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ABSTRACT
In this paper, we propose a new design variety metric based

on the Herfindahl index. We also propose a practical procedure
for comparing variety metrics via the construction of ground
truth datasets from pairwise comparisons by experts. Using two
new datasets, we show that this new variety measure aligns with
human ratings more than some existing and commonly used tree-
based metrics. This metric also has three main advantages over
existing metrics: a) It is a super-modular function, which enables
us to optimize design variety using a polynomial time greedy al-
gorithm. b) The parametric nature of this metric allows us to
fit the metric to better represent variety for new domains. c) It
has higher sensitivity in distinguishing between variety of sets
of randomly selected designs than existing methods. Overall,
our results shed light on some qualities that good design variety
metrics should possess and the non-trivial challenges associated
with collecting the data needed to measure those qualities.

∗Address all correspondence to this author.

NOMENCLATURE
SVS Design variety metric proposed in Shah et al. [1]
NM Design variety metric proposed by Nelson et al. [2]
HHI Herfindahl–Hirschman Index [3]
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INTRODUCTION
Creativity is the capacity to generate unique and original

work that is useful [4–6]. Creativity is useful at both individ-
ual and societal levels. At the individual level, creativity helps
in effectively solving day-to-day tasks. At a societal level, it
can yield meaningful scientific findings [5]. A well-known out-
look relates creativity with divergent thinking — the capacity to
produce a wider variety of ideas with higher fluency. Divergent
thinking has been shown to correlate with the success of the final
product [7–10]. Prior work supports that chances of solving a
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problem increase when a more diverse set of ideas is produced
in the initial stages of the design process [1, 11, 12]. These find-
ings encourage the need to explore the design space in the early
stages of design [13]. But how does one quantify design space
exploration?

Engineering researchers have sought to capture how “ex-
plored the solution space” is by measuring design variety (pg.
117, [1]). There are two approaches typically deployed in engi-
neering literature to measure design variety: subjective ratings of
variety and a genealogical tree approach. As one example of sub-
jectively evaluating design variety, Linsey et al. [14] proposed
taking a set of ideas and dividing them into pools based on intu-
itive categories created by the coder. The metric relies on a rater’s
mental model rather than a quantitative procedure [1]. While
these subjective ratings provide a relatively efficient method for
measuring design variety in terms of the amount of time and ef-
fort required to code design variety, this efficiency comes at the
potential cost of the validity and reliability of the metric.

In contrast to subjective ratings, the other approach to mea-
sure design variety is using a genealogical tree approach. In
these approaches, subjective human raters are replaced with a
deterministic formula that depends on the attributes of a set of
designs. One of the first metrics to use this approach was de-
veloped by Shah, Smith and, Vargas-Hernandez [1] (SVS met-
ric) who broke each design into four hierarchical levels (physical
principle, working principle, embodiment, and detail) to calcu-
late design variety. The SVS metric is repeatable and attempts to
reduce subjectivity by using predefined criteria for measuring va-
riety. However, many researchers have criticized it due to its lack
of sensitivity and accuracy. For example, the genealogical tree
calculation method (like SVS) has been shown to be inconsis-
tent with experts ratings of variety [15]. In addition, studies have
shown that the sensitivity of the SVS metric diminishes when it
is applied to large datasets [16] due to the exclusion of important
abstract differences and generally focuses on dissimilarity in the
embodiment level [17].

In this paper, we reexamine these hierarchical metrics and
compare them to methods of calculating diversity from other
(non-engineering) domains. Specifically, we compare the tree-
based measures of SVS [1] and NM [2] with the Herfind-
ahl–Hirschman Index (HHI), which is a statistical measure of
concentration [3, 18]. The HHI accounts for the number of firms
in a market, as well as their concentration, by incorporating the
relative size (that is, market share) of all firms in a market. HHI
is used by the Department of Justice and the Federal Reserve in
the analysis of competitive effects of mergers. For a market with
N firms, HHI is calculated by squaring the market share (MSi)
of all firms (i ∈ {1, · · · ,N}) in a market and then summing the

squares, as follows:

HHI =
N

∑
i=1

(MSi)
2 (1)

The key idea behind this metric is that market with more
concentration will have a few large square terms. By comparing
HHI to SVS [1] and NM [2], this paper argues and empirically
demonstrates that HHI is a more accurate measure for variety
that has clear benefits for engineering and design measurement
applications. Specifically, the key contributions of this paper are:

1. We propose a new variety metric based on the Herfind-
ahl–Hirschman Index and show that it better aligns with hu-
man judgments of variety compared to [1] and [2].

2. The metric function is monotone non-decreasing and super-
modular, which allows us to propose a scalable greedy opti-
mization algorithm with a constant factor guarantee of opti-
mality. The greedy algorithm makes locally optimal choice
at each step and guarantees that the final solution’s variety
will be atleast 0.63 of the highest variety solution. This al-
lows us to find sets of ideas with high variety from a large
collection in polynomial time.

3. We show that SVS and NM metrics give the same variety
score to a large percentage of sets, while HHI index has
higher sensitivity in distinguishing between different sets of
ideas.

BACKGROUND AND RELATED WORK
Before diving into the specific variety metrics we evaluate in

this paper, we will first review the overall mathematical qualities
that a good variety metric should possess. Next, we will dis-
cuss what factors should be considered in constructing a ground
truth evaluation set for judging between different variety metrics.
Lastly, we will end the section by reviewing past work on design
variety metrics.

Qualities of a good metric
Quality control is essential when creating and evaluating

metrics that map abstract concepts like creativity to quantitative
measures. Particularly when metrics can be either subjective and
objective in scientific research, we need to demonstrate both the
reliability and validity of such metrics without circularity [19], as
well as reduce subjectivity in measurement techniques. For ex-
ample, in the field of psychometrics, researchers try to craft sets
of questions that produce internally consistent results — that is,
if one asks the same questions one should get repeatable, sim-
ilar answers even under minor changes to the test environment
or experimental setup [20]. However, this only implies repeata-
bility and not validity. Validity refers to the extent to which a
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measurement reflects the absolute state of an artifact under ob-
servation — the ground truth). The term “valid” implies an exter-
nal frame of reference or a universally accepted standard against
which a measurement is tested [21]. There is a wide range of cre-
ativity metrics that leverage a rater’s expertise in a given domain
to ensure metric validity. This is necessary to eliminate circu-
larity or measuring unvalidated metrics against other unvalidated
metrics [22].

The key assumption in the past research is that raters who
have considerable experience in a given domain are best suited to
provide a ground truth for tasks like evaluating creativity. We ob-
tain this ground truth from real world human evaluations, which
can be used to measure the accuracy of any new metric. How-
ever, only using experts is no panacea. Expert time and effort is a
scarce commodity, and this forces researchers to develop objec-
tive metrics that can aid quasi-experts or novice raters in accu-
rately evaluating processes and ideas. The central hypothesis of
that past work (which this paper also shares) is that by validating
objective metrics against expert raters, the joint predictive power
of expertise and repeatable objective research methods will out-
perform either by themselves.

Metrics used to measure variety like SVS and NM, aim to
reduce subjectivity on the rater’s part, to increase robustness in
the processes used to analyze designs. When a metric is cre-
ated, it is important to establish some desiderata (qualities we
want) and acceptable qualities the metric must possess to ensure
we obtain reliable results upon its execution. One example of
establishing acceptable qualities of a metric was the work of Si-
monton and Amabile [23], who were key in standardizing the
measurement of creativity in psychological research. Previously,
most methods utilized pencil and paper tests, personality tests,
biographical inventories (such as Schaefer and Anastasi’s bio-
graphical inventory [24] and Taylor’s Alpha Biographical Inven-
tory [25]) and behavioral tests such as Torrance Tests of Creative
Thinking. These tests were debatable in experiments that sought
to reduce within-group variability and generally lacked a clear
definition of creativity and an effective strategy to avoid biases
on behalf of the rater [23].

Good metrics are required to have the ability to establish
ground truths using expert agreements and must be replicable
by other raters who use the metric. For subjective metrics, high
inter-rater reliability and internal consistency are some of the de-
sired qualities of the metric [26]. We argue that for any new vari-
ety metric, repeatability, validity, and explainability are also de-
sirable qualities. If ground truth estimates of a quantity are avail-
able, then a new metric should align with this ground truth and
the measurements should be repeatable. Variety metrics should
also give explainable scores, that is, it should be possible to ex-
plain why one set of designs received a higher score than another
set using a given metric.

Design Variety and its Importance
The measure of design variety in engineering was introduced

as a means to measure how well someone explores the solution
during a design task [27]. The measure of design variety is im-
portant because research has shown that “there is no way to gen-
erate an optimum solution without exploring the solution space
through early tentative ideas” (Pg.11 [28]). Generating a large
number of ideas with iterative or small changes does not result
in effective concept generation or innovative products. Hence,
the potential to develop ideas of broad variety is correlated with
the ability to successfully reconstruct and solve problems. This
ability is referred to as cognitive restructuring in psychology [1]
which has been used to counterbalance the number of ideas de-
veloped (quantity) in engineering design research because in-
creases in the fluency of ideas must also be proportional to in-
creases in the spread of the ideas [7].

Without exploration, designers may misconstrue the solu-
tion space to be very narrow [27]. One of the main contributing
factors to this trend is functional fixation, or a blind adherence to
solutions that are familiar and comfortable, which can generally
lead to products of lower quality or innovation [29,30]. As such,
it is not surprising that research in engineering design has shown
a correlation between the amount of design space explored and
the quality of the final design [9].

Measurement of design space explored requires measuring
mathematical functions on groups of ideas [31]. To address the
desire to measure the extent to which tools promote variety, [1]
developed a metric with the intent to provide a repeatable and re-
liable method to calculate design variety by rewarding ideas that
are differentiated at higher levels of abstraction. In SVS metric,
the authors decompose design variety into four hierarchical lev-
els: the physical principle, followed by the working principle,
embodiment, and detail. Specifically, they proposed that design
variety should be calculated as shown below in equation 2.

V =
m

∑
j=1

( f j)
4

∑
k=1

(Sk.Bk)/N (2)

where V is the variety score, m is the number of functions
solved by the design, f j is a weight assigned to the relative im-
portance of function j, Sk is the score for hierarchical level k, Bk
is the number of branches at hierarchical level k, and N is the
total number of ideas in the set. The key intuition behind this
metric is that each idea is represented by hierarchical functions
or attributes. Attributes on top of the hierarchy are more impor-
tant than ones below, and if a set has multiple ideas with unique
higher level attributes, then that set gets a higher variety score.

SVS metric has been criticized for double counting ideas
at each level in the tree and for the selection of the weights at
each level of the tree [2, 32]. Because of these pitfalls, Nelson
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et al. [2] refined the metric by seeking to account for the double
counting of ideas present in the SVS metric by considering the
number of differentiation at each hierarchical level rather than
considering all the levels. In addition, Nelson et al.modified the
SVS metric by altering the weighting scheme from 10, 6, 3 &
1 to 10, 5, 2 & 1 for the physical principle, the working princi-
ple, the embodiment, and detail respectively. They argued that
the new weighting scheme assures that at least two ideas at a
lower hierarchical level must be added to equal the variety gain
by adding a single idea at the next higher hierarchical level [2].
However, both SVS and NM do not provide a definition for each
level of the hierarchy. There have been insufficient justifications
for weights used in genealogical tree metrics [15] which can lead
to large variations in the deployment of the metric in engineer-
ing design research. Other improvements of SVS metric includes
the work of Verhaegen et al. [33], who combined Shahs metric
with a Herfindahl index based tree entropy penalty, to encourage
“uniformness of distribution” — essentially preferring trees that
have even branching. Outside design, researchers have measured
the breadth of ideation using metrics like mean pairwise distance
between ideas [34] or by manually subgrouping functions into
categories [35].

The new metric proposed in our work is closest in scope to
Fuge et al. [36], who showed that both SVS and Verhaegen’s
metric were instances of submodular functions and argued that
variety metrics are coverage functions which should belong to
this family of functions. They introduced a probabilistic model
that computes a family of repeatable variety metrics trained on
expert data. In this work, we propose a new metric based on
the Herfindahl index, which does not necessitate finding hierar-
chical features. Our metric also satisfies the properties of super-
modularity (function whose negative is a submodular function),
which allows us to optimize variety using a greedy heuristic al-
gorithm. We show that unlike past metrics, this new metric has
better alignment with judgment of variety by people.

METHODOLOGY
In this section, we first describe a variety measurement

method using the Herfindahl–Hirschman Index. Next, we show
an example calculation of variety using the new metric. We show
that the new metric can be optimized using a simple greedy al-
gorithm to find sets of ideas with the highest variety.

The Herfindahl–Hirschman Index for Variety
Over the last twenty years, economists have become increas-

ingly interested whether diversity among multiple distinct popu-
lation groups enhances or impedes a society’s economic and so-
cial development. To quantify the economic impact of diversity,
one must first create a proper index that captures how one society
divides into various factions or parts.

Starting from the Gini index [37], Economists have used
various diversity indices to evaluate the degree of social, eco-
nomic, cultural, and other dissimilarities among people, regions,
and countries. Initially used as an income inequality measure,
the Gini index was re-interpreted by Simpson [38] as the in-
verse Hirschman–Herfindahl index. That index measured indus-
try concentration and was also used by Greenberg [39] for the
measurement of linguistic diversity. The value of the index mea-
sures the probability that two randomly chosen individuals in so-
ciety belong to different groups.

This Herfindahl index (also known as Herfind-
ahl–Hirschman Index, HHI, or sometimes HHI-score) measures
a firm’s size relative to the industry and indicates the amount
of competition among firms. We described the mathematical
structure of HHI in Eqn. 1 above. In this section, we propose
a variant of HHI-score that can measure the variety of a set of
designs.

To do so, we assume that we are given a set of designs S.
Each design within set S is divided into hierarchical levels like
functional principle, working principle, embodiment, and detail
(similarly to SVS and NM above). We then calculate the HHI
index for each level separately for the entire set. For example,
the HHI index for the functional principle level is given by:

HHIF(S) =
∑

N f
i=1 |FPi|2

N2 (3)

In this, |FPi| is the number of designs using functional prin-
ciple i and N f is the total number of functional principles. N is
the total number of designs in the set S. HHIF(S) varies between
1/N to 1. Similarly, we can define HHI for working principle,
embodiment and details. Hence, the total HHI variety metric is a
weighted sum of these four metrics as follows:

(4)
HHI(S) = w1

∑
N f
i=1 |FPi|2

N2 + w2
∑

Nw
j=1 |WPj|2

N2 +

w3
∑

Ne
k=1 |EMk|2

N2 + w4
∑

Nd
l=1 |DEl |2

N2

Here, HHI(S) is the total HHI score for a set of de-
signs S. The weights w1, w2, w3 and w4 can be chosen such
that the resultant value is between 0 and 1 (sum of weights
is 1). For instance, if all factors are equally important, then
w1 = w2 = w3 = w4 = 1/4. |WPj| is the number of de-
signs in the set using working principle j, |EMk| is the number
of designs using embodiment k and |DEl | is the number of de-
signs using detail level l. N f , Nw, Ne and Nd are the total number
of functional, working, embodiment and detail principles. Note
that the normalized definition of HHI using proportions is not
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FIGURE 1. Example of two polygon sets (Top shows Set A and bot-
tom shows Set B) shown to participants in our experiment. Participant
answers the question: “Which set is more diverse?”

a supermodular function 1. HHI metric defined by us in Equa-
tion 1 is supermodular when it is not normalized by N2, which
we use optimization. This means that when a design is added
to a larger set, the increase in HHI score is larger compared to
the case when the same design is added to a smaller set. This
property can be exploited to find sets of maximum diversity us-
ing a greedy algorithm [40], which guarantees that the variety of
the greedy search solution will be within 63.2% (or 1− 1

e ) of the
variety of the optimal solution.

Calculating variety of a set
To demonstrate the calculation of HHI, we take a set of de-

signs shown in Fig. 1 as an illustrative toy example.
In Fig. 1, for the set shown on top, there are eight polygons

(N = 8). There are four items with a rectangular shape, three
items with an oval shape and one triangular. There are five red
colored polygons, two blue and one green. Three items have a
solid fill, two have shaded and three are empty inside. With-
out loss of generality, for this example, we assume that color
is the functional principle of a polygon, shape is the working
principle and shading is the embodiment. We assume that all
three levels are equally important in deciding the variety of Set
A (w1 = w2 = w3) and N f = 3 as there are three unique
functional principles (color). The HHIF score for color will be
(5/8)2 + (2/8)2 + (1/8)2 = 0.47. Similarly, HHIW score for
shape will be (4/8)2 +(3/8)2 +(1/8)2 = 0.39 and HHIE score
for fill will be (3/8)2 +(2/8)2 +(3/8)2 = 0.34. As all features
are equally important, then HHI for the set of designs will be
the average of the three numbers (0.47+0.39+0.34)/3 = 0.40.
Similarly, the variety of any set of designs can be calculated.

1Submodular functions are functions defined over sets that are designed to
model diminishing marginal utility, which is the mathematical property one needs
to model diversity or variety [36]. Supermodular functions are functions whose
negative is a submodular function.

Optimizing variety of a set
Using metrics like SVS, NM and HHI we can measure the

variety of a given set of ideas (like the sets shown in Fig. 1).
However, what happens when we want to choose the set of eight
polygons which have the maximum variety? One way is to enu-
merate all possible sets of size eight (about 2.2 million sets), cal-
culate their variety score and then find the set with highest vari-
ety. This approach becomes intractable as the number of items
in the ground set increases.

Another approach, and the one we use, is to leverage math-
ematical properties of the variety function and find approximate
solutions close to optimal. To find sets of maximum variety, we
use a sub-modular greedy algorithm (Algorithm 1) to order the
ideas [40]. Given the set V of all ideas, the algorithm starts with
an empty set S = {} and add ideas to this set according to Al-
gorithm 1. In the end, this set S will be the ranking that the
algorithm outputs. It will contain all ideas ordered in such a way
as to maximize the objective value defined in Eq. 4 (when the
function is not normalized by N2), i.e., the ideas of high variety
(i.e., from principles less represented so far) are at the top of the
ranking.

To achieve this, the algorithm starts adding ideas to an empty
set S and removing them from set V , one idea at a time, such that
the selected idea i ∈ V is the one with the lowest marginal gain
δ f (S∪ i) on set S. Here δ f (S∪ i) = HHI(S∪ i)−HHI(S). Here
the set V is the set of all designs and set S is the selected set of
design which we find using a greedy algorithm.

By choosing at each step to add the idea that will maximize
variety (minimize the metric function) of the existing set of al-
ready added ideas, the algorithm not only selects the ideas but
also orders them as well. Finally, as the function in Eq. 4 is
super-modular and monotonic, the algorithm is also theoretically
guaranteed to provide the best possible (1− 1

e ) polynomial-time
approximation to the optimal solution [41, 42].

Algorithm 1: Greedy algorithm for maximum variety.
The algorithm performs a polynomial-time greedy max-
imization of the gain on the non-normalized HHI variety
index. The output is a ranking of all ideas such that high-
variety ideas are at the top.

Data: Original set V of all ideas
Result: Ranked set S of all ideas

1 initialization;
2 S← /0;
3 while V 6= /0 do
4 Pick an item Vi that maximizes δ f (S∪ i);
5 S = S∪{Vi};
6 V =V −Vi;

7 return S;
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EXPERIMENTS AND RESULTS
We conducted two experiments to benchmark the proposed

HHI metric with the commonly used SVS and NM metrics:
(1) an experiment using a known and easily verifiable ground
truth based on polygons, and (2) an experiment using actual de-
sign sketches provided by engineering students and rated by do-
main experts. Before introducing these experiments and their
main results and implications, we describe how we constructed
our experimental dataset of set comparisons for these two do-
mains. As we have shown, constructing such sets is non-trivial,
and one contribution of this paper lies in describing a procedure
for constructing such comparison sets for new domains.

Estimating Design Variety Ground Truth using Human
Pairwise Comparisons

The first step in vetting design rating metrics is to identify a
‘ground truth’ of the measure that the metric is trying to capture
and then calculate how accurate any given metric is in capturing
that ground truth. However, for the case study presented here (de-
sign variety), ground truth estimation is difficult due to the large
combinatorial space for sets of items and the lack of a benchmark
dataset. For instance, a small set of thirty design ideas has more
than one billion possible sets of designs for which variety can
be calculated. Exhaustive calculation of ground truth is impossi-
ble. Secondly, we do not use any existing variety metric to create
the ground truth. Doing so would make the assumption that a
given metric represents true variety, which is what the ground
truth is used to establish. Instead, we propose the development
of a ground truth using pairwise human judgments.

To establish a ground truth dataset for the calculation of de-
sign variety, we first need three components:

1. A ground set of design items over which sets are created
2. Sets of designs derived from the ground set for which variety

scores are calculated
3. Tree annotations for each design item so we can calculate

tree-based metrics

Variety scores are calculated on a set of designs. However,
human raters are not good at giving absolute scores [43] due
to differences between internal scales of subjects, a well-known
problem for subjective pairwise scaling. For instance, given the
set of designs shown in Fig. 2, it would be difficult for a human
rater to say whether this set of six designs scores 6 out of 10 or
8 out of 10 for variety. Different raters may also use different
internal scales.

In contrast, if we ask a rater to rate whether they find the
variety of set shown in Fig. 2 Set A greater than the variety of
those shown in Fig. 2 Set B, they may answer it relatively easily.
Hence, we propose that ground truth for variety should be created
using pairwise queries, where each query contains two sets and
one set is voted by human raters to have higher variety compared

to the other set. To elicit responses from experts, we give them
two sets at a time and ask them for pairwise comparisons of the
form: “Which set of designs has higher variety?”

Measuring Variety for Polygons
In this experiment, we compared the performance of HHI,

SVS and NM metrics in measuring the variety of a set of poly-
gons. We first create a base set of 27 polygons. Each polygon has
three attributes — shape, color, and shading. Each attribute can
take three unique values. Polygons can be rectangular, triangular
or oval shaped. They can be red, blue or green colored. Shading
varies between polygons as complete fill, shaded or empty.

The number of possible sets of polygons is very large (227),
hence calculating the variety score of all possible sets is not fea-
sible. Instead, we narrow down our search to focus on three set
sizes: when the number of items in a set is 4, 6 and 8. If we
ask human raters to compare sets with larger than eight items,
the task becomes very difficult for them. For a given set size,
we first randomly pick 100 sets for comparison. From these 100
sets, we calculate all possible pairwise comparisons (4950 com-
parisons). Next, we calculate SVS, NM, and HHI scores for each
set. For SVS and NM, we assume that ‘Color’ is the functional
principle, ‘Shape’ is the working principle and ‘Shading’ is the
embodiment.

Result 1: Existing metrics cannot distinguish between sets.
Table 1 shows the percentage of comparisons where each metric
finds both the sets of equal variety. We note that SVS and NM
metrics do not distinguish between a large percentage of com-
parisons (up to 37%), while HHI gives identical scores to a much
smaller percentage of pairwise comparisons. This implies that
existing metrics are not sensitive or discriminative to differences
between sets.

Result 2: Existing metrics vote similarly to one another. Ta-
ble 1 also shows the percentage agreement between different
metrics. We see that SVS and NM vote similarly for 80-85%
of set comparisons for various set sizes. This means that for a
large proportion of comparisons, both metrics are indistinguish-
able as they give the same pairwise response. If SVS finds Set A
has higher variety, then so does NM. In contrast, the agreement
between HHI and other metrics is close to random. Due to the
lack of benchmark dataset, it is difficult to comment on whether
a lack of agreement between metrics is a good thing or not. We
show later in the results, HHI aligns with the human raters more
than SVS and NM for two datasets.

To establish a ground truth for comparing different metrics,
we proceeded with the following steps. First, we selected pair-
wise comparisons where SVS and NM could actually distinguish
between the two sets; that is, both the metrics did not calculate
the same variety score to both sets. This is important since we
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Same Score Agreement

Method SVS NM HHI SVS-NM HHI-SVS HHI-NM

Size 4 27.3% 37.0% 15.8% 84.4% 54.2% 50.2%

Size 6 31.7% 21.4% 14.7% 81.0% 47.6% 50.0%

Size 8 28.5% 12.9% 10.9% 82.5% 49.4% 56.9%

Size 10 31.2% 14.5% 9.2% 84.4% 54.2% 50.2%

TABLE 1. a) Percentage of pairwise comparisons when design met-
rics give same score to both designs. Lower percentages are good as it
indicates that a metric can distinguish between sets. We notice that SVS
metric gives same score for approximately 30% of the sets. b) The right
side shows agreement between metrics for pairwise comparisons. We
notice that SVS and NM tend to vote similarly for more than 80% of the
sets.

want any collected human judgment to differentiate existing met-
rics, and we cannot do this if we select comparisons where the
two metrics calculate the same value. Secondly, we select the
sets where both metrics disagreed on their vote. This means if
SVS voted Set A to be higher variety, then NM would vote Set B
to be higher variety. Note that this is a small set of pairwise com-
parisons — as we noted from Table 1, both metrics vote similarly
for more than 80% of the comparisons.

Finding human annotations for such sets allows us to find
out which of the two metrics better aligns with human responses.
Finally, we take the top 5 sets where SVS is most confident that
one set has higher variety than another and the top 5 sets where
NM is most confident that one set has higher variety than another
set (i.e., the difference between the scores are maximum). We
combine these two to generate 10 queries which are then given
to human raters.

To find the ground truth for polygons, we conducted an
Amazon Turk study, in which we collected responses from crowd
workers for pairwise queries. A sample query with two sets of
eight polygons is shown in Fig. 1. Judging the variety of poly-
gons does not require expertise in the area and Amazon Turk
allows us to gain a large number of responses. We collected pair-
wise responses for three different set sizes. For each set size,
we created ten pairwise queries. For each query, we collected
ten responses from Amazon Turk participants. We randomized
the order of the queries and also the order of the options shown
to different participants to reduce the possibility of any ordering
bias. We subdivided the surveys into two parts to reduce fatigue.
No worker was repeated across surveys and six queries were re-
peated to filter out workers with very low internal consistency.

Result 3: Human raters largely agree on what it means to
have a high variety set of polygons. The survey responses
showed that on average people had consensus on one set being
more diverse or higher variety than another set. The number of
votes received by the set pairwise query receiving a majority vote
for sets of size 4 was:[9, 8, 9, 7, 6, 9, 8, 6, 8, 7] respectively. This

means that for the first query, 9 people out of 10 voted for the
same set. For the second query where two sets of size 4 were
shown, 8 people voted for the same set as being of higher vari-
ety. Similarly, for sets of size 6, [5, 5, 9, 9, 9, 8, 6, 8, 5, 8] votes
were received by the majority set and [7, 5, 7, 7, 9, 9, 8, 6, 7, 6]
votes were received by the majority set for sets of size 8.

A direct comparison between SVS, NM, and HHI metrics
using the published weights would be unfair to SVS and NM,
as HHI weight parameters can be optimized specifically for each
domain. The published weights for SVS metric is [10, 6, 3, 1]
and published weights for NM metric is [10, 5, 2, 1]. Hence,
we give the same flexibility to SVS and NM metrics by allowing
the weights of functional principle, working principle and em-
bodiment to be optimized to maximize their performance. For
a given metric (say SVS) and weight combination (say 4, 3, 3),
we calculate the variety scores for both sets in a given pairwise
comparison. Suppose we had total 10 humans who voted on a
pairwise comparison. If SVS metric finds that Set A has more
variety than Set B, and 8 humans had also voted this way, we
allocate all these votes to SVS metric. If the metric found Set
B has higher variety than Set A, then this metric receives the 2
votes which humans gave to the other set. As we ask 30 different
queries from people, to judge the metric, we aggregate votes for
all 30 queries.

For our experiment, the maximum number of votes that any
metric can receive is 220 — that is if it always votes with the
majority opinion of human raters. Note that in an ideal world, if
all humans voted for the same set for all 30 queries, the maxi-
mum number of votes that any metric can receive would be 300.
Suppose a metric receives 200 votes in total, then we say that it
has 90.9% alignment (100x200/220 = 90.9) with human ratings.

Result 4: HHI outperforms SVS and NM w.r.t. human agree-
ment on polygon variety. Table 2 shows the comparison be-
tween SVS, NM, and HHI for alignment with human ratings.
We find that SVS and HHI have similar best case performance.
We varied the weights of each functional level between 1 to 10
in steps of 1, giving us 1000 possible performance scores corre-
sponding to each weight combination [w1, w2, w3]. We find that
HHI performs better than SVS in the median case. The median
case is calculated over all thousand weight combinations.

From Table 2, we can conclude that HHI aligns with human
perception of variety to the highest degree, irrespective of the
choice of weights — that is, its performance is robust to weight
choices. Even in the worst case, HHI aligns with 74.5% of hu-
man ratings. We find that the highest performance is obtained
for many combinations of weights like 1, 2 and 10. SVS per-
forms similarly, however, we generated these comparisons such
that SVS has high confidence in its choice between both the sets
(by design). In contrast, if we select sets to compare at random,
SVS calculates the same score for more than one-fourth of the
queries. This drastically reduces the SVS performance in align-
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FIGURE 2. Top: Sample of Set A where all raters agreed it was more
diverse than Set B. Bottom: Sample of Set B where all raters agreed it
was less diverse than Set A.

ment with human responses — humans would have a clear pref-
erence between the variety of two sets, but SVS would be indif-
ferent. Hence, the HHI metric outperforms both SVS and NM in
alignment with human’s judgment of variety.

Method Median Case Best Case Worst Case Sample optimal weights

HHI 81.8% 95.4% 74.5% 1, 2, 10

SVS 79.0% 95.4% 59.0% 2, 1, 1

NM 54.5% 86.3% 40.9% 10, 3, 1

TABLE 2. Comparison of design variety metrics in alignment with
human ratings

Measuring Variety for Milk Frother Sketches
To measure the variety of milk frothers, we gathered data

from a previous experiment conducted by Starkey, Hunter, and
Miller [44], which consisted of 934 ideas. Specifically, the data
set consisted of ideas developed by 89 first-year students from an
undergraduate engineering course and 52 senior students from
a capstone engineering course including 95 males and 46 fe-
males. The ideas developed in this dataset were from a design
task where participants were asked to generate ideas for a “novel
and efficient milk frother.” This task was selected because the
task addressed solving a product-based problem.

To create the dataset of sets of milk frother sketches, we
used the ground set of ten design sketches studied in Ahmed
et al. [45]. The benefit of using these ten sketches is the availabil-
ity of tree annotations as well as information in the form of sub-
jective idea maps, which we use when discussing the final results
below. The total number of possible sets for these ten sketches is

1024. We first calculate the variety scores for all these sets using
SVS and NM metric.

Similar to the polygon case, to create a ground truth dataset
of pairwise queries, we first want to find the queries which are
most meaningful. However, in this case, we also have informa-
tion about Euclidean embeddings for each sketch as discussed
in [45]. These embeddings are essentially 2-D maps with each
design having x and y coordinates allocated to them. Similar de-
signs occur closer to each other than dissimilar designs on this
map. To find which sets to ask humans to rate, we use three met-
rics: SVS, NM and average pairwise distance of a set. The last
metric is derived using an embedding of designs derived in the
study by Ahmed et al. [45]. The design embedding was picked
randomly (as each participant in the study had a different design
embedding and we needed only one design embedding to guide
our experiment) and it provides the 2-D positions for each sketch
and is only used to guide the selection of sets to be shown to hu-
man judges. The choice of the design embedding does not alter
the key findings of this section as it is only used to guide the se-
lection of queries which are asked from people. Using these ten
sketches, our goal is to create pairwise queries with sets of six
sketches each. We decided to create the ground truth with pairs
of six images as the median number of sketches made by a par-
ticipant in our dataset was six. The number of sets of size 6 is
210 unique combinations. We calculated the variety scores for
all combinations and rank ordered them from the highest variety
set to the lowest variety set using the pairwise average distance
metric.

Out of these 210 sets, we obtained 21,945 pairs of sets and
calculated the absolute rank difference between the two items for
each comparison. A small rank difference implies that the two
sets have similar variety, while a large rank difference implies
that the metric is confident that one of the set has a significantly
higher variety than the other. After calculating the rank differ-
ences, we selected 20 comparisons based on two factors. First,
we should select comparisons where each metric (pairwise dis-
tance, SVS, and NM) votes differently on which set has higher
variety — i.e., if all ratings agree on the comparison, then human
expert ratings would not discriminate them. Second, we should
select sets with a high-rank difference, but that also differ from
sets we are using in other selected comparisons. That is, we want
to ensure that a metric is confident in its vote, but that we also get
good coverage over different types of sets in the data by ignoring
pairs that have already been selected.

Among these candidate sets, we select 20 pairwise queries
that are given to four expert raters using a Qualtrics survey. We
repeat two comparisons (10% repeated queries) in each survey
to measure the internal consistency of each expert, giving them a
total of 22 queries. Experts can choose whether Set A is higher
variety compared to Set B or they can select the option of ‘Can’t
decide’. From these expert ratings, we find that all four experts
agreed on 9 out of 20 queries, while at least three experts agreed
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on 15 queries. Due to a majority agreement on these 15 queries,
we select them as the ground truth dataset for comparing variety
metrics. Next, we use this ground truth dataset to compare the
SVS and NM metrics.

Result 5: SVS and NM are equivalent to random chance,
w.r.t. matching expert assessments of milk-frother variety.
We find that both SVS and NM align with only one-third (33.3%)
of our human-provided ground truth dataset — that is five com-
parisons. We also change the weights for SVS and NM and re-
port how close these metrics are to human experts. To explore
the sensitivity of these results, we calculate the NM and SVS
scores for every valid weight combination used by each metric.
Using these weights, we find that SVS aligns with 33.3% of the
pairwise expert assessments of milk-frother variety irrespective
of the weights used — that is, changing the tree weights used by
SVS has zero effect on whether or not it agrees with human ex-
perts. NM aligns with 33.3% of the dataset for 95.6% of all the
weight combinations. For the rest, it has no alignment with any
expert ratings — that is, NM’s scores are more sensitive to its
internal weights, but not in a way that benefits its score accuracy
with respect to human raters. The alignment scores are close to
random chance for three categories (Greater, Smaller and Equal)
showing that SVS and NM are unable to capture human intuition
of variety for the examples we tested.

Result 6: HHI robustly outperforms SVS and NM w.r.t. hu-
man comparisons, but still has a non-trivial error. In con-
trast to SVS and NM, HHI aligns with 9 out of 15 comparisons
when weights are optimized for each level. We find that many
weight configurations for HHI lead to highest performance, in-
cluding w=[1, 9, 5].

Hence, HHI aligns with human judgment of variety more
than both SVS and NM metrics for two standard datasets. How-
ever, it still is not 100% accurate with respect to human bench-
marks. However, we had assumed that the annotations provided
for SVS, NM, and HHI for different hierarchical levels are accu-
rate. If this is not the case, any variety metric will have a large
error as it may not capture the true features. The construction
of hierarchical trees is outside the scope of this paper but it is
important to understand that metrics may be limited by the spe-
cific choice of how one constructs a tree, which also needs to be
verified.

We propose that by using our above method for constructing
these ground truth variety comparisons, future papers will be able
to use these and other ground truth variety pairwise comparisons
to judge the comparative quality of other metrics as well. This
would provide a common scale over which metrics are compared.

FIGURE 3. Set of five polygons with highest variety found using a
greedy algorithm applied to supermodular objective function

Finding Sets of Designs with Highest Variety
One of the auxiliary outcomes of using a HHI derived index

for variety measurement is that it provides a simple method to
find the highest variety sets. Suppose you want to find a set of
five polygons which have the highest variety from a given set of
27 polygons. Using existing NM and SVS metrics, the only way
to do so is to enumerate all 80730 (27 choose 5) possible sets of
five polygons, then calculate their NM and SVS scores and find
the set with the highest score. This approach becomes infeasi-
ble when the ground set becomes large (for example 2.5 Billion
sets for 200 designs) due to a large number of possible options
(mathematically, this is because the problem is NP-Hard).

In contrast, we use Algorithm 2 to rank order all polygons
or to select a subset. The resultant set is shown in Fig. 3. The
set has high variety with respect to color, shape, and shading.
The method selects one polygon at a time based on which poly-
gon provides lowest marginal gain. As mentioned above, this is
possible in polynomial time due to the supermodular behavior of
HHI.

DISCUSSION
Our experiments highlight several broader implications,

both around how variety metrics are constructed and verified, as
well as in how existing metrics are used across domains.

Selecting appropriate validation sets for variety mea-
sures is non-trivial

As we showed above, selecting exactly which sets of designs
to show experts for ground truth labeling is non-trivial. First,
the combinatorial nature of the problem (sets of designs) makes
exhaustive labeling by experts impractical for anything above a
handful of designs. But randomly sub-sampling this combinato-
rial set does not solve the problem: many metrics may trivially
agree on a large portion of the space.

We proposed possible desiderata on what comparisons to
show experts, as well as several potential methods to make this
selection, such as maximal rank order disagreement, distances
over embedded spaces computed via past techniques [45], and
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space coverage over different sets. Constructing comparisons in
this fashion does lead to potential bias: as we saw in Result 4,
by preferentially sampling sets where metrics were confident in
their answers, we may, in fact, overestimate their performance
with respect to their average performance in practice.

The trade-off here is one of time and cost. If one picks com-
parisons to maximize discriminative power among metrics, this
will inevitably ignore portions of the space where they agree and
inflate performance measures. In contrast, if one does not do this
one may collect many expensive expert comparisons that, while
covering the space well, do not provide much value in separating
good metrics from bad ones.

One limitation of our proposed approaches is that we cur-
rently provide no theoretical guarantees regarding the number or
scope of queries needed to achieve a certain assessment accu-
racy. The number of comparisons we collected above was driven
by primarily practical concerns — how many expert comparisons
could we realistically expect to collect in our available time bud-
get? Future work could address how to perform this collection
in an optimal fashion (e.g., using Active Learning) and to bound
the number of comparisons one would need to collect.

Good variety metrics need to be accurate and discrim-
inative

As we showed in Results 1 and 2, good metrics need to not
only be accurate but also highly discriminative or sensitive. We
found that commonly used metrics can lack sensitivity across a
broad range of comparisons. Even if such metrics are accurate,
they have limited usefulness as measurement instruments — that
is, they cannot detect small effect sizes in terms of differences
in variety. We argue that, in addition to focusing on accuracy,
future metric development should compute and account for the
sensitivity of the measurement instrument for the given domain,
and such quantities should be reported in subsequent papers.

Metric performance can differ significantly across do-
mains

Comparing Results 4 and 5, we see that a given metric ap-
plied to one domain/problem may have drastically different per-
formance. In our case, SVS performed well with respect to hu-
man comparisons on the polygon case, but poorly on the milk
frother case. While it is perhaps obvious that a metric’s accuracy
depends on where it is applied, we note that, in practice, past
researchers have broadly used existing metrics (both SVS, NM,
and others) with limited to no verification and calibration of the
measurement instrument to that domain.

We believe that our results here should give other researchers
pause before blindly applying an existing variety metric to a new
problem without first conducting some of the pairwise verifi-
cation we detail above. We are releasing both the datasets we
collected in this paper and the tools we used to construct hu-

man comparisons in the hope that future researchers will have
an easier time constructing verification tests for new metrics or
domains.2 We believe that the proposed metric can be used in
combination with other design metrics to provide insights from
different perspectives of a set of designs. The usage of this met-
ric and creation of new ground truth datasets should take into ac-
count the context that designers have deep knowledge in a field
and can judge variety through different lenses and with an experi-
ence that may not always be possible from a quantitative metric.

HHI is a promising alternative metric that allows opti-
mization of variety

We demonstrated via Results 4 and 6 that using HHI
matched or exceed the performance of commonly used metrics.
This was true in both the Polygon and Milk Frother experiments.
Calculating the HHI is computationally simpler to the benchmark
tree-based constructions of SVS and NM.

More importantly, the supermodular form of HHI allows us
to efficiently (i.e., in polynomial time) approximate the highest
variety sets of designs, given a corpus. For design corpora larger
than approximately 50 designs, this leads to order-of-magnitude
reductions in computational effort in finding optimal variety sub-
sets of design, compared to existing metrics. The fact that HHI
can be easily optimized to match human judgments for a domain
makes it flexible to apply to different problems if one gathers
pairwise comparison data as described above.

Future work could cast the fitting of HHI as an active learn-
ing problem to reduce the number of expert comparisons needed
to fit HHI to a given domain.

CONCLUSION
In this paper, we contributed: (1) a new design variety met-

ric based on the Herfindahl index; (2) a practical procedure for
comparing variety metrics via the construction of ground truth
datasets from pairwise comparisons by experts; and (3) an em-
pirical demonstration of this procedure and metric on two new
two ground truth datasets using milk frother design sketches
and polygons. Using this dataset, we then compared the per-
formance of two existing and commonly used tree-based metrics
and showed that our newly proposed metric aligns with human
ratings more than existing metrics. As an ancillary benefit, we
also show that by using a simple greedy algorithm our new met-
ric can find sets of designs with the highest variety in polynomial
time.

Overall, our results shed light on some qualities that good
design variety metrics should possess and the non-trivial chal-
lenges associated with collecting the data needed to measure
those qualities. These results provide guidance on how and when
various commonly used metrics may or may not be valid, as well

2https://github.com/IDEALLab/design-variety
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as a concrete scientific process by which to gain further insight
into when and where metrics apply.

We hope that the procedures we outline here can provide
a catalyst for deeper discussion regarding how we measure and
verify variety within engineering design. We encourage re-
searchers to build upon and contribute to the datasets we have
started collecting and distributing for these problems. Our hope
is that by better understanding how to measure variety and ulti-
mately optimize variety, we will be able to reliably and scalably
support designers in improving their creativity and competitive-
ness.
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