and

key challenges for the wider ASME community. In particular, the

presentation focuses on 1) what does it entail for a given model

or analysis to be Data-Driven (with illustrative examples) com-

pared to other approaches to studying design, and 2) how and

when are Data-Driven models useful (and harmful) to advancing

Design Theory and Methodology?

OPPORTUNITIES AND APPLICATIONS FOR DATA-

DRIVEN MODELS OF DESIGN

What do we mean when we say a model is “Data-Driven”

and for what kinds of problems are such models useful? To un-

derstand those questions, the participants discussed several ex-

amples, organized by where in a product’s life-cycle the data in

a data-driven model comes from.

1Speakers included representatives from: Autodesk, Carnegie Mellon Univer-

sity, Clemson University, Duke University, the Navy, the Department of Energy,

the National Institute of Standards, the National Science Foundation, the Uni-

versity of Buffalo, the University of Maryland, and the University of Urbana

Champaign; along with participants from many other US and UK institutions.
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Conceptual Design The discussed examples used data-driven

models to navigate, limit, or provide performance bounds on oth-

erwise intractably large design spaces. This focus arose from the

fact that conceptual design tends to be both ill-defined and ex-

pansive; exploring and characterizing such spaces is difficult and

high dimensional. For example, one can use past designs or sim-

ulations to learn useful sub-spaces to aid human exploration, use

past simulations to learn fast approximations of physical phe-

nomena (e.g., CFD or topology optimization) to compare con-

ceptual designs, or use external sources (like Wikipedia) to learn

useful common knowledge (e.g., about functional relationships

between parts) that can then combine with past design methods.

Embodiment Design The discussed examples dealt with rep-

resenting embodiment performance targets of interest and how

best to encode the right properties of a system so that you get

good predictive accuracy (in the worst case) or even causal mech-

anisms (in the best case). For example, using data-driven mod-

els like Neural Networks to approximate assembly complexity

(and thus design faster-to-assemble systems), learning structured

probabilistic graphical models for motion patterns in footwear

to modify specific part dimensions or components, or learning

patterns in how human make decisions during complex system

design tasks to better predict choices.

Manufacturing The discussed examples tackled representa-

tion issues across different parts of the digital thread, given that

they do not really talk to one another. This lack of communica-

tion complicates purely physics-based simulations, and thus pre-

dictive data-driven models can provide manufacturing design in-

sights. For example, by building predictive models of part man-

ufacturing (e.g., time series power draw on a CNC machine) one

can compare the actual and predicted curves to uncover part fea-

tures that complicate CNC machining, or by using data-driven

models to visualize and fuse together different information about

a part as it is being made so as to improve the design.

In-Use The discussed examples discussed how to connect real-

world product or human behavior to design choices and ensure

that data-driven models capture the right user behavior dynam-

ics. Particularly with humans, system dynamics will likely alter

in response to design changes. For example, in Internet of Things

(IoT) applications, products in use can both influence future de-

signs of products, but also modify their own behavior (e.g., a

tractor coordinating via data with a manufacturer to improve re-

liability and performance). Likewise, autonomous cars or planes

can learn from observing human behavior to better design them-

selves to communicate system intent.

CHALLENGES TO DATA-DRIVEN MODELS AND IMPLI-

CATIONS FOR DTM RESEARCH

The participants identified several key challenges and ques-

tions that could affect how data-driven methods could contribute

to Design Theory and Methodology research and practice.

Verifying and Validating Data-Driven Design Models A

central issue in data-driven models is verifying the conditions

under which they perform well. This problem rears its head in

design in a couple of ways: 1) What are the outcome measures

we care about? Are traditional accuracy or recall measures suf-

ficient, or must we explicitly map them to design outcomes from

industry? 2) Are there really any “common” design problems,

or are all problems so different and dynamic that models should

not predict based on past data from different problems? 3) How

do we do repeatable or reproducible experiments when humans

(as users or designers) are in the loop? How do we build “Trust”

into data-driven models? Can we complement data-driven mod-

els with traditional physics-based models to test validity?

Generalization and Extrapolation of Data-Driven Models

To what extent are Data-Driven Models “transferable” between

design problems? How do we handle systems we have not yet

seen? To what extent is past data really predictive of future sys-

tems, given that we (both designers and humans) learn from past

systems? Could we even change our own interaction with exist-

ing systems over time? To what extent can data-driven design

models be “explainable?” Can we bound the problems that data-

driven design is ill-suited to solve?

Standards, Benchmarks, and Practice for Data Collection,

Sharing, and Training How do we capture, process, store, and

share data (size, speed, formats, etc.)? What if the data we get

(e.g., accelerometer data) looks far removed from the actual de-

sign system of interest (e.g., the manufacturability of a feature)?

How do we ensure that we have gathered sufficient data for the

task at hand? How do we measure progress in the field toward

concrete goals or benchmarks?

Regulatory, Ethical, and Intellectual Property Concerns

How do we regulate systems controlled or designed by data-

driven models? Could data-driven models inform regulation it-

self? How do we ensure our models do not learn harmful and

difficult to detect bias directly into the products we use? How

do we debug such behavior? How do we interpret the ASME

ethics code in the context of data-driven models? How will we

address privacy and security concerns, if external data can in-

fluence physical products? How do we incentivize a research

culture amendable to data-driven design research, for example,

sharing data or benchmarks?

Understanding Fundamental Observability, Complexity, and

Causality Limits for Data-Driven Models How do we know

when we can detect emergent behavior within complex systems

or designs? When is enough data sufficient? How do we balance

causation with prediction in data-driven models?
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