
Proceedings of the ASME 2019
International Design Engineering Technical Conferences and

Computers and Information in Engineering Conference
IDETC/CIE 2019

August 18-21, 2019, Anaheim, CA, USA

IDETC2019-98000

CHECKING THE AUTOMATED CONSTRUCTION OF FINITE ELEMENT
SIMULATIONS FROM DIRICHLET BOUNDARY CONDITIONS

Kevin N. Chiu
Dept. of Mechanical Engineering

University of Maryland
College Park, Maryland

Mark D. Fuge
Dept. of Mechanical Engineering

University of Maryland
College Park, Maryland

ABSTRACT

From engineering analysis and topology optimization to
generative design and machine learning, many modern computa-
tional design approaches require either large amounts of data or
a method to generate that data. This paper addresses key issues
with automatically generating such data through automating the
construction of Finite Element Method (FEM) simulations from
Dirichlet boundary conditions. Most past work on automating
FEM assumes prior knowledge of the physics to be run or is lim-
ited to a small number of governing equations.

In contrast, we propose three improvements to current meth-
ods of automating the FEM: (1) completeness labels that guar-
antee viability of a simulation under specific conditions, (2) type-
based labels for solution fields that robustly generate and identify
solution fields, and (3) type-based labels for variational forms of
governing equations that map the three components of a simu-
lation set—specifically, boundary conditions, solution fields, and
a variational form—to each other to form a viable FEM sim-
ulation. We implement these improvements using the FEniCS
library as an example case. We show that our improvements in-
crease the percent of viable simulations that are run automati-
cally from a given list of boundary conditions. This paper’s pro-
cedures ultimately allow for the automatic—i.e., fully computer-
controlled—construction of FEM multi-physics simulations and
data collection required to run data-driven models of physics
phenomena or automate the exploration of topology optimization
under many physics.

1 INTRODUCTION

Modern advances in computation provide pathways for data-
intensive processes in mechanical design. For example, current
state of the art approaches to engineering analysis, topological
optimization, generative design, and machine learning can bene-
fit from large amounts of training data or methods to generate
that data. Generating this data manually—e.g., by having an
employee manually run various test cases—is infeasible due to
the large quantity needed, so a method to automate the gener-
ation of such data is crucial to these data-driven methods. To
acquire this data, we wish to automate the simulation of physi-
cal phenomena using the Finite Element Method (FEM) to solve
the partial differential equations (PDEs) that govern many phys-
ical phenomena. From these simulations, we can calculate, e.g.,
forces acting on objects from fluid stress fields or differences in
electrostatic potential. To build these simulations manually is
time-consuming and impractical for the large number of simu-
lations needed in machine learning model training, so this paper
proposes a method to check that an automatically-generated sim-
ulation will run given Dirichlet boundary conditions that satisfy
certain properties.

As an illustrative example, consider a fluid flowing through
a pipe in the presence of an electrostatic field (e.g., as is common
in biological microfluidic devices) shown in Fig. 1. The fluid
in the pipe is governed by the Navier-Stokes equations, whereas
the electrostatic field is governed by the Poisson equation. If
the fluid and electric field are not coupled, then two simulations
can be run separately. However, if they are coupled, then both

1

fluid and electrostatic boundary conditions are needed to run a
fully coupled simulation; if not enough boundary conditions are
provided, the coupled simulation cannot run, but some subset of
uncoupled simulations may. If an algorithm wanted to automati-
cally construct each of the possible subsets of simulations in this
example, it would need to overcome several crucial problems:

1. Choosing a variational equation that models the problem,
defining appropriate solution fields to solve the simulation,
and applying the correct boundary conditions to ensure con-
vergence of the solution.

2. Guaranteeing the viability of a simulation given the bound-
ary conditions, solution fields, and variational form.

3. Ensuring robustness of simulations to permutations in vari-
ational equations and boundary conditions—i.e., so long as
there is sufficient information to construct the simulation,
the order of that information should not matter.

Specifically, the key contributions of this paper are:

1. We discuss properties of simulation sets necessary to run
FEM simulations, differentiating them into what we call
complete, partially complete, and incomplete simulations.
Under certain conditions, these labels guarantee simulation
viability.

2. We propose the use of type-based labeling to generate ap-
propriate solution fields from Dirichlet boundary conditions
without knowing ahead of time the types (scalar, vector, or
tensor) or dimensions of the boundary conditions. This con-
trasts previous implementations where we have prior knowl-
edge of the boundary condition types and manually build
solution fields based on that knowledge.

3. We apply type-based labeling in variational forms to im-
prove robustness of simulations to ordering permutations of
solution fields, boundary conditions, and variational form
terms. This gives us the ability to construct simulations more
robustly than previous implementations in which, e.g., the
order of boundary conditions affects whether a simulation
runs or not.

To demonstrate our above contributions, we specifically use
the FEniCS library [1] to implement the FEM; however, these
contributions are applicable to other implementations of the FEM
as well.

2 RELATED WORK
Past approaches to automating the construction of FEM

models falls roughly into three camps: (1) Automating Mesh
Generation, (2) Knowledge-Based Engineering, and (3) Lan-
guages for general purpose, multi-physics solvers.

Much of the previous work in automating FEM focuses on
the mesh generation process. For example, [2] and [3] describe
basic methods of automating the meshing process, leading to a

variety of applications, e.g., from bio-medical [4] to environmen-
tal [5]. Such approaches have led to major advances in how to
discretize FEM problems, assuming that the variational form of
the governing equation and boundary conditions are known. In
contrast, our paper focuses on how to assemble all parts of the
FEM solution including the solution fields (for a given mesh), the
variational form, and the boundary conditions. As such, this past
work in automated mesh generation is complementary to this pa-
per, and we assume an appropriate quality mesh is provided (or
can be computed using past methods) because our concerns lie
with guaranteeing simulation viability and setting up the FEM
problem definition.

Above the mesh-level, approaches from knowledge-based
engineering (KBE) abstract the mid- and high-level components
of a design by capturing rules and hierarchies between levels
of different components [6]. By implementing high-level primi-
tives, such as airplane wings or fuselages, KBE allows a designer
to consider more detailed improvements by providing a shortcut
to methods of analysis early in the design process [7]. When
applied to geometry as in [8], KBE allows a simplified method
of generating designs by adjusting input parameters to the pro-
gram. Additionally, KBE can be extended to multi-disciplinary
optimization [9] and, with machine learning, to predicting, e.g.,
manufacturing cycle times [10]. While KBE promotes the use of
high-level abstractions in design, such abstractions are largely
manually constructed and cannot automatically generate new
multi-physics FEM simulations needed for generating data or op-
timizations in data-driven design.

The last area of related work lies in programmatic languages
for writing and simulating PDEs using FEM. Specifically, our
work extends the work of [11] and [12], which laid the frame-
work for the FEniCS library [1]—a programmatic language for
writing and simulating FEM solutions to PDEs, such as the Uni-
fied Form Language [13]. [14], a similar package, also provides a
language for implementing complex FEM simulations, acting ei-
ther as a black-box solver or a framework for custom implemen-
tations. While such approaches have helped standardize how one
can describe and implement various types of single and multi-
physics analysis (e.g., [15]) they still require researchers to write
customized code for implementing specific physics, particularly
in coupled models. The closest work to this paper is the work
of Xia [16], who implements a multi-physics solver that can
generate FEniCS code automatically by assuming that boundary
conditions exist for every portion of the domain. Our approach
differs from [16] in that we make no assumptions regarding the
types or number of boundary conditions given, and can automat-
ically generate and check for multiple subsets of physics models
that are consistent with the boundary conditions.

2

3 EXPERIMENTAL SETUP
In this paper, we assume that only physically-realizable

boundary conditions are given as inputs. For example, fluid flow-
ing through a pipe can have one inlet velocity Boundary Condi-
tion (BC) with the other end as a pressure BC.1

For clarity throughout the rest of this paper, we use our pre-
vious example of a fluid flowing through a pipe in an electro-
static potential field to demonstrate the core contributions. This
example provides us with two different types of physics, namely
fluid flows and electrostatic potential fields, governed individu-
ally by the Navier-Stokes and Poisson equations, respectively,
and by a coupled form in [17]. For the purposes of this paper,
we do not consider the fully-coupled form of the equations; in-
stead, we choose a “synthetic” variational form that requires the
same types of BCs and solution fields as the fully-coupled form
to make computation simpler and faster to replicate.

Specifically, we use the following three variational forms:

1. Quasi-static Incompressible Navier-Stokes (Pressure, Veloc-
ity)

F = 〈u,v〉+ 〈∇u,∇v〉+ 〈∇p,v〉+ 〈∇ ·u,q〉 (1)

2. Poisson

F = 〈∇u,∇v〉− f · v−g · v (2)

3. “Synthetic” (Pressure, Velocity, Poisson)

F = 〈u,v〉+ 〈p,q〉+ 〈s, t〉+ f · t +g · t (3)

In the Navier-Stokes equations, u and p are the velocity and
pressure, respectively, with v and q the respective test functions.
In the Poisson equation, u is the variable of interest with v as
the test function. In the Synthetic variational form, u, p, and s
are velocity, pressure, and Poisson terms, respectively, with v, q,
and t the respective test functions. In both the Poisson and Syn-
thetic variational forms, f and g are internal and boundary source
terms, respectively. dx signifies integration over the domain’s in-
terior, while ds signifies integration over the boundary.

While the Navier-Stokes and Poisson equations are fairly
standard, the “Synthetic” variational form we use is constructed

1In contrast, if both ends mandate velocities leaving the domain with no in-
puts, then fluid must be generated somewhere within the pipe to conserve mass
(i.e., maintain a divergence of 0). If there is no source of fluid, then the simula-
tion will break due to non-physicality, not necessarily because the FEM solution
to the PDE is incorrect. (That is, solutions might be mathematically possible but
not physically possible.) Assuring that a given set of BCs is physically-realizable,
while important, is not within the scope of this paper.

for the purposes of this paper. This form has no physical mean-
ing; rather, it is used merely as a test equation that requires mul-
tiple and different BCs and combines a pressure field, a velocity
field, and a Poisson field. The only criteria of the Synthetic vari-
ational form are that it requires different BCs (and subsequently
solution fields) and that it converges to a solution, regardless of
the physical interpretation of that solution.

VT = 0.01

VB = 0.0

u = 0.01 p = 0.0

FIGURE 1. Example problem of fluid in a pipe in an electro-
static field. All boundary conditions are non-dimensionalized Dirich-
let boundary conditions. The black square is an “obstacle” on which
we want to calculate the forces from the fluid flow and the electrostatic
potential field.

We also use three types of Dirichlet boundary conditions:
fluid pressure, fluid velocity, and Poisson. We separate them into
the following sets (denoted {BCs}) for our experiments:

0. {}
1. {Velocity L}
2. {Pressure R}
3. {Poisson T}
4. {Poisson T, Poisson B}
5. {Poisson T, Pressure R}
6. {Velocity L, Pressure R, Poisson T}
7. {Velocity T, Velocity L, Poisson B}
8. {Velocity B, Velocity T, Velocity L, Pressure R}
9. {Velocity L, Pressure R, Poisson T, Poisson B}

10. {Velocity B, Velocity T, Velocity L, Pressure R, Poisson T}
11. {Velocity B, Velocity T, Velocity L, Poisson T, Poisson B}
12. {Velocity B, Velocity T, Velocity L, Pressure R, Poisson T,

Poisson B}

3

Here, “B”, “T”, “L”, and “R” represent “Bottom,” “Top,”
“Left,” and “Right” respectively, referring to the edge on the ex-
ample domain on which the BC is applied. As seen in Figure 1,
Velocity L is a small, positive, uniform, horizontal flow, while
Velocity B and Velocity T are both 0-magnitude flows (i.e., the
“no-slip” condition). Pressure R is 0 pressure. Poisson T and
Poisson B are uniform positive and zero values, respectively.

These sets of BCs are heuristically chosen by the authors to
maximize diversity in the following traits in the aforementioned
sample problem:

1. Number of boundary conditions —how many boundary con-
ditions are applied

2. Types of boundary conditions —fluid velocity, fluid pres-
sure, and Poisson

3. Combinations of types —e.g., fluid velocity with Poisson,
fluid pressure by itself, etc.

Although many other possible test problems are possible, we
combinatorically choose among these sets to simplify the method
of testing our approaches. While a more exhaustive test set would
include all 26 possible combinations of 6 BCs, many of these
tests would be redundant for testing our approach (e.g., two sets
of BCs where the only difference between them is removing one
no-slip condition and adding in the other).

This paper refers only to simulations with Dirichlet bound-
ary conditions. While Neumann and Robin boundary conditions
are important, they are not considered in this work due to the
differences in their implementation in FEM, specifically because
they are added as terms in the variational form. In this work, we
assume the variational form is already given. It is expected that
this paper is compatible with Neumann and Robin boundary con-
ditions with minimal conceptual changes, though the specific im-
plementation may differ if there are no Dirichlet boundary con-
ditions acting on the same field(s).

Our experiment in §4.3 explores the accuracy with which
we can automatically label a simulation set given the Variational
Form of the governing equation (VF) and set of BCs while as-
suming the associated Solution Field (SF) is correct. We use the
same sets of BCs in §5.3, testing different methods of generating
these SFs. With the now fully-defined and complete simulation
sets, we use the VFs from above and the same sets of BCs to
build and run viable simulations to test the implementation of
our approach compared to standard methods in §6.4.

4 COMPLETENESS OF VIABLE SIMULATION SETS
Each simulation requires what we call a simulation set of

{BCs}, SFs, and a VF. To solve a PDE, boundary conditions are
applied on SFs, whose values are manipulated to satisfy the VF.
Because of these interwoven relations, a viable simulation has a
simulation set with two important properties between its different
members.

First, we define a viable simulation set as a simulation set
whose members fully define a simulation in FEniCS (or any other
FEM package) that: (1) runs to completion (e.g., no shape mis-
matches or undefined terms) and (2) converges to a solution (e.g.,
not a singular matrix, no infinite or NAN values).

In this section, we assume that, for a given VF, the SFs in
the simulation set match the VF exactly; we discuss generating
these SFs in §5. We define a simulation set with at least one BC
for every variable type in the VF without extra as complete; if
there are unused/extra BCs, that simulation set is called partially
complete, and extra BCs can be trimmed off to make a complete
simulation set. In both of these cases, the simulation set can
define a viable simulation.

If the VF contains variables whose types do not have corre-
sponding BCs, then that VF is considered incomplete, leading to
a nonviable simulation set.

With this definition , we can decide whether a simulation set
is viable or not by making several observations about its mem-
bers and their relationships to each other.

4.1 Claim 1: A viable simulation must have a bijective
function between SF and VF.

Define S f (vtype) as a function that maps a type of variable
field in a VF to its corresponding SF. To prove that f = S f (vtype)
is bijective, we want to show that f is both surjective and injec-
tive.

4.1.1 Claim 1.1: f is surjective. Assume f is not
surjective. According to the definition of “surjective,” there must
be some SF to which f does not map, i.e., SF is unused in the VF.
Because SF is unused, then the coefficients of the corresponding
row(s) in the stiffness matrix are 0. Because at least one row of
the stiffness matrix is all 0s, the stiffness matrix is singular and
cannot be inverted, thus leading to no solution to the equation
Ax = b where A is the stiffness matrix. This contradicts our as-
sumption that a simulation converges to a solution, so our initial
assumption that f is not surjective must be false. Therefore, f is
surjective.

4.1.2 Claim 1.2: f is injective. Assume f is not in-
jective. According to the definition of “injective,” there must be
two types v1 and v2 where

f (v1) = S f (v1) = S f (v2) = f (v2)

but v1 6= v2. Because

S f (v1) = S f (v2)

4

v1 and v2 map to the same variable and are manipulated in
exactly the same way in the VF (e.g., they have the same {BCs}
applied). This implies that the same values satisfy the VF, lead-
ing to the same output values in the variable field to which they
map. Because the outputs of the simulation are the same, then
v1 = v2, which contradicts our assumption that f is not injective.
Therefore, f is injective.

Since we have shown that f is both surjective and injective,
f is bijective by definition. Thus, the function that maps a type
of variable field to its corresponding SF is a bijective function,
so we can treat a variable type and its SF as one unit. For the rest
of this section, we assume a VF has its corresponding SFs and
refer to them interchangeably unless otherwise specified. In §5,
we show how to derive the appropriate SFs for a given VF.

4.2 Claim 2: A viable simulation set must have a sur-
jective function from BC to SF.

Define apply(bc) as a function that maps a BC to its cor-
responding SF. Thus, we impose a condition such that g =
apply(bc) exists and we want to prove g is a surjective function
from BC to SF.

4.2.1 Condition 2.1: A viable simulation set does
not contain unused BCs. Assume we have a viable simu-
lation set. An unused BC can be removed without changing the
viability of the simulation set, so we remove that BC and redefine
the simulation set without changing its solution.

4.2.2 Claim 2.2: g is surjective. Assume g is not sur-
jective. By definition, there must be some SF on which no BCs
are applied. By [18], the stiffness matrix being solved in this
simulation is singular, rendering the equation unsolvable. This
contradicts our assumption that the simulation set is viable, so
our assumption that g is not surjective is incorrect. Thus, g must
be surjective.

4.3 Experiments
To ensure completeness labels can be generated automati-

cally, we compare automatically-generated completeness labels
with the ground truth labels manually assigned by the author. For
each run, we take a single {BCs} from §3 and consider its com-
pleteness with the three VFs also from §3. Table 1 shows the
results of our experiments.

As can be seen from Table 1, our approach correctly labels
the simulation sets for every test case we attempted, regardless
of the type of VF or its completeness. That there are no partially
complete Synthetic tests is due to the Synthetic VF requiring all
3 possible types of BCs. The total number of tests matches the
number of unique {BCs}.

TABLE 1. Number of labels based on VF and ground truth labels.
Our approach, row “# Correct,” correctly labels 13 out of 13 cases for
each VF.

Poisson Navier-Stokes Synthetic

Incomplete 4 8 9

Part. Complete 7 4 0

Complete 2 1 4

Correct 13 13 13

Total 13 13 13

5 TYPE-BASED INDEXING FOR SOLUTION FIELDS
We previously mentioned that we must define SFs that

match the requirements of the VF. In most FEM implementa-
tions, one knows the type of physics or equation being solved
ahead of time and, consequently, can build SFs that match the
VF exactly. However, this approach is limited in that each code is
specific to a single type of physics; to simulate a different type of
physics, an entirely new simulation must be coded from scratch.
The goal of this paper is to develop a generalizable system that
can check that multiple single- and multi-physics FEM simula-
tions can run without the need of checking each simulation man-
ually, eventually to generate large datasets of simulations com-
pletely automatically.

To this end, we propose the use of type-based labels to de-
rive the corresponding SFs for a simulation set from a list of BCs.
We discuss baseline methods of deriving SFs before describing
our implementation and experimental comparison of different
approaches.

5.1 Baseline Methods for Solution Field Generation

Arbitrary The most naı̈ve approach to generate SFs is to ini-
tialize some arbitrarily large number of SFs of multiple dimen-
sions and types (scalar, vector, and tensor). This approach as-
sumes {BCs} provides no information about the required SFs.
However, this is computationally expensive and makes no guar-
antees on the viability of the simulation (if there are too many
SFs, or alternatively too few). In essence, this can produce too
few or too many SFs, and we cannot know which without more
information.

Minimal-Maximum As a small improvement on this naı̈ve ap-
proach, we can use the number of BCs in {BCs} as an upper
bound on the number of SFs. In this case, if n is the number of
BCs, n scalar fields, n vector fields, and n tensor fields would be
initialized. This would, of course, be many more SFs than are
needed.

5

Unique BC Rather than gathering no information from {BC},
we can assign each BC in {BCs} to its own SF. This imposes an
upper limit on the number of SFs that can possibly be required
in a specified VF because, as stated in §4.1.1, each SF requires at
least one BC for convergence. However, this approach does not
link variables of the same type together, e.g., if two fluid veloc-
ity BCs are given for a two-inlet pipe system, then two unrelated
SFs would be generated, leading to ambiguity in which fluid ve-
locity field the VF “should” use and resulting in an inaccurate
simulation.

Unique Dimension A third approach could be to build a SF
for each BC of a different dimension. For example, this method
would work for the Navier-Stokes equations as pressure BCs, ap-
plied to a scalar SF, and velocity BCs, applied to a 2-D vector
SF, would have separate fields. Unfortunately, this approach
breaks down when different BCs require SFs of the same di-
mension, e.g., an electrostatics-coupled Navier-Stokes simula-
tion [17]. Specifically in this example, electrostatic potential is
a scalar quantity and requires a scalar SF, and while pressure
is also a scalar quantity and requires a scalar SF, electrostatic
potential and pressure should not be treated as the same variable.
This approach gives a lower bound of the number of SFs required
because BCs of different dimensions must have unique SFs.

Unique Names Instead of extracting information from {BCs},
we can assume that a given {BCs} completes the VF of interest
and try to derive necessary SFs from the unique variable names
in the VF. In fact, this approach correctly derives the number of
SFs needed for a specific VF. However, naming each variable in
a variational equation is somewhat arbitrary, and a simple differ-
ence in convention (e.g., φ , electrostatic potential, vs. u, tem-
perature in the heat equation, though both are applications of the
Poisson equation) should not necessarily imply a different simu-
lation type entirely (e.g., a general Poisson simulation vs. elec-
trostatic potential or heat simulations), only a different physical
interpretation of the solution. Additionally, while there is some
sort of convention for naming variables, ordering the SFs that
correspond to those variables is loosely alphabetical at best and
entirely random at worst. Finally, augmenting a single-physics
model to multi-physics, e.g., from Navier-Stokes to electrostatic-
coupled Navier-Stokes, requires manually naming the additional
SF(s). This ambiguity with both naming and ordering leads to
uncertainties in which BCs and which SFs correspond.

Indexed Names A slight modification to the name-based la-
bels stated above replaces names with numerical indices. For ex-
ample, an electrostatic-coupled Navier-Stokes equation, which
requires three SFs, could assign, e.g., velocity to SF0, pressure
to SF1, and electrostatic potential to SF2. Numerical indices are
easily extensible to an (almost) arbitrarily large number of SFs,
but the same issue arises with ordering the SFs in some unam-

biguous manner, e.g., the indices of the velocity and electrostatic
potential SFs should not change the viability of the simulation
set. This is portrayed in more detail in Table 3.

5.2 Proposed Implementation of Type-Based Labels
for Solution Fields

We propose type-based labeling to mitigate the disadvan-
tages of name-based or index-based labels. While this approach
has some overhead in encoding more information into the VF,
it provides an unambiguous label for each unique type of BC
in {BCs}, which provides more robust checks for completeness,
and removes the issue of ordering the SFs as they are referred to
only by their type, rather than an arbitrary name or index.

To build the SFs, we use the builder class, described in Al-
gorithm 1 and below.

Algorithm 1 Builder
1: Initialize dictionary s f
2: for BC in {BCs} do
3: Add BC to s f with the key type(BC)
4: end for
5: Initialize empty mixed element mix
6: for keytype in s f do
7: Add dimensioned element to mix
8: end for
9: Build the function space from mix

10: for keytype in s f do
11: for BC in keytype do
12: f ieldToUse = keytype
13: value = BC.value
14: location = BC.location
15: Create FDBC and append to list of FDBCs
16: end for
17: end for
18: Return mixed function space and FDBCs

A list of BCObjects is the input to this algorithm. We start
with a dictionary (line 1) to store each unique type (line 3) since
it only matters that each type has a SF rather than each BC. Once
we have extracted the types, we add appropriate elements to a
mixed element placeholder (line 7). Each of the added elements
has dimensions according to the type it represents (e.g., fluid
pressure fields are scalars and use scalar elements, whereas fluid
velocity fields in 2-D have 2-D vector elements). These dimen-
sions can be derived from the value property of a BC object. With
this mixed element mix, FEniCS can build a function space (line
9) that contains SFs corresponding to the different elements in
the mixed element.

6

Finally, the algorithm creates FEniCS Dirichlet Boundary
Condition objects (FDBCs), which require information about the
solution field to be used, value, and location of each BC (lines 10-
17). The mixed function space and list of FDBCs are returned
as outputs. The FDBCs are specific to the FEniCS library, but
any implementation-specific object or function to apply Dirichlet
boundary conditions (DBCs) on the stiffness matrix can be used
instead of FDBCs.

We would like to draw special attention to lines 3 and 12.
In line 3, we use a key that, rather than a number or a name,
is the type of BC being applied. This ensures that the function
mapping from the BCs to the SFs is surjective, thus meeting one
of the criteria for a complete simulation set from section §4.

In line 12, we again refer to keytype. Referring to the solution
field by its type is fairly straightforward: we find the SF whose
key matches the BC’s type2 and apply the BC onto that SF.

Also of note are lines 6 and 10, where we iterate over the
keys matching each type of BC, thus ensuring BCs of the same
types are kept on the same SF and those of different types are
separated.

5.3 Experiments
We compare our approach of type-based indices with the

baseline approaches. We use the sets of BCs mentioned in §3.
For every ordering permutation of that {BCs}, we use each base-
line and the proposed approach to generate SFs and compare the
generated fields to those we generate manually. The ratio of cor-
rectly generated3 SFs to total generated is the accuracy of the
method. Table 2 shows the results of our experiment.

From Table 2, we note that as we move to more sophis-
ticated methods, we see an increase in the number of {BCs}
that may have correctly generated SFs. We also note that every
method is generalizable4 except method “Unique Names,” which
uses names of variables to differentiate fields. Even so, meth-
ods “Unique Names,” “Indexed Names,” and “Types” all gener-
ate at least some correct SFs. With the switch to indexed names,
method “Indexed Names” seems to generalize method “Unique
Names.” However, these two methods perform poorly as the pos-
sible number of orderings increases.

To test robustness to BC ordering, we run this experiment
with every order permutation of the BCs in each {BCs}. Table
2 includes the results of these permuted (“shuffled”) boundary

2Our implementation actually uses an intermediate index-type dictionary, but
because this dictionary is bijectively defined, we refer to the index and the type
interchangeably.

3“Correctly generated,” here, means that the algorithm builds the correct num-
ber of SFs of the correct size (scalar, vector, or tensor) and dimensionality. Ad-
ditionally, all order permutations are compared to the default sets in §3, i.e., per-
muted lists must generate the same SFs and refer to them in the same manner to
be considered “correct.”

4Generalizable, meaning extendable to different VFs without additional ad-
justments.

conditions.
From Table 2, the “Unique BC” and “Unique Dimension”

approaches correctly generate SFs regardless of BC ordering, but
in general, these approaches are not robust to the combinations
of BCs that may be encountered. While the “Unique Names” and
“Indexed Names” approaches generated the correct SFs at least
sometimes in all of our test cases, Table 2 shows they lack of
robustness when the BCs are ordered differently, especially as the
number and types of BCs increase. Our type-indexed approach
“Types” provides the correct references to the corresponding SFs
regardless of the order of the BCs in all of our test cases.

6 TYPE-BASED INDEXING FOR VARIATIONAL
FORMS
Similar to the previous section, we use type-based index-

ing to differentiate between variables in the VFs. This consistent
labeling allows easy mapping of SFs to the corresponding vari-
ables in the VF. This also facilitates robustness to the order of
terms in the VF.

6.1 Baseline Methods for Variational Form Encoding
Named Variables As previously mentioned, in many imple-
mentations of the Navier-Stokes (e.g., [19]) and Poisson (e.g.,
[19]) solvers, SFs are named with relatively intuitive or conven-
tional letters. For example, in the Navier-Stokes VF, the velocity
SF is often denoted u, and the pressure SF as p, as seen in Table
4, with the test functions v and q (not shown), respectively. Sim-
ilarly, if somewhat less interestingly, the Poisson equation’s VF
in Table 4 uses u for its single SF with a test function of v.

Such naming conventions are common in existing state-of-
the-art programmatic FEM solvers (such as when using the Uni-
fied Form Language [13]), and it assumes knowledge of the VF
to be used beforehand. In contrast, this paper explores methods
for constructing such FEM simulations in FEniCS automatically.
Thus, hard-coding the names of SFs into the VF is not useful.

Indexed Variables Rather than hard-coding variable names,
we again consider indexing SFs numerically. Table 4 gives an
example of this implementation. A simple substitution of vars[0]
and vars[1] for u and p, respectively, and their counterparts of
testVars[0] and testVars[1] (not shown), allows these SFs to be
referenced without hard-coded names, if somewhat less com-
pactly. As an added bonus, any number of SFs can be referenced
merely by increasing the index number. However, we run into
the same issues of ambiguous ordering and references as stated
in Section 5.

Consider the example in Table 3. In this 2-D Navier-Stokes
fluid example, we apply two types of BCs, fluid velocity (“V”)
and fluid pressure (“P”). A velocity SF is a 2-D vector field,
whereas a pressure SF is a scalar field, as seen in columns 2 and

7

TABLE 2. Results of order-permuted SF generation using baseline and the proposed type-based approaches. Numbers are ratios of successfully-
generated SFs to total generated SFs. Dashes indicate 0 successes and are used to make the table more readable.

BC Set Arbitrary Min-Max Unique BC Unique Dimension Unique Names Indexed Names Types

0 - 1.0 1.0 1.0 1.0 1.0 1.0

1 - - 1.0 1.0 1.0 1.0 1.0

2 - - 1.0 1.0 1.0 1.0 1.0

3 - - 1.0 1.0 1.0 1.0 1.0

4 - - - 1.0 1.0 1.0 1.0

5 - - 1.0 - 0.5 0.5 1.0

6 - - 1.0 - 0.167 0.167 1.0

7 - - - 1.0 0.333 0.333 1.0

8 - - - 1.0 0.75 0.75 1.0

9 - - - - 0.083 0.083 1.0

10 - - - - 0.3 0.3 1.0

11 - - - 1.0 0.3 0.3 1.0

12 - - - - 0.0083 0.0083 1.0

Average 0.0 0.077 0.462 0.615 0.572 0.572 1.0

Generalizable X X X X - X X

TABLE 3. Different orderings of BCs can result in inconsistently-referenced solution fields, even if the same type of simulation is run

BCs Applied vars[0] Expected vars[0] Actual vars[1] Expected vars[1] Actual

{V, P} 2-D Vector 2-D Vector Scalar Scalar

{V, V, P} 2-D Vector 2-D Vector Scalar Scalar

{V, P, V} 2-D Vector 2-D Vector Scalar Scalar

{P, V} 2-D Vector Scalar Scalar 2-D Vector

4 of Table 3. In the first three cases, where V is first, a 2-D vec-
tor field is labeled as vars[0], and a scalar field is vars[1]; when
P comes before V as in the last row of Table 3, vars[0] now be-
comes a scalar field, and attempting to perform vector operations
on scalar values results in a failed simulation. This required or-
dering severely limits the number of simulations that can be gen-
erated and run automatically as the order of BCs should not affect
the solution to a viable simulation.

6.2 Proposed Implementation of Type-Based Labels
for Variational Forms

We convert the numerical indices in the baseline approach
into type-based indices5. These types are encoded into the VF
as needed types to make completeness labeling easier. Table 4
provides an example of the (standard) name-based approach, in-
dexed names, and our typed indices. Section 3 gives the full VFs
we test.

5Our implementation actually uses an additional dictionary-type object to
map indices to types of boundary conditions; however, because mapping between
indices and BCs is bijectively defined, we can treat them as referring to the same
object.

8

TABLE 4. Several possible references to VF variables

Poisson Navier-Stokes

Unique Names u u, p

Indexed Names vars[0] vars[0], vars[1]

Typed Index vars[“Poisson”] vars[“FluidVelocity”], vars[“FluidPressure”]

6.3 Selection of Applicable Boundary Conditions for
Viable Simulation Set Generation

With these labeled simulation sets and robust SFs, we can
choose the sets which are complete and know that the simulation
will run. However, partially complete simulation sets still con-
tain extra BCs that need to be removed. For this, we can apply
our type-based approach to select only the BCs that are applica-
ble to our current VF. We implement this in Algorithm 2, which
returns the set of BCs that are applicable to the simulation set.
Lines 2 and 9 use our completeness labeling from Section 4 to
check whether the there is a need to strip out the applicable BCs.
Line 4 uses type-checking to determine if a given BC is required
for a given VF.

Algorithm 2 Selector
1: Inputs: V F , BCList
2: if isPartiallyComplete(V F , BCList) then
3: for BC in {BCList} do
4: if type(BC) is in the required types of V F then
5: Add BC to the list of applicable BCs
6: end if
7: end for
8: else
9: if isComplete(V F , BCList) then

10: All BCs are applicable
11: else
12: Simulation set is incomplete
13: end if
14: end if
15: Return applicable BCs

6.4 Experiments
We input into our Algorithm 3 objects: a mesh, on which

we want to solve the simulation; a set of BCs, BCList, which
we want to apply; and a VF. We take the BCList and VF and
label these two, assuming the SF corresponding to the VF is ap-
propriate. If the result is incomplete, we stop the simulation; if
it is partially complete, we use Algorithm 2 (the “Selector”) to
turn this into a complete simulation. Once the (partial) simula-

Viable Simulation

Set(BCList, SF, VFi)

Builder(BCList)

Yes

YesPartially

Complete?

BC List

Label(BCList, VFi)
Variational

Form, VFi

Incomplete?
Inviable

Simulation Set

Complete

Simulation Set

Selector(BCList)

No

No

Mesh

FIGURE 2. Flowchart of Experiments in Section 6.4

tion set is complete, we send it into Algorithm 1 (the “Builder”).
This generates the actual SFs for the simulation set, with which
the FEM can be solved. Figure 2 illustrates a flowchart of the
process.

Following this process, we run two related experiments, the
first to test the viability of a given order of BCs, and the second
to test robustness to permutations of BC order.

6.4.1 Use of Completeness Labels to Determine
Simulation Viability With our fully defined and viable sim-
ulation sets, we now want to determine whether knowing these
simulation sets’ labels is useful in deciding which simulation sets
to run. We run three different groups of simulation sets: “Com-
plete,” “Viable” (i.e., both Complete and Partially Complete),
and “All” sets. We tabulate the number of attempted simulations

9

TABLE 5. Results of non-shuffled simulation testing with and with-
out completeness labels. Here, “Complete” refers to a too-restrictive
class of simulation sets that are exactly complete; “Viable” refers to the
class of simulation sets that are both complete and partially complete;
and “All” refers to all of the simulation sets being tested, regardless of
completeness.

Attempted Success % Success

Complete 7 7 100

Viable 18 18 100

All 39 8 20.5

TABLE 6. Results of shuffled simulation testing with and without
completeness labels. This is an extension of the previous experiment
to include different BC orderings.

Attempted # Succeeded % Succeeded

Complete 897 897 100

Viable 2765 2765 100

All 3084 921 29.9

and the number of successful simulations to calculate the success
percent of simulations each group attempts. With 3 variational
forms and 13 sets of bcs, we expect 3×13 = 39 total simulations
for each group. Table 5 shows the results of this experiment.

We expect every Complete or Partially Complete simulation
to be viable, as is confirmed by the 100% running success rate
of those simulation. From Table 5, we also see that, as “Viable”
is a superset of “Complete,” there are 11 more sets in “Viable”
than there are in “Complete.” Similarly, “All” is a superset of
“Viable,” resulting in 21 more attempted simulations.

6.4.2 Robustness of Type-Based Indices to BC Or-
der Permutations We run a similar setup as Section 6.4.1,
but we permute the order of BCs in every combination possi-
ble. Again, we calculate the number of simulations attempted by
each method and compare it to the number of simulations that
were run to completion. These results are in Table 6.

From Table 6, we can see that both “Complete” and “Viable”
simulations run with 100% success in our tested cases. However,
fewer simulations (in this case, less than 1/3) are run when the
“Complete” criterion is used as compared to the “Viable” crite-
rion. “All” simulations encompass 3084 possible cases, of which
only 921 (29.9%) are able to run to completion. In this case, “Vi-
able” covers 89.7% of “All” simulations while running to com-
pletion more than triple the number of simulations. From this,
we can see that the “Viable” set attempts fewer simulations but

runs more successful simulations than previous implementations,
thus saving in computational time wasted on failed simulation at-
tempts.

7 DISCUSSION
From the results of our experiment shown in Table 5, we

note there are 10 simulations that “Viable” runs successfully but
“All” does not. While at first glance, this seems odd, this behav-
ior is expected. Because some of the sets in “All” are partially
complete, there are extra BCs that violate condition 4.2.1 from
§4. “Viable” sets, on the other hand, contain this completeness
label, which informs whether extraneous BCs should be stripped
before constructing a simulation. Thus, when an “All” simula-
tion set is used to construct a simulation, extraneous BCs cause
the construction to fail, whereas “Viable” simulation sets have
extra BCs stripped before construction.

Even taking out Partially Complete simulation sets, one
should expect that “All” runs the same number of successful sim-
ulations as “Complete” does since both should run only Com-
plete sets. However, Table 5 shows this is not the case: “All”
contains 8 successfully-run sets, whereas “Complete” only con-
tains 7 sets. This extra viable simulation set actually comes from
BC set 8 (BC8), which contains 3 fluid velocity and 1 fluid pres-
sure BC. Specifically, in the “Complete” pass through the BCs,
our approach checks BC8 against the requirements of the Pois-
son VF. Finding that there is no Poisson BC, this simulation set
(of fluid velocity/pressure BCs and Poisson VF) does not make
a viable simulation. However, the “All” pass does not check the
BC against the VF; thus, when the “All” algorithm encounters
a set of fluid velocity and pressure conditions, a Navier-Stokes
simulation is performed, regardless of the intended Poisson sim-
ulation. Because the Navier-Stokes VF is technically viable for
BC8, the simulation completes without any problems, despite the
fact that an entirely different set of equations is solved. A similar
reasoning applies to the 897 “Complete” vs. 921 “All” simula-
tions in Table 6.

Our results in Table 6 suggest that our approach allows both
a larger number of simulations to be run without additional man-
ual processing and that more of the attempted simulations run
successfully, especially when combined with completeness la-
bels. While it may seem that many of the simulations being run
are redundant or repetitions of other simulations (e.g., BC3 and
BC5 differ in the addition of a Poisson BC), many of these cases
include BCs whose addition does not fully-define other types of
simulation sets, so running simulations with each of these BCs
should result in the same exact simulations. In addition, our type-
based indices allow the simulations to run without regard to the
order of the BCs, providing the framework for automated simula-
tion construction from BCs. Because our approach allows more
successful runs with fewer attempts, we claim that implement-
ing the completeness labels and type-based indices successfully

10

allows for robust automatic simulation checking.
However, our work is limited in several aspects. We previ-

ously mentioned that each set of BCs is assumed to be physically
realizable; however, we do not check for whether a given set of
BCs is physically realizable in this paper. For example, given two
velocity inlets to a pipe, our implemented approach will consider
that set as viable, even though it is physically impossible for a
pipe to have only inlets and no outlets assuming that mass is
conserved.

Secondly, we assume that VFs are given. The derivation of
these equations can be done manually, but the process is difficult
to automate while keeping the scope of this paper reasonably
limited. We are investigating this in our future work.

Third, we restricted our tests to only 3 types of VFs and 3
types of DBCs to make experimentally testing our claims more
straight-forward. Implementing more types of physics and VFs
would extend the practical functionality of this approach, though
that is separate from the intellectual contributions of the paper.

Fourth, our work only discusses Dirichlet BCs (DBCs) with-
out Neumann (NBCs) or Robin BCs (RBCs). NBCs and RBCs
are implemented differently than DBCs in that they are additional
terms in the VF, while DBCs are enforced by manipulating val-
ues in the stiffness matrix. However, simulation sets would still
need to be defined appropriately to create viable simulations,
even in cases with pure NBCs or simulations that do not require
DBCs, e.g., those using inertial relief methods.

Finally, we have used only boundary value problems with
no time dependence in this work. Initial value problems can
be solved with similar setups of simulation sets, e.g., assuming
each time step in the simulation is quasi-static but depends on the
previous state to determine the next state (e.g., the Runge-Kutta
method).

Although our initial goal in this work was the autonomous
generation of meaningful FEM simulations, we realized that sev-
eral critical issues arose. This paper is in response to one of those
issues, namely that ensuring the viability of a simulation is criti-
cal to generating such simulations autonomously.

8 CONCLUSION
In this paper, we proposed three improvements to the algo-

rithmic construction of FEM simulations. First, we discussed
conditions between different aspects of a simulation to ensure
viability. Second, we proposed a type-based indexing method
to generate the correct solution fields for a simulation automat-
ically. Third, we used a similar type-based indexing method to
connect boundary conditions and solution fields to a variational
form robustly. We showed that our implementation of complete-
ness labels guarantees simulation viability, and when combined
with type-based indices for solution fields and variational forms,
provides the framework needed for constructing FEM simula-
tions automatically from boundary conditions.

With our contributions, we are able to generate and check
for viable physics simulations automatically from collections of
physically-realizable boundary conditions. With extension to a
larger number of PDEs, we lay the foundations of automatically
constructing single- and multi-physics FEM models, allowing fu-
ture implementations to build and run simulations autonomously
with a higher degree of certainty that the simulation will run than
current, manually-constructed methods. These automatic sim-
ulations can then lead to physics- and data-driven design opti-
mization, machine learning, analysis, and topology optimization,
allowing us to apply new computational methods to mechanical
design and to provide a path forward for future data-driven de-
sign methods.

ACKNOWLEDGMENT
We acknowledge the funding and support provided by

DARPA through their Fundamentals of Design program
(#HR0011-18-9-0009). The views, opinions, and/or findings
contained in this article are those of the author and should not
be interpreted as representing the official views or policies, ei-
ther expressed or implied, of the Defense Advanced Research
Projects Agency or the Department of Defense.

REFERENCES
[1] Alnæs, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet,

B., Logg, A., Richardson, C., Ring, J., Rognes, M. E., and
Wells, G. N., 2015. “The FEniCS project version 1.5”.
Archive of Numerical Software, 3(100).

[2] Ho-Le, K., 1988. “Finite element mesh generation meth-
ods: a review and classification”. Computer-Aided Design,
20(1), pp. 27 – 38.

[3] Finnigan, P. M., Kela, A., and Davis, J. E., 1989. “Geom-
etry as a basis for finite element automation”. Engineering
with Computers, 5(3), Jun, pp. 147–160.

[4] Viceconti, M., Davinelli, M., Taddei, F., and Cappello, A.,
2004. “Automatic generation of accurate subject-specific
bone finite element models to be used in clinical studies”.
Journal of Biomechanics, 37(10), Oct, pp. 1597–1605.

[5] Sun, L., Zhao, G., and Yeh, G.-T., 2018. “An auto-
matic quadrilateral mesh generation algorithm applied to 2-
d overland flow simulations”. Computational Geosciences,
22(5), Oct, pp. 1283–1303.

[6] Rocca, G. L., 2012. “Knowledge based engineering: Be-
tween AI and CAD. Review of a language based technol-
ogy to support engineering design”. Advanced Engineering
Informatics, 26(2), pp. 159 – 179.

[7] van Tooren, M. J. L., La Rocca, G., Krakers, L., and Beuk-
ers, A., 2003. “Design and Technology in Aerospace. Para-
metric Modelling of Complex Structure Systems Including

11

Active Components”. In 13th International Conference on
Composite Materials, San Diego, CA.

[8] van der Laan, A. H., and van Tooren, M. J. L., 2005.
“Parametric modeling of movables for structural analysis”.
Journal of Aircraft, 42(6), November-December, pp. 1605–
1613.

[9] La Rocca, G., and van Tooren, M. J. L., 2006. “A modu-
lar reconfigurable software modelling tool to support dis-
tributed multidisciplinary design and optimisation of com-
plex products”. In 16th CIRP International Design Seminar,
Kananaskis, Alberta, Canada, 16-19 July.

[10] Quintana-Amate, S., Bermell-Garcia, P., Tiwari, A., and
Turner, C., 2017. “A new knowledge sourcing framework
for knowledge-based engineering: An aerospace industry
case study”. Computers & Industrial Engineering, 104,
pp. 35 – 50.

[11] Logg, A., 2007. “Automating the finite element method”.
Archives of Computational Methods in Engineering, 14(2),
Jun, pp. 93–138.

[12] Logg, A., and Wells, G. N., 2011. “DOLFIN: automated
finite element computing”. CoRR, abs/1103.6248.

[13] Alnæs, M. S., Logg, A., Ølgaard, K. B., Rognes, M. E., and
Wells, G. N., 2014. “Unified form language: A domain-
specific language for weak formulations of partial differen-
tial equations”. ACM Transactions on Mathematical Soft-
ware (TOMS), 40(2), p. 9.

[14] Cimrman, R., 2014. “SfePy - write your own
FE application”. In Proceedings of the 6th Eu-
ropean Conference on Python in Science (EuroSciPy
2013), P. de Buyl and N. Varoquaux, eds., pp. 65–70.
http://arxiv.org/abs/1404.6391.

[15] , 2017. Python FEM and Multiphysics Simulations with
FEniCS and FEATool. On the WWW, June. URL
www.featool.com/.

[16] Xia, Q., 2017. “Automated Mechanical Engineer-
ing Design using Open Source CAE Software Pack-
ages”. In FEniCS ’18, Oxford, UK, June. URL
github.com/qingfengxia/FenicsSolver.

[17] Emamy, N., Karcher, M., Mousavi, R., and Oberlack, M.,
2015. “A high-order fully coupled electro-fluid-dynamics
solver for multiphase flow simulations”. In Proceedings
of the VI international conference on coupled problems in
science and engineering, pp. 753–9.

[18] Logan, D. L., 2014. A First Course in the Finite Element
Method. Cengage Learning, Boston, MA.

[19] Langtangen, H. P., and Logg, A., 2016. Extensions: Im-
proving the Poisson Solver. Springer International Publish-
ing, Cham, pp. 109–141.

12

