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This paper shows how to use conditional generative models
in 2D airfoil optimization to probabilistically predict good
initialization points within the vicinity of the optima given
the input boundary conditions, thus warm starting and ac-
celerating further optimization. We accommodate the possi-
bility of multiple optimal designs corresponding to the same
input boundary condition and take this inversion ambigu-
ity into account when designing our prediction framework.
To this end, we first employ the conditional formulation
of our previous work BézierGAN—Conditional BézierGAN
(CBGAN)—as a baseline, then introduce its sibling condi-
tional entropic BézierGAN (CEBGAN), which is based on
optimal transport regularized with entropy. Compared with
CBGAN, CEBGAN overcomes mode collapse plaguing con-
ventional GANs, improves the average lift-drag (C;/Cy) effi-
ciency of airfoil predictions from 80.8% of the optimal value
to 95.8%, and meanwhile accelerates the training process
by 30.7%. Furthermore, we investigate the unique ability of
CEBGAN to produce a log-likelihood lower bound that may
help select generated samples of higher performance (e.g.,
aerodynamic performance). In addition, we provide insights
into the performance differences between these two models
with low-dimensional toy problems and visualizations. These
results and the probabilistic formulation of this inverse prob-
lem justify the extension of our GAN-based inverse design
paradigm to other inverse design problems or broader in-
verse problems.

1 INTRODUCTION

Design synthesis with shape optimization is often time-
consuming. After setting up a forward (analysis) model of
the objective function under a set of boundary conditions or
requirements, you have to specify an initial set of design vari-
ables and embark on some (typically) wearisome and costly
iterative algorithm to minimize that objective. This swings
to its extreme when the analysis model is formulated as non-
linear differential equations that need to be solved iteratively,

*corresponding author. e-mail: qchen88 @umd.edu

as, in the case of airfoil design, the Navier-Stokes equation
governs the system. Optimizing a design for a single set of
boundary conditions can take days or weeks, depending on
the number of design variables and complexity of the objec-
tive function or forward model.

Therefore, it is tempting to construct a mapping that
leads us directly from the input problem parameters—e.g.,
boundary conditions, constraints, or other problem-specific
requirements—to the optimal design variables. Alterna-
tively, to be more pragmatic, at least to the vicinity of the
optima to short-circuit or accelerate a subsequent optimiza-
tion process. Researchers refer to such mappings as Inverse
Design.

The quest for such a mapping induces several chal-
lenges. Apart from seeking a model with enough complexity
and regularity to approximate this complicated mapping with
precision, another inevitable conundrum is the inversion am-
biguity that inverse design problems usually confront. This is
when there are multiple potential, near-optimal designs cor-
responding to the same input condition. This stymies tradi-
tional bijective regression models.

In this work, we attempt to address these challenges in
the context of 2D airfoil optimization, in which, given the
input boundary conditions, we predict the corresponding air-
foils with near-maximal lift-drag (C;/Cy) efficiency. Specif-
ically, after casting this inverse design problem from a prob-
abilistic perspective, we introduce two recently developed
probabilistic generative models—conditional BézierGAN
(CBGAN) and conditional entropic BézierGAN (CEB-
GAN)—to realize airfoil inverse design in a probabilistic
and data-driven manner. Our result shows that CBGAN and
CEBGAN can respectively produce airfoils with 80.8% and
95.8% of the average optimal airfoil performance. Their pre-
dictions can then serve as warm start initialization points to
accelerate further optimization. This paper’s key contribu-
tions are as follows:

1. Our conditional GANs (i.e., CBGAN and CEBGAN)
take the freestream conditions and the target property,
including the Mach number, Reynolds number, and the
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target lift coefficient as input, then directly predict air-
foils of near-optimal C; /Cy efficiency (80.8% and 95.8%
of optimal C; /Cy, respectively) that can short-circuit op-
timization. We measure the optimality gap in both in-
stantaneous and cumulative senses as their performance
metrics.

2. Our CEBGAN incorporates the recent advances in com-
putational optimal transport to accelerate its training by
30.7% compared with CBGAN while achieving better
final performance (higher C;/C; efficiency).

3. CEBGAN (or more generally CEGAN—conditional
entropic GAN) enables evaluating the surrogate log-
likelihood of samples for decision making during pre-
diction. We develop the formulation of the surrogate
log-likelihood for CEGAN and prove its validity in the
Supplementary Material. We further investigate its prac-
ticability by examining its correlation with actual sam-
ple performance (i.e., acrodynamic efficiency).

4. We compare the performance of CGAN and CEGAN on
low-dimensional toy problems to provide more insight
into each model’s behavior and illustrate the paper’s key
results on an understandable example.

5. We create a dataset of optimal airfoils and the algorithm
for generating it for future studies. This dataset and
the corresponding code to replicate the paper is located
at https://github.com/IDEALLab/CEBGAN_
JMD_2021.

2 BACKGROUND AND RELATED WORK

This section first provides some background context on
inverse problems, inverse airfoil design, and mainstream
generative models to lay the foundation for how we cast in-
verse airfoil design from a probabilistic viewpoint. Then we
enumerate some recent work incorporating conditional gen-
erative models to solve inverse design problems or broader
inverse problems.

2.1 Inverse Problems

Inverse design falls under the scope of inverse prob-
lems [1,2], in which we need to retrieve the corresponding
system parameters X from the observations y governed by a
forward problem:

y=F(x)+e or R(x,y)=e (D

where for the explicit formulation on the left, F : X — Y is
a forward operator mapping parameters to observed data and
e is the observation noise or tolerance; for the implicit one
on the right, R : X XY — R™ is a residual operator measur-
ing X and Y’s observation of the governing equations such
as PDEs. The explicit form can be converted to the implicit
form via R(x,y) - y — F(x). Although most forward prob-
lems are well-posed, their inversions are usually not, with
none or multiple x corresponding to the same y. This cripples
deterministic or straightforward attempts at inversion. Many
works rely on regularization to escape this pitfall [2,3].

In contrast to regularization, Bayesian inference tackles
this issue by taking all possible solutions into account and
quantifying the uncertainty of each with probability mea-
sure [1,2]. From the Bayesian perspective, if we take x
and y both as the realizations of certain random variables,
solving the forward problem is equivalent to sampling a
dataset {x,y} from p(x,y) = p(y | x) p(x) where the like-
lihood p(y | x) is assumed to exist and can be formulated
from the deterministic forward problem. The prior p(x) can
be uniform, Gaussian, or any other distributions depending
on the prior information to embed. The inverse problem then
corresponds to deriving the posterior p(x | y) of this proba-
bilistic model.

2.2 Inverse Design and Inverse Airfoil Design

Based on the Bayesian view of inverse problems, we can
regard inverse design as retrieving the posterior p(x |y, O)
of the optimal design variables x given the desired problem
parameter y, which are all governed by certain optimality
condition in the form of R(x,y) = 0. Specifically, we propose
to formulate the inverse design problem in general as:

p(x|y,0) = p(O|x,y) p(x)

o< exp(—|[R(x,y)[*/) p(x) @)
where O stands for being optimal and € controls the tolerance
of error. This probabilistic formulation is reasonable because
it assigns a higher posterior probability to design variables x
whose residuals are closer to 0.

Our inverse airfoil design problem requires the airfoil
to satisfy y and be optimal under a chosen criterion. This
criterion is typically computed via some numerical forward
model or simulator. In our airfoil example, the airfoil shape
is first processed by some shape parameterization algorithm
to obtain design variables x and passed to a mesh generator
M for meshing. The generated mesh is then fed together
with the desired property y and boundary conditions b into
a Computational Fluid Dynamics (CFD) solver to produce
a chosen objective J. Ideally, the second-order optimality
condition of J—VyJ(M(x),y,b) = 0 and HyJ(M(x),y,b) =
0—is used to examine whether x has properties y under b and
is also optimal in terms of certain requirements. Following
Eqn. (2), we formulate the inverse airfoil design problem as:

p(x|y,b,0) < p(O|x,y,b) p(x)

X 2
ROELEE T PR
[VIME).yb) HI((0.5.5) =0
flxyb)= {oo Ho(M(0.5.0) <0 )

We try to formulate the inverse airfoil design problem as
generically as possible here such that it can extend to other
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domains and tasks, and so we did not specify the compo-
nents of Eqn. (3a, 3b). However, for the specific problems
addressed in this paper, the methodology section details these
choices.

The analytical form of the posterior p(x | y) is in general
infeasible by virtue of the likelihood’s complexity. However,
one practical work-around is to use any universal approx-
imator [4] with adequate model capacity—such as any of
the mainstream generative models introduced next—to learn
p(x | y) from the generated dataset {x,y} on a data-driven
basis.

2.3 Generative Models

Traditional generative models of limited complexity like
Gaussian Mixture Models are in general insufficient to ap-
proximate real-world high-dimensional target distributions
pr(x). As of writing, the three most commonly used gen-
erative models including their variations are generative ad-
versarial networks (GANS) [5,6,7, 8, 9], variational autoen-
coders (VAEs) [10, 11,12, 13, 14, 15] and flow-based mod-
els [16,17,18]. They all share a deep neural network gen-
erator G : Z — X in common that serves the same pur-
pose—implicitly representing a distribution pg(x) via the
transformation of latent prior distribution p(z) of noise. They
mainly differ in the way they drive p, towards p,:

1. GANSs (e.g., vanilla GAN [5]) achieve this by either ex-
actly or approximately minimizing some statistical dis-
tances between p, and p,, as the next section elucidates.
In general, GANs do not provide information about the
sample likelihood pg(x). This is one of their primary
weaknesses.

2. VAEs achieve this by indirectly maximizing the sam-
ple likelihood via its lower bound. Since G here is
not designed to be invertible and merely represents
a low-dimensional manifold of measure zero in high-
dimensional data space, likelihood maximization be-
comes possible by introducing Gaussian-like noise in
the data space and via variational inference.

3. Flow-based models align the dimension of x and z, and
carefully design the generator G to make it invertible
such that the analytical form of the density function can
be retrieved for direct likelihood maximization.

Currently, GANs often generate higher quality samples than
VAE or Flow models. This indicates GANs’ good conver-
gence to at least some modes of p,. VAE’s convergence is-
sues are usually attributed to posterior collapse [11, 12, 13],
whereas flow-based models currently need to sacrifice their
expressivity on the altar of invertibility.

Our work will focus on GANs’ learning of the posterior
p(x | y), for which the generator now takes the conditional
form G : Y x Z — X to induce its dependency on the condi-
tion y, forming an approximate distribution p4(x | y).

2.4 Recent Work on Inverse Design
Inverse design based on conditional generative models is
an emerging area without a significant body of existing work.

So far, within the realm of mechanical engineering, it is al-
most universally applied to the design of nanomaterials and
microstructures, including nano-photonics [19,20,21,22,23],
nanoelectronics [24], cellular structures [25], porous materi-
als [26], and crystals [27], etc. It has also been applied to
the synthesis of kinematic linkages recently [28]. Outside of
those isolated areas, it has been employed by inverse molec-
ular design [29], medical imaging [30,31], gene expression
inference [32], image processing [33] among others. Other
than using conditional generative models, inverse design was
also enabled by using a traditional numerical regime (i.e.,
a design optimization framework) [34] and other machine
learning algorithms (e.g., Gaussian process and reinforce-
ment learning) [35, 36] for structural optimization, metama-
terial design, and flow sculpting. Furthermore, with regard
to the generative model’s application to unconditional design
synthesis, which can potentially be adapted for a conditional
configuration, several works have emerged lately. For in-
stance, Chen and Fuge demonstrated design synthesis pre-
serving inter-part dependencies using GANs of hierarchical
architecture [37]. Oh et al. ran topology optimization and
GAN:Ss in a loop to explore the design space and synthesize
new designs with efficiency [38]. Shu er al. generated 3D
models using GANs [39].

To the extent of our knowledge, only two existing works
studied the conditional synthesis of curves using generative
models, both related to airfoil design. In [40], Yilmaz and
German used conditional GAN to generate airfoils of speci-
fied stall conditions and airfoil drag polars. Achour et al. [41]
implemented a conditional GAN taking discrete conditions
representing four classes as input to generate airfoils falling
into the desired quarter of the [C;/Cy ratio x shape area] do-
main. Our work differs from theirs via the key contributions
listed in the end of the introduction (Sec. 1).

3 METHODOLOGY

In this section, we present the formulation and techni-
cal details of our airfoil prediction frameworks. We first
introduce the generation of the airfoil dataset for inverse
airfoil design. After that, we shed light on conditional
BézierGAN (CBGAN) construction and its evolution to
the optimal-transport-based conditional entropic BézierGAN
(CEBGAN), which is easier to train and yields information
about the sample likelihood. We end the section by describ-
ing the metrics we use to measure their performances on our
generalized regression problems.

3.1 Dataset Creation via 2D Airfoil Optimization

The conditional GAN models’ real dataset consists of
optimal shape designs of 2D airfoils. To build the dataset,
we perform shape optimization over a range of input bound-
ary conditions to achieve high-performing 2D airfoil de-
signs. We use the SU2! solver (an open-source PDE anal-

Thttps://su2code.github.io/. SU2 can deal with different kinds of physical
problems by choosing different solvers such as Euler’s Navier-Stokes’ and
Reynolds-averaged Navier-Stokes’ equations. In this paper, we optimize
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ysis toolset) to perform gradient-based shape optimization
following the general process shown in Fig. 1.

Mesh generation Optimal shape design loop
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Fig. 1: Flow chart of gradient-based airfoil shape optimiza-
tion with SU2.
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The flow chart starts with a baseline geometry (repre-
sented as surface points) and its mesh as input to the design
cycle, along with a chosen objective function J and a set of
design variables x. SU2 allows users to choose different ob-
jectives such as drag coefficient (Cy), lift coefficient (C;), and
efficiency (C;/Cy). In this paper, we choose C,; as the ob-
jective function (J = C,) with a target C; (y = C;)—i.e., the
optimization is run at a fixed C; which works by updating the
angle of attack (o) during the optimization such that the re-
sulting C; matches the target C; value. In SU2, Hicks-Henne
bump functions and free-form deformation (FFD) control
point approach [42] are used to parameterize 2D airfoils and
generate the design variables x. SU2 also provides differ-
ent optimizers (e.g., SLSQP, CG, BFGS, and POWELL) to
do the gradient-based optimization. A chosen gradient-based
optimizer will orchestrate the design cycle consisting of the
direct flow solver, adjoint solver, and geometry/mesh defor-
mation tools in SU2. The iterative design loop proceeds until
an optimum is found or reaching a maximum number of op-
timizer iterations. We develop an integrated computational
pipeline that automates the optimization by merging GMSH?
(open-source finite element mesh generator) mesher and SU2
optimizer through a Python script.

In this paper, we use the gradient-based SLSQP opti-
mizer and the Hick-Henne parameterization method to min-
imize C; such that the efficiency (i.e., C;/C;) is maximized
at a constant C;. To find the optimal airfoil design (and miti-
gate converging to local optima in non-convex problems), for
each group of freestream conditions b and target properties
y—i.e., Mach number (Ma), Reynolds number (Re), and tar-
get lift coefficient (C;)—we perform adjoint optimization on

airfoils by solving the Reynolds-averaged Navier-Stokes’ (RANS) equation.
Zhttps://gmsh.info/

eight diverse candidate airfoils and pick the optimized one
with the highest efficiency (Fig. 2).

The diverse candidate airfoils are generated by applying
Latin Hypercube sampling [43] on the lower-dimensional la-
tent space (of BézierGAN [44]) for diverse coverage (8 sam-
ples) and feeding the 8 groups of latent codes into the pre-
trained BézierGAN model. To generate sufficient data, each
of the 8 candidate airfoils is optimized (using adjoint opti-
mization) for 1,000+ steps with the same 1,000+ sets of input
freestream conditions (Ma and Re) and target C;. We select
the final adjoint-optimized airfoil with the highest efficiency
and store it in our database of samples.

3.2 BézierGAN

BézierGAN is a framework developed by Chen and
Fuge [44,45]. This subsection reviews its crucial compo-
nents, the underlying mechanism, and conditional formula-
tion, from which entropic BézierGAN is inspired and stems.

3.2.1 Bézier Layer and Regularization

BézierGAN is essentially a specialized InfoGAN [46].
Its only difference to its predecessor is the additional Bézier
layer mounted on its generator and the accompanying regu-
larization loss, which ensure the generation of smooth Bézier
curves and make it suitable for geometry-related engineering
applications.

The Bézier layer is of the mathematical form below [45]:

C X (Dui (1= u)"Pow;

X, =
T (e (1 — ) iw

j=0,....om (4

where P, w and n are respectively control points, weights,
and predetermined degree defining the rational Bézier curve,
and X is the tensor of data points sampled from the Bézier
curve according to the m + 1 parameter variables u that de-
termine the sampling intervals. For numerical stability, this
layer is usually evaluated on a logarithmic scale. It serves
as the final output layer of the generator and does not hin-
der backpropagation, thanks to its differentiability. In the
training process of BézierGAN, we can apply additional reg-
ularizations to P and w to further rectify the quality of the
Bézier curve. Apart from this distinction, the other part of
BézierGAN’s training is the same as those of vanilla GAN
and InfoGAN, and can also benefit from their improvements.

3.2.2 Minimax Game and Probabilistic Perspective

Since the learning of disentangled representation is not
mandatory in our applications, the mutual information max-
imization coming from InfoGAN will be suspended in this
work. Instead, we focus on the core minimax game inherited
from vanilla GAN, which is a min-max optimization of the
form below:

min max Exp,(x) [log D(x)]

G
+Esp,(log(1 —D(G(z)))]  (5)
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Fig. 2: Candidate baseline airfoils (each consists of 192 surface points) with their optimized designs from SU2. The
freestream conditions: Ma = 0.5, Re = 51,000,000, and target lift coefficient: C; = 1.0.

where D is the discriminator, G is the generator, z is the
noise, and x are the real samples we are trying to coun-
terfeit using G after running this game several times. Do-
ing so encourages the distribution p,(x) implicitly repre-
sented by G to converge to p,(x), which is the underly-
ing distribution generating real data. Past work has proven
that when the discriminator is trained to optimum before
each update of the generator, we are equivalently minimiz-
ing the Jensen—Shannon divergence between p, and py, i.e.,
ISD(p, || pg) [5]. In practice, however, because of inef-
ficiency, vanishing gradients, and instability [47], in each
epoch, the discriminator is only updated for a few iterations
and thus barely arrives at its optimum; so this theory is just a
reasonable approximation.

Nevertheless, this probabilistic perspective does provide
researchers with many insights and new directions to delve
into. Although the mode collapse plaguing vanilla GAN can-
not be attributed to JS divergence in full [48, 49], the mini-
max game based on it still plays a role in this and other de-
fects because several proposals that replace this game assum-
ing JS divergence to be the culprit have achieved significant
improvement [6,7,8,9]. One prominent work, if not the most
among them, is the Wasserstein GAN (WGAN) [8], which is
established on optimal transport theory that we shall intro-
duce in the next subsection.

3.2.3 Conditional Formulation and CBGAN
BézierGAN and vanilla GAN share the same conditional
formulation as shown in [50], namely

mén max Ex y~p,(xy H0g D(x,y)

+ IEvapz(z) [log(l - D(G(Z, y)’Y))}} (6)

where y stands for the condition corresponding to x and both
the discriminator and generator additionally take y as a in-
put, so that G implicitly represents a conditional distribu-
tion pg(x |y). From the same JS divergence point of view,
it readily follows that this minimax game is approximately
minimizing JSD (p,(X,y) || p¢(x | ¥) p-(y)) to lead p,(x | y)
to pr(x|y).

Fig. 3 presents the architecture of CBGAN for our in-
verse airfoil design task. Its generator takes the Gaussian

noise vector z, the desired property y which is C; here, and
the freestream conditions b which are Ma and Re as input,
and output the design variables x, which are the 192 data
points on the Bézier curve of an airfoil and the angle of at-
tack a.. The discriminator, on the other hand, takes x, y and
b as input and produces the probability of being an optimal
airfoil.

3.3 Entropic BézierGAN

Arjovsky and Bottou [47] hypothesize that one critical
defect vanilla GANS suffer from is the discontinuity of JS di-
vergence over distributions concentrated on low-dimensional
manifolds embedded in high-dimensional spaces. These
low-dimensional manifolds are usually misaligned, so it
prompts the discriminator to overpower the generator and
leads to vanishing gradients. To overcome this convergence
issue, WGANSs equipped with Wasserstein distance, a spe-
cial case of optimal transport (OT) distance, came into play.
This modification improved the stability of GAN’s train-
ing process drastically and significantly alleviated mode col-
lapse [8, 9] common in early GAN models. Later, these
WGANSs were further generalized to a broader range of OT
distances, and the Lipschitz smoothness constraint originally
enforced with crudeness was also replaced with an entropic
soft regularization term in the loss function [51, 52, 53, 54].
These GANs are dubbed Smoothed WGAN, OT GAN, or
Entropic GAN (EGAN), and the lower bound estimation
of likelihood is also enabled thanks to their special proper-
ties [54].

Many real-world datasets indeed reside on low-
dimensional manifolds [55] and the airfoil dataset should be
no exception, as reflected in [44]. Therefore, we hypoth-
esized that EGAN based on optimal transport might carry
corresponding benefits for inverse design. Our entropic sib-
ling of BézierGAN also employs the Bézier layer as the final
layer of the generator. Likewise, it has no difference to regu-
lar EGANSs other than that.

3.3.1 Optimal Transport with Entropic Regularization

For two probability distributions—specifically in our
GAN training case, the real data distribution p,(x) and
the generator’s approximate distribution pg(x)—the Kan-
torovich optimal transport distance regularized with entropy
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or equivalently KL divergence has the following expres-
sion [56,57]:

min

OTy(prpg) =
( " g) PX.)ZGH(I’rng)

Exger, ; [c(X,%)]

+AKL(By ¢ | prx pg) ()

where I1(p:, p;) is the set of joint distributions Py ¢ whose
marginal distributions equal p, and pyg, ¢ is cost function usu-
ally symmetric positive, and A > 0 is a weight controlling the
degree of regularization. When ¢ = || - || and A = 0, this OT
distance reduces to the well-known Wasserstein-1 distance
used in WGAN [8, 9], minimizing which is how WGAN is
trained.

Yet the evaluation of Wasserstein-1 distance is not as
easy as its counterpart for which A > 0. Though a direct
optimization of Eqn. (7) is highly intractable, thanks to the
Fenchel-Rockafellar theorem, the strong duality holds so that
we can evaluate its dual instead [56,57,58]:

OT(pr- pe) = maxExp, [/ ()] + Bsp, [s(9)]

= MEx g, xpe [XP(V(X,R) /M) — 1] (8)

v(x,8) = f(x) + (&) —c(x,%) ©
where f and g are the Lagrange multipliers that can be opti-
mized through a universal approximator like neural networks
or the Sinkhorn algorithm introduced next. Equipped with
this OT probability distance, in EGAN, instead of minimiz-

ing the JS divergence, we can train the generator G, bringing

Dg t0 p, via [52,54]:

min OTy(pr, pe). (10)

3.3.2 Sinkhorn Divergence

Though greatly increasing the evaluation efficiency and
mitigating the curse of dimensionality [56], the entropic
regularization, in consequence, brings about an entropic
bias, namely OT) (p, p) # 0, which may induce mode col-
lapse [58]. One practical way to eliminate this bias is to
use Sinkhorn divergence defined below composed of OT}, to
evaluate the discrepancy between distributions:

Sx(Pr,Pg) =

1 1
OTy.(pr, pg) — EOTk(prvpr) - EOT}»(pgapg) (1)

It is proved in [58] that this metric is indeed symmetric, con-
vex, smooth, and positive definite, thus a better option than
OT;,,.. Now we can train the generator instead by [51]:

min Sy(py. pe): (12)

3.3.3 Sinkhorn Algorithm

Evaluating Eqn. (8) via parameterized f and g repre-
sented by neural networks, as in [8,9,54], is time-consuming.
To accelerate the training process, we can realize this clumsy
maximization with the Sinkhorn algorithm [58], which is the
coordinate ascent coming from the first-order optimality con-
dition for Eqn. (8). Normally for a A not too close to 0, the
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Sinkhorn algorithm can converge within milliseconds [56].
Eqn. (11) can then be evaluated by applying the Sinkhorn
algorithm to each of its three terms.

3.3.4 Conditional Formulation and CEBGAN
Following the same rationale for constructing con-
ditional BézierGAN, we can approximate p,(x | y) with
pg(x | y) through minimizing the Sinkhorn divergence
Sa(pr(x,¥)|lpe(x|y)pr(y)). This indicates we have to
design a cost function c¢([x,y],[%,§]) for the prediction-
condition bundles. One effortless way is to construct it by
c([x,y],[%,¥]) = c1(x,X) +c2(y,§). Specifically, for the eval-
uation of S in our airfoil design application, we set A =5
and build a shift-invariant cost function ¢ with L; norm by

C([X,y,b],[ﬁ,y,ﬁ]):|X—ﬁ|+|y—§’|+‘b—f)| (13)

As to the architecture of CEBGAN, since we are using
Eqn. (12) for its training, the discriminator is no longer re-
quired. We use the same generator as shown in Fig. 3 for
inverse airfoil generation. This unity helps compare the per-
formance of CBGAN and CEBGAN.

3.3.5 Conditional Surrogate Log-Likelihood

Similar to [54], it can also be proven, as provided in
the supplementary material [See Supplemental Material §1],
that this conditional formulation is equivalent to maximizing
the sample likelihood of the explicit density model below
provided c is shift-invariant:

poxy)= [ POy 1 9.0 p) Pl dsdz (14

p(x,y | §,2) < exp <c([x,y], [i(zj),ﬂ)) |

15)

One can then derive the corollary that

logp(x,) > 3By [e([x.¥}[G*(2.y),¥])

+Ep, [logp(z)] + H (P§|X,Y) +logp,(y) +const (16)

in which

V*([X,y],[G*(Zvy),y])) (17

I[D}p(,y =Pz(z)exp ( %

where H is the Shannon-entropy function, [Py is the empirical
distribution of sampled noise, and v* (Eqn. (9)) is evaluated
with the optimal f* and g*. Then for a given condition y and
a series of generated samples {x; = G(z;,y)},, we can use
the RHS of Eqn. (16) as the surrogate log-likelihood (SLL)
to evaluate the plausibility of the bundles {[x;,y]}, and select
the ones with higher SLL as the samples more likely to have

good quality. While sample likelihood is not always reliable
for this purpose (especially when the generative model is ill-
converged [59]) and the SLL only provides a lower bound,
it is nevertheless our only resort for evaluating GAN-based
sample likelihoods. (Recall from Sec. 2.3 that the lack of ex-
plicit exact sample likelihoods is GAN’s key weakness com-
pared to VAE- or Flow-based models.) We will investigate
its effectiveness statistically in the experiment section.

3.4 Metrics

To evaluate the quality of our conditional GAN’s ap-
proximation to p(x | y,b, O) for the inverse airfoil design in
a quantitative manner, we compute two classes of metrics.
First, we compute the kernel maximum mean discrepancy
(MMD)—a measure of distributional fit—that measures how
well the generative model matches the training data. Second,
we compute how the generative model reduces the optimal-
ity gap between the ground-truth optimal airfoil and the one
produced by the conditional generative model. This directly
measures how the generative model affects downstream op-
timization performance. We evaluate this in both the instan-
taneous setting and cumulatively, such as when the genera-
tive model warm-starts a traditional optimization process. In
addition, we calculate the Pearson correlation coefficient be-
tween the surrogate log-likelihood of generated airfoils and
their actual performance and plot its distribution.

34.1 MMD

During the cross-validation phase before the final
training, we use the kernel maximum mean discrepancy
(MMD) [60] to measure the discrepancy between the two
joint distributions p,(x,y) and p,(x | y)p,(y). The MMD be-
tween two distributions p(x) and ¢(y) is defined by

MMD?(p,q) = E [k(x,x") = 2k(x,y) +k(y.y")]  (18)

where we select Gaussian kernel with 6 = 1 as k in our ap-
plication as this is a common choice.

Though not as intuitive as traditional regression metrics
such as MSE in giving an intuitive estimation of the error
magnitude directly in the data space, MMD is much more
justified for this work as MSE essentially comes from the
KL divergence between the data distribution and the uni-
modal Gaussian regression model, whereas p,(x | y) here is
no longer such a simplified conditional distribution.

3.4.2 Reduction in Instantaneous Optimality Gap
Regarding the GAN prediction as a one-step optimiza-
tion, instantaneous optimality gap checks the efficacy of the
conditional GANs by comparing the performance (C;/Cy ra-
tio in our case) of the predicted airfoil to the performance
of the optimized airfoil after one step (iteration) of the iter-
ative adjoint method (i.e., h;—; in Eqn. (19)). Regardless of
the instant time saving, we want to show that the one-step
prediction using conditional GANs also surpasses an adjoint
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step using gradient-based optimization to improve the airfoil
performance. If we ignore the time cost of the instant one-
step prediction and compare the GAN predicted airfoil to the
original design (i.e., hp without any optimization) directly,
the performance can have a more significant improvement
(as demonstrated in Fig. 7).

3.4.3 Reduction in Cumulative Optimality Gap

While the Instantaneous Optimality Gap (often referred
to and used in papers on so-called zero-shot optimization)
is a useful performance measure, it ignores the fact that an
optimizer can further refine a conditional generative model’s
prediction. That is, a conditional model might warm-start a
further optimization. This section describes how we calcu-
late the amount of effort the conditional GANs can save in
those cases.

Specifically, given an n-iteration optimization history
{hi}» which records the performance #; (i.e., C;/Cy ratio) at
each optimization iteration i, after calculating the percentage
of each h; with respect to the optimal value /4, in the his-
tory, we define the cumulative optimality gap (COG) as the
area enclosed by the optimization history curve normalized
in percentage and the horizontal line of 100% corresponding
to h, (a specific example can be seen in Fig. 9). In other
words,

Z,r'l:1 hn - hi

COG({hr}) = ==L

19)

Unlike the instantaneous optimality gap, this index also takes
into account the performance of the subsequent optimization
steps, assigning lower COG values to the ones that approach
the optima faster.

With the COG defined above, for each group of input
conditions, if we have the corresponding history {h¢},, of
an original adjoint optimization (using original airfoils as a
start) and the history {h]}, of a restart adjoint optimization
(using GAN predicted airfoils as a warm start) accelerated
by the conditional GANs (as shown in Fig. 8 and Fig. 9), we
can examine the amount of effort the conditional GANs help
save via the relative reduction in COG, namely

COG({h{}n) — COG({hj}n)
COG({h;’ )

RiCOG = x 100%.  (20)

3.4.4 Correlation between Surrogate Log-Likelihood
and C;/C, Efficiency

To justify the usage of SLL (Eqn. (16)) for selecting air-
foil predictions, we need to statistically verify that there is a
positive correlation between the airfoil’s surrogate value and
its performance, which is the C;/C, efficiency in our case.
This can be accomplished by first generating n airfoils for
each of the m input conditions in the test set. Then for each
input condition indexed by i we evaluate the corresponding

airfoil predictions’ surrogate values {s§i>}n and C;/C, effi-

ciencies {ey)}n and calculate the Pearson correlation coeffi-
cient r; between them:

o (o =57) (o) -e0)
ri= .
e (8 =50) o (4 )

Finally, we demonstrate the distribution of these m coeffi-
cients {r;}, using a histogram. If the SLL is a practical in-
dicator of a sample’s optimality, we can expect most correla-
tion coefficients to be at least greater than 0 and, preferably,
closer to the ideal or maximum value of 1.

2

4 EXPERIMENTS, RESULTS AND DISCUSSION

We first use two simple experiments in low-dimensional
spaces to visually study and illustrate the ability of and
the performance differences between CGAN and CEGAN,
specifically in:

1. Ability to converge to complicated conditional distribu-
tions.
2. Ability to capture multimodality of the distributions.

Because of the complexity of the posteriors, these two
factors are predominantly the foundation of a generative
model’s good performance in tackling high-dimensional in-
verse problems. Only a model with these two abilities can
generate samples of good fidelity and handle the ubiquitous
inversion ambiguity in inverse problems, i.e., having multi-
ple solutions to the same input.

After using these simple illustrative examples to build
intuition, we then employ both generative models on the
more realistic problem of learning an optimal 2D airfoil man-
ifold, which is intrinsically a high-dimensional conditional
distribution. We compare their learning performance through
the lens of reducing the optimality gap and time of airfoil
CFD optimization, wherein we use the generative models to
provide a good warm-start initialization in the neighborhood
of the final solution. Moreover, we investigate the effective-
ness of SLL in assessing generated sample’s quality.

4.1 Revisiting Regression

This experiment aims to illustrate the ability of condi-
tional GANSs in approximating complicated conditional dis-
tributions and the performance differences between a tra-
ditional Gaussian regression model, the vanilla conditional
GAN, and the entropic one based on optimal transport.

For this purpose, we define a toy problem: a 1D Gaus-
sian mixture conditional distribution, in the form:

1 1
Ply]2) = NG ¥ =1,005%) + 27 (v[ ', 0.05%). (22)

A dataset {x;,y;} composed of 200 samples is then sampled
from p(x,y) = p(y | x) p(x) where p(x) = U(—1,1), a uni-
form distribution between -1 and 1. These samples are then
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Fig. 4: Learning results of the regression problem of learning a two-mode Gaussian mixture conditional distribution. The
orange and blue dots underneath are the data points for training, corresponding to the two different modes, while the green
line and the green dots are the predictions made by the regression models.

fed into the generative models for training. They are illus-
trated in Fig. 4 as orange and blue dots underneath, with each
color corresponding to each Gaussian component.

Three regression models are then selected to retrieve this
multimodal conditional distribution for comparison. The first
one is a traditional unimodal Gaussian regression model ¢(y |
x) = N (v | f(x), 6*) whose mean function f is represented
by a neural network and trained with MSE loss as usual. The
result is shown on the left of Fig. 4, with the mean func-
tion f plotted in green. Obviously, it can converge to neither
one of the two modes because MSE is only minimized when
the prediction approaches the average of the targets. From
a probability point of view, this is because MSE originates
from the KL divergence—KL (p(x,)|lg(y | x)p(x))—while
minimizing this divergence can only lead ¢(y | x) to average
across all the modes of p(y | x) [61]. This further explains
why MSE is not an ideal metric for assessing learning results
in more complicated applications wherein having mode col-
lapse yet producing good quality samples is usually preferred
over a mediocre overall convergence.

This conditional distribution is then approximated by
CGAN and CEGAN, both having the same generator struc-
ture representing g(y | x) with more complexity than the
former Gaussian model. After the same amount of train-
ing epochs, we can see from the sample points they gener-
ate—the green dots in Fig. 4, with the CGAN’s prediction
in the middle and the CEGAN’s on the right—that they both
learn to recover the multimodality of the conditional distri-
bution and have comparable convergence. Because of the
additional discriminator training phase, each training epoch
of CGAN is longer than that of CEGAN under our hyper-
parameter configuration, not to mention that it takes extra
effort in tuning hyperparameters to redress the delicate bal-
ance between the discriminator and the generator when train-
ing vanilla GANs. These bolster our preference for CEGAN
over CGAN, especially when applied to learning compli-
cated conditional distributions.

4.2 Mode Collapse Examination
In this experiment, we demonstrate EGAN’s ability
to overcome mode collapse and the convergence issues in

vanilla GANs and handle the multimodality of the target dis-
tribution.

A commonly used toy dataset for mode collapse exami-
nation, as in [49], is the 2D Gaussian mixture distribution in
Eqn. (23) below with 8 components located on a circle of a
certain radius, which equals 15 here:

p(x) =

L[

T
qumTLO.QS

0| —

This is our learning target, mimicking the inverse ambiguity
predicament. Eight hundred samples are thereafter sampled
from this synthetic distribution, forming a dataset on which
both a vanilla GAN and an EGAN with the same generator
architecture are trained to see if they can capture all of the
8 modes. Though there is seemingly nothing conditional in
this study, we can still take p(x) equivalently as pxy—y(x),
i.e., a conditional distribution with its condition Y fixed. Suc-
cess in learning this distribution is a prerequisite for a high-
performing conditional generative model.

The learning results are demonstrated in Fig. 5, with the
800 samples plotted as blue dots underneath and the gener-
ated samples of each model as orange dots above. The vanilla
GAN fails to sufficiently converge to all modes in this case,
while the EGAN trained with Sinkhorn divergence success-
fully captures all the 8 modes. Similar convergence issues of
vanilla GAN are also reported in many works such as [49].
This result indicates that EGAN is a much better choice for
solving inverse design problems where inversion ambiguity
may exist.

4.3 Airfoil Prediction

After grasping the general performance distinctions be-
tween CGAN and CEGAN with the help of those low-
dimensional toy problems, we now turn to a more realis-
tic problem. In this final experiment, with the Bézier layer
equipped, we investigate CBGAN and CEBGAN’s ability to
learn the high-dimensional posterior of optimal airfoils con-
ditioned on the freestream conditions and target property. We
generate the corresponding near-optimal airfoil on unseen in-
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Fig. 5: Result of GAN and EGAN learning Gaussian mix-
ture. The blue dots underneath are the data points for train-
ing, while the orange dots are the samples generated by
GANES.

put conditions and also use this as a warm-start initialization
to short-circuit the subsequent optimizations. We quantify
and compare these two GANs’ performances using the met-
rics defined in Sec. 3.4. Regarding CEBGAN, we examine
its SLL’s efficacy in distinguishing good predictions from the
poor ones after CEBGAN converges.

4.3.1 Dataset and Training

Our dataset contains 1,245 optimized airfoils with corre-
sponding input freestream conditions b and the target prop-
erties y (i.e., Ma, Re, and Cy).

Optimized airfoils: Each airfoil is optimized using the ad-
joint method described in Sec. 3.1. Each optimized airfoil
consists of 192 surface points (192 x 2 coordinates) along
with the optimized angle of attack, o (Fig. 6).

a=1.87° a=2.66° a=8.41° a=2.22°
T~ T~ /s
a=1.55° a=3.26° a=8.41° a=3.72°
e .
a=17.40° a=7.55° a=2.72° a=2.28°
e
a=5.22° a=4.48° a=3.26° a=4.25°
———

Fig. 6: Samples of the database.

Input conditions: We generate N groups of Ma, Re, and
C; through the Latin Hypercube sampling strategy to evenly
cover the design space. In this paper, we have Ma rang-
ing from 0.2 to 0.9, Re from 107 to 108, and C; from 0.8
to 1.4. We excluded the input conditions leading to airfoil
optimization failure (divergence that leads to negative or ab-
normally high efficiency). The final dataset contains 1,245
groups of input conditions (Ma, Re, and C;) and the corre-
sponding 1,245 optimized airfoils. The average time elapse
of each SU2 airfoil optimization instance is 55.7 mins on the

Deepthought2 HPC? at UMD, with 500 instances running in
parallel.

The 1,245 airfoils are split into two parts: 995 airfoils
for 4-fold cross-validation and training the final generative
models, and 250 airfoils reserved for testing. During the
cross-validation phase, MMD (Sec. 3.4.1) is used for evalu-
ating GANs’ convergence to the distribution of the validation
set, against the value of which we adjust the hyperparameters
accordingly, setting them to the candidate having the lowest
MMD. Once every hyperparameter value is determined, all
the 995 training samples are fed into CBGAN and CEBGAN
to train the final generative models. The CBGAN is trained
with a batch size of 32 for 160,000 iterations, and it takes
3h 51m to finish, while the CEBGAN with a batch size of
128 for 120,000 iterations and takes 2h. Both are trained
on NVIDIA Tesla V100 DGXS 32GB GPU. It is hard to di-
rectly compare their training speed as they have different hy-
perparameters, training algorithms, and final performances,
but roughly in the sense of time cost per iteration, CEBGAN
is about 30.7% faster to train than CBGAN.

4.3.2 Quantitative Performance of Conditional GANs

The freestream conditions (Ma and Re) and target lift
coefficients (C;) of the 250 testing airfoils are fed into the
trained CBGAN and CEBGAN models to generate 250 air-
foils with fixed zero noise, respectively. The predicted air-
foils’ efficiencies are evaluated by the SU2 simulator [62]
and benchmarked with the ground truth (i.e., the optimal ef-
ficiency from a converged adjoint optimization) to demon-
strate the performance of the two conditional GANS.

Specifically, for performance (C;/C,) validation of a
predicted airfoil, the corresponding input conditions (Ma,
Re, and () of a predicted airfoil (including predicted o) to-
gether with other default freestream conditions* are wrapped
into a SU2 configuration file. GMSH generates a 2D mesh
of the predicted airfoil (i.e., 192 x 2 coordinates) (as shown
in Fig. 1), which we then write into a SU2 format. The ef-
ficiency is evaluated by solving the RANS equations on the
predicted airfoil using air with the corresponding freestream
conditions and target C;.

The ground-truth efficiency value is acquired by per-
forming the iterative adjoint optimization exhibited in Fig. 1.
With the same input conditions, the eight candidate airfoils
(Fig. 2) are iteratively optimized. The optimized one with
the highest efficiency is the ground-truth optimal design, and
the highest efficiency is the ground-truth optimal efficiency.

For easy comparison, we normalize the 250 testing sam-
ples’ efficiencies into percentages. The ground-truth optimal
efficiency (i.e., h, in Eqn. (19)) of each airfoil is represented
as 100%, which is used as the comparison baseline. The
other types of efficiencies can be represented as percentages
by dividing with their corresponding ground-truth efficiency
(i.e., hi/hy), indicating how close they are to the optimal ef-
ficiency.

3https://hpce.umd.edu/hpee/dt2.html
“In this paper, air’s freestream pressure is 101,325 Pa and the freestream

temperature is 288.15 K.
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Reduction in instantaneous optimality gap: For a more
intuitive comparison, we first compute and compare the av-
erage reduction in instantaneous optimality gap (Sec. 3.4.2)
of the 250 testing airfoils in different scenarios. Fig. 7 illus-
trates the comparison:

1. The blue dash-dotted line indicates the average ground-
truth efficiency of the 250 testing samples. As every
ground-truth efficiency is represented as 100%, the av-
erage has no variance.

2. The orange dashed line indicates the average efficiency
of the 250 predicted airfoils from CBGAN, and the
green dashed line indicates the average efficiency of the
250 CEBGAN generated airfoils. Without using any fur-
ther optimization, the CBGAN predicted airfoils achieve
an average of 80.8% of the ground-truth efficiency while
the CEBGAN predicted airfoils achieve an average of
95.8% of the ground-truth efficiency.

3. The blue dotted line indicates the average efficiency
(22.9%) of the original 250 airfoils before using adjoint
optimization.

4. The blue dashed line indicates the average efficiency
of the optimized 250 airfoils after taking one step (it-
eration) of adjoint optimization using the SU2 opti-
mizer. These airfoils achieve an average of 49.3% of
the ground-truth efficiency.

5. The box plot underneath indicates the minimum, the first
quartile, the median, the third quartile, and the maxi-
mum of the 250 testing airfoils at each of the three sce-
narios (i.e., GAN prediction, one-step adjoint, and initial
design). The medians—75.9%, 84.2%, 66.4%, 19.4%
from left to right—do not coincide well with the means
above, which suggests skewness in the distributions of
instantaneous optimality gaps.

140.0

— No Optimization
-=Initial: Adjoint (One-Step)
T Initial: CBGAN
1200 -==Initial: CEBGAN
> —-— Final: Adjoint
2
100.0 4 S I Y E——
CEBGAN
QL 958 B o T T e
i
=
o 808
‘_g
'-aa 60.0 Adjoint (One-Step)
O 493 - --
u—
O 400 Original
o
>
Ins. Optimality Gap .
36:8 1(riginal 100-22.9=77.1%
Adjoint (One-Step)  100-49.3 = 50.7%
CBGAN 100-80.8 = 19.2%
CEBGAN 100-95.8 =4.2%

0.0

Optimal CBGAN CEBGAN One-Adjoint Original

Fig. 7: Tllustration of reduction in instantaneous optimality
gap using the averaged efficiencies of the 250 testing sam-
ples.

Both conditional GANs can quickly (< 1 second) pre-
dict airfoils whose performance (i.e., efficiency) has been
significantly improved (from 22.9% to 80.8% with CBGAN

and 95.8% with CEBGAN for these 250 testing samples)
compared to the original designs. This represents a reduction
in instantaneous optimality gap (w.r.t. true optimal C;/Cy).
For CBGAN, the instantaneous gap is reduced by a factor
of 4.0x compared to initial airfoils and 2.6x compared to
one step of the adjoint method. For CEBGAN, the two num-
bers are 18.4x and 12.1x, respectively. The average effi-
ciency of the CEBGAN predicted airfoils has been close to
the ground-truth one (100%). We have also computed a two-
sample t-test on their difference in instantaneous optimality
gap. This test resulted in p = 0.0001. Though the conditional
GANSs cannot directly generate the ground-truth optimal air-
foils, they surpass an adjoint step and provide a warm start
point for a restart optimization, as we show next.

Reduction in cumulative optimality gap: We demonstrate
the reduction in cumulative optimality gap (Sec. 3.4.3) by
comparing the iterative optimization histories (averaged) of
the 250 testing samples between the original adjoint opti-
mization (using original airfoils as a start) and the restart ad-
joint optimization (using GAN predicted airfoils as a warm
start). Fig. 8 illustrates the comparison:

1. The blue dash-dotted line, the blue dotted line, and the
three dashed lines (i.e., green, orange, and blue) indicate
the same average efficiencies in Fig. 7.

2. The blue solid curve indicates the original adjoint opti-
mization history of the 250 testing samples (in average).
The average number of evaluations for the original ad-
joint optimization is 41. The blue fill indicates the effi-
ciency standard deviation (£ StdDev) of the 250 testing
samples for each evaluation.

3. The orange and green solid curves indicate the restart
adjoint optimization histories of the 250 testing samples
(in average) with CBGAN and CEBGAN, respectively.
The average number of evaluations of the restart adjoint
optimization is 35 for CBGAN and 20 for CEBGAN.
The orange and green fills indicate the efficiency stan-
dard deviation (&= StdDev) of the 250 testing samples
for each evaluation.

4. The orange and green dash-dotted lines indicate the av-
erage efficiency of the optimal airfoils after the restart
optimization with CBGAN and CEBGAN, respectively.
As we can see, the restart optimization can lead to
a slightly higher efficiency, which is 102.6% of the
ground-truth efficiency for CBGAN and 98.2% of the
ground-truth efficiency for CEBGAN.

If we compare the area enveloped by the blue solid
curve, y-axis, and the blue dash-dotted line to the area en-
veloped by the orange/green solid curve, y-axis, and the or-
ange/green dash-dotted line (as described in Sec. 3.4.3), we
can see a significant relative reduction in cumulative opti-
mality gap (RiCOG) by 41.6% for CBGAN and 91.3% for
CEBGAN.

It is also worth noticing that both the CEBGAN and CB-
GAN can yield some predictions that either instantaneously
goes beyond the 100% ground-truth optimal efficiency (as in
Fig. 7), or can be further optimized to surpass this threshold
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Fig. 8: Illustration of reduction in cumulative optimality gap
using the averaged optimization histories of the 250 testing
samples.

(as in Fig. 8). This indicates that the dataset contains many
locally optimal airfoil designs, even though we attempt to se-
lect the best one among the eight candidates, as mentioned in
Sec. 3.1. Therefore the conditional GANSs are still learning
the distribution of local minima. More discussion on this will
be presented in Sec. 5.

Reduction in cumulative optimality gap of an example
airfoil: We demonstrate a single concrete case of one ex-
ample airfoil (predicted using both CBGAN and CEBGAN)
to show how the results in Fig. 8 translate to a single data
point. Fig. 9 demonstrates the example case:

1. The blue, orange, and green dashed lines indicate the
efficiencies of the one-step adjoint, CBGAN predicted,
and CEBGAN predicted airfoils, respectively. The blue
dotted line indicate the efficiency of the original airfoil.

2. The blue, orange, and green dash-dotted lines indicate
the efficiencies of the ground-truth optimal, CBGAN
restart optimized, and CEBGAN restart optimized air-
foils, respectively.

3. The blue, orange, and green solid curves indicate the
original, CBGAN, and CEBGAN restart adjoint opti-
mization histories of this specific example airfoil.

Instead of using the percentage of the ground-truth op-
timal efficiency, in Fig. 9, the y-axis indicates the actual ef-
ficiency values (these are normalized to percentages to make
multiple airfoils comparable on the same axis in Fig. 7 and
Fig. 8). In Fig. 9, other than demonstrating the reduction
in cumulative optimality gap of a specific case, we can also
show the specific status of the airfoil in different stages.
For example, we provide the airfoil shapes in four different
stages (original airfoil, optimal airfoil after original adjoint
optimization, GAN predicted airfoils, and the optimized air-
foils after restart adjoint optimization). As a warm start, the
GAN predicted airfoils can achieve the optima (even higher
efficiency) faster than using the original adjoint optimization.
With the GAN predicted airfoil, even if we halt the restart op-
timization halfway, we can still achieve an airfoil of similar
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Fig. 9: Illustration of reduction in cumulative optimality gap
using a single concrete case (Ma = 0.72, Re = 60,799,053,
and C; = 0.88).

quality to a full adjoint run. Fig. 10 uses histograms and ker-
nel density estimation (KDE) to show the distribution of the
relative reduction in cumulative optimality gap (RiCOG) for
the 250 testing samples.
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Fig. 10: Distribution of relative reduction in cumulative op-
timality gap (RiCOG) of the 250 testing samples using his-
tograms (left y-axis) and KDE (right y-axis).

4.3.3 Practicability of the Surrogate Log-Likelihood

In the above example, we fixed the noise vector of the
generator to demonstrate an example case. However, fixing
this noise vector can only let us produce a single sample for
each input condition. This becomes inappropriate when the
diversity of predictions is critical or when inversion ambigu-
ity exists. Multiple modes can correspond to the same in-
put condition (e.g., the conditional distribution in Fig. 4 or
multiple, approximately equally good airfoils for a given set
of boundary conditions). In that case, we need to randomly
sample a large batch of noise vectors from the noise distribu-
tion p(z) and use them to produce many valid samples from
across all modes.

Assuming we can sample the generator, how do we
distinguish samples with a higher likelihood of being high
quality? Conceptually, these samples should lie within the
vicinity of the conditional distribution modes, while low-
performing samples should lie in the long tails of the distri-
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bution. How can we assess this without running any further
costly CFD simulations?

Correlation between SLL and C;/Cy4
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Fig. 11: The distribution of Pearson correlation coefficient
between SLL of airfoil predictions and their actual C;/C, ef-
ficiencies.
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Fig. 12: The scatter plot of the normalized SLL of airfoil
predictions and the corresponding normalized actual C;/Cy
efficiencies. No positive correlation can be observed.

As elucidated before, unlike traditional GANs, EGAN
provides us with a surrogate log-likelihood which is essen-
tially a lower bound of the sample’s likelihood. It is then
promising to use this surrogate value as an indicator of a
sample’s quality. That is, the higher the surrogate value,
the better the quality, provided the EGAN converges well to
the target conditional distribution, as demonstrated by Balaji
et al. [54]. To verify this experimentally for CEBGAN, we
randomly sample 10 airfoils for each of the 250 test input
conditions and calculate the Pearson correlation coefficient
between the surrogate values of the airfoils and their ground-
truth C;/Cy efficiencies, as introduced in Sec. 3.4.4. If the

surrogate likelihood is a meaningfully useful quality mea-
sure, it should have a high correlation with the expensive-to-
compute ground truth CFD simulation values.

For this task, we draw 4,096 samples from the distribu-
tion (Eqn. (17)) when evaluating the expectation in Eqn. (16).
The distribution of these coefficients for the 250 test samples
is illustrated in Fig. 11. Unfortunately, the correlations are
almost symmetrically distributed around 0. This implies that
the SLL does not usefully discriminate between high- and
low-quality predictions for inverse airfoil design. We may
also use a scatter plot to illustrate the correlation between
SLL and C;/C, ratio more concretely. Before doing this, for
each of the 250 input conditions, we need to normalize the
SLL and the C;/C; ratio over all the 10 trials with mean and
standard deviation to unify their range across input condi-
tions and mitigate the distortion of outliers. Fig. 12 demon-
strates the distribution of these normalized points, where we
can neither notice any apparent positive correlation. More
discussions on the possible causes are included in Sec. 5.

5 LIMITATIONS AND FUTURE WORK

Our inverse design methodology shows its potential in
accelerating design optimization. However, before extrapo-
lating it to the other tasks, one should be aware of several
limitations of our data-driven inverse design paradigm.

First, because of the data-driven training process, our
GANSs’ performance depends on the quality of the training
dataset. Thus, if our optimal airfoil dataset obtained through
the CFD adjoint method consists of many local optima, we
should not expect our GANs to always yield global optima
on either seen or unseen input conditions. We observe that
our GANs can generate airfoils of higher performance than
our targets in the dataset, so this local optima issue indeed ex-
ists in our current dataset. Likewise, the diversity of training
samples directly affects the diversity of conditional GAN’s
generation. While generating the dataset, we used eight air-
foils generated by the BézierGAN as our initialization points,
but for at least some input conditions as shown in Fig. 2,
the final optimized airfoils more or less have shapes simi-
lar to their original counterparts. It is impossible that these
eight typical shapes can represent all the airfoils. There-
fore, just like in many other design tasks, we made global
optimality and diversity optional. Despite this limitation,
our conditional GANs still demonstrate their ability to ac-
curately approximate the posterior imperfectly represented
by the dataset. This data-driven paradigm is still valuable in
many tasks where global optimality and diversity of results
are not mandatory.

One would likely then propose to increase the dataset
size to overcome these issues. However, the optimal airfoil
dataset generation is very time-consuming, and it is imprac-
tical to retrieve all optima. One possible solution is to use a
low-dimensional design representation, as presented in [44],
to accelerate the optimization process. Another more radical
way is to discard this data generating process and use vari-
ational inference to directly learn the posterior, which could
be an interesting research topic in the future.
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In addition, the surrogate log likelihood—the lower
bound to the exact sample log likelihood—cannot effectively
differentiate between samples of good and bad quality. There
are several hypotheses on this that might be worth probing
in the future: 1. Sample likelihood is just not very related
to sample’s quality, let alone its lower bound approxima-
tion; 2. The lower bound is not tight enough to reveal the
sample likelihood’s positive correlation with sample qual-
ity; 3. This is cause by the incompleteness of the training
dataset such that many designs of better performance are ei-
ther downplayed or neglected in this empirical distribution,
thus assigned lower likelihood by the CEGAN after training,
but they somehow get recovered when generating the predic-
tions.

Furthermore, this paper did not address two important
factors that affect real-world use cases. First, we did not
address scalability—the relation between the design prob-
lem’s dimensionality and the number of data samples re-
quired to maintain a good approximation. Higher dimen-
sions could occur from the design parameterization (e.g., 3D
vs 2D), the input conditions (e.g., including heat transfer in-
puts), or the design objectives (e.g., optimizing not only drag,
but also manufacturability or vibration). Increasing any of
these would complicate Inverse Design and require a larger
number of data samples. Second, we did not address how
to handle design constraints (aside from those not implicitly
encoded in the training dataset). Future work could address
how inverse design can more explicitly adapt and capture
new design constraints without requiring retraining.

6 CONCLUSIONS

In this work, we employed two conditional GANs—
CBGAN and CEBGAN—to approximate the posterior of
the optimal airfoils conditioned on the freestream conditions
and the target properties. Then, given unseen input condi-
tions, we could generate warm start initialization points near
the optima and accelerate the subsequent airfoil shape op-
timization. Our results show that both generative models
can accomplish this task, but the CEBGAN—CEGAN based
on regularized optimal transport and equipped with Bézier
layer—performs uniformly better than that of vanilla CB-
GAN, either in terms of training speed or prediction accu-
racy among other metrics. CEGAN’s advantage in approxi-
mating the multimodal distribution also manifests in simple
toy examples. In addition, unlike traditional GANs, CEGAN
also provides us with the unique ability to approximate the
sample likelihood via a lower bound dubbed the surrogate
log-likelihood, though its potential in selecting good samples
remains to be investigated and uncovered.

Our GAN-based probabilistic inverse design paradigm
is applicable to inverse airfoil design and the other inverse
problems where high-dimensional posteriors need to be ap-
proximated. The Bézier layer we employed is suitable for
curve-related design problems, but in other problems we can
replace the Bézier layer with different architectures. For ex-
ample, we can use a free-form deformation (FFD) layer for
3D airfoil design problems [63], or use standard 2D/3D con-

volutional layers for pixelated/voxelized designs [38]. The
advantages brought by the conditional GAN framework and
the entropic regularization should be invariant to such archi-
tecture adjustment. In future work, we will test our method
on more applications to demonstrate this point. The perfor-
mance and surrogate log-likelihood of CEGAN suggest it is
a GAN more suitable for these posterior-retrieving tasks.

Though we solely focused on GANs’ application in this
inverse design work, it does not exclude the potential of using
other generative models for similar tasks. Our preference for
GAN:Ss is based on the widely alleged good quality of its gen-
erated samples in other works and the possibility of extend-
ing its power to more complicated inverse designs in the fu-
ture. However, for many inverse design problems, other gen-
erative models like VAEs and flow-based models may also
generate predictions of comparable quality, and given their
more straightforward and accurate sample likelihood evalua-
tion process, they may even be better candidates than GAN's
in certain tasks. This is worth investigating in the future.
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1 Proof of Explicit Density Model and the Derivation of Conditional Surrogate Log-Likelihood
The proof follows the same logic as the unconditional one [1], with some variances.

1.1 Proposition

Let y, § be the input condition sampled from the marginal distribution p,(y) of the real data distribution p,(x,y), z be
the noise sampled from pz(z), X = G(z,§) be the generator G’s prediction on ¥, and x be the output corresponding to y.
Training CEGAN is equivalent to maximizing a lower bound of the sample likelihood of this latent model below:

poxy)= [ Pty |92 p5) pr(a)agdz (sD

c([x,y], [i(z, ):3) (S2)

p(x,y | §,2) =C-exp—

where C is a constant for normalization ensured by the shift invariant cost function ¢, and A is the weight controlling the
degree of entropic regularization.

1.2 Proof
From Bayes’ rule, we have

p(x.y) = P(x.y|§,2) pr(§) pz(2) $3)
p(§.z|x,y)

Take the logarithm, then
logp(x,y) =logp(x,y | §,2) +logp(§) +log pz(z) —log p(§.2 | x,y) (S4)

Consider a joint distribution Py y y , of marginal distributions Px y and Py ,, which are empirical distributions formed
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by the batch sampled from p,(x,y) and pz(z). Taking expectation of both sides w.r.t. Py 7y . we get

logp(x,y) =Ep, ,, , [logp(x,y | §,2) +log p,(§) +log pz(z) —log p(§,2 | x,y)]
1 o .
= =3By 4y [c(x3),[G(2.9).9])] +1og C+Epy  , [log pr(§)] +Epyy , [log pz(2)]

+KL (P?,Z\X,Y l pf/,Z|X,Y) +H (]PY,Z|X,Y) (85)

Next take expectation of both sides w.r.t. Py y, then

EIP’X‘,Y [logp(x,y)] = _%EPX}/)?AZ [C([va]v [G(Z,f’),f’])] +10gC+EPyx [logpr(y)] +EPZ [lngz(Z)]

+ Epy [KL (P?,Z\X,y ||P?.Z|X,Y)} +H (Px,y,?,z) —H(Pxy) (S6)

Then after using the data processing inequality H (IP)X7Y’9,Z> >H (PX,YX f’) , we have

By, logp(xy)] >~ {Be o [e1x3,[6(2,9).5)] - A (Peyss)
+1logC+Ep, [logp,(§)] +Ep, [logp.(z)] —H (Pxy) (S7)

where for each batch of fixed Py y and Py , the last four terms are constant and the term within the curly bracket is exactly
the objective of CEGAN with the KL divergence regularization replaced by the equivalent entropy regularization. g

1.3 Conditional Surrogate Log-Likelihood

The RHS of (S5) excluding the KL divergence is a lower bound that can serve as a surrogate. However, the term
]E]pm.y [log p,(§)] in (S5) is infeasible since the expression of p, is unknown. For a log(x,y) to be estimated, if we take y
as a constant, then as a work-around for deriving the surrogate log-likelihood, since there is no restriction on the choice of
Py 71x y» We can design it as follows to circumvent this issue:

Py zixy =Poixy Pzx vy = Ppyy Pzix = 1)y Pzix (S8)

where lf’l y 1s the single point mass distribution centered at the realization of Y.

Now take expectation of both sides of (S5) w.r.t. PY.Z|X y = I?IY Pzx, we get

log p(x,) = — 3 B, [e([%.¥] [G*(2,9), )] + ogC-+ 108 p (y) + B, [log ()

+KL (I?W Pz || pY,Z\X7Y> +H (Pyx) (S9)

Take expectation of both sides w.r.t. Px = 1x_y, then

1
logp(x,y) = — 7 Brys [c([x,¥],[G*(z,y),y])] +1ogC +log p,(y) + Ep, [log pz(z)]
+KL (11?|YPZ\X | I’f/,z\x,y> +H (Px z)

2 —% {Epy, [c([x,¥],[G*(2,¥),¥])] = AH (Px z) } +10gC +log p,(y) + Ep, [log pz(2)] (S10)

While the last three terms are constant, the term inside the bracket is the objective of an optimal transport problem regularized



with entropy that is minimized when Py 7 = IP’}Z, which has the closed form as per [1]:

* G* * G*
Py, = PyPrexp” ([X’y“x @) 4, pyexp’ ([X,yH}L (z,y),y]) S11)
Therefore we can take (S10) as our surrogate log-likelihood when we set Py z =Py ;. O

2 Hyperparameters of CEBGAN

Since there is abundant literature on the hyperparameter tuning of vanilla GANs, and we inherited the neural network
architectures of CBGAN and CEBGAN from our previous work on unconditional BezierGAN [2], in this section we focus
only on the hyperparameter tuning of CEBGAN (or EGAN with Sinkhorn divergence, on a larger scope), which is not
covered by many existing materials. Specifically, we concentrate on the effect of batch size, regularization weight A, cost
function ¢ and the number of epochs, which are either unique to EGAN or have distinctive effect. The other part of the
hyperparameter configuration can be found in our code at https://github.com/IDEALLab/CEBGAN_JMD_2021.

Throughout these tuning experiments, we use the MMD function introduced in §3.4.1 as our metric, which is a standard
choice and fast for evaluating the discrepancy between complicated distributions. We implement 4-fold cross validation
on the complete training set of 995 airfoil samples for each hyperparameter configuration to take into account any distur-
bances from stochasticity, such as initialization, mini-batch gradient descent, efc. In other words, for each fold of the cross
validation, 747 samples out of the 995 are for training the CEBGAN while the rest 248 are reserved for validation.

Another thing we need to clarify is the difference between the number of epochs and the number of iterations. Since
our code is written in PyTorch, in each epoch we leverage the Datal.oader constructor in PyTorch to generate mini-batches
for gradient descent. For a training set of m samples, if we set the batch size to n, the DataLoader will divide it into [m/n]
batches for inner loop iteration. Therefore, the number of training iterations for N epochs equals N x [m/n].

2.1 Batch Size

Six batch size candidates—36, 64, 96, 128, 196, 250—are selected to illustrate the effect of batch size on the final
prediction, with their number of iterations set equally to 42,000. The value of A is set to 5, while the cost function c is
constructed using L; distance, as introduced in §3.3.4. The MMD result is plotted in Fig. S1a, where the height of each bar
indicates the mean of MMD across the 4 folds and the error line on top indicates its standard deviation.
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Fig. S1: MMD and training iteration time cost against batch size.

We can see that in general, the larger the batch size, the smaller the MMD, and this improvement saturates as the batch
size increases. Intuitively speaking, in each training iteration, we use the mini-batch to approximately represent the data
distribution p,, hoping that by minimizing the S)(p,,pg) evaluated with this mini-batch, p, converges to p, eventually.
The larger the batch size, the more accurately the mini-batches can represent the true data distribution, therefore the more
precisely p, can be driven to p,. And just like a regular machine learning practice, because of the discrepancy between the
training set and the validation set, inevitably the CEBGAN performs not as good on the validation set as on the training set.


https://github.com/IDEALLab/CEBGAN_JMD_2021

Yet this precision improvement entails an increase in the computational cost. The time complexity of the Sinkhorn
algorithm is O(n?/€*) [3], so the computational cost scales quadratically with the batch size. Hence the final choice of the
batch size is a trade-off between precision and time cost. This trend is demonstrated in Fig. S1b, where we use quadratic
regression to fit the average time cost per CEBGAN training iteration and it seems accurate. We select 128 as our final batch
size, which has an MMD of 0.030 £ 0.0016 on the training set and an MMD of 0.052 +0.0039 on the validation set, while
the time cost is acceptable to us.

2.2 Regularization Weight A

This weight controls the strength of entropic regularization, as introduced in §3.3.1. Theoretically, it manipulates
Sinkhorn divergence S;’s interpolation between optimal transport distance (OT) and MMD [4, 5]—S; — OT as A — 0
and S; — MMD as A — . In consequence, A leads to the similar trade-off between precision and time cost [4, 6, 7]—as A
increases, the Sinkhorn algorithm evaluating S; converges faster, but minimizing such Sy leads to lower distribution learning
precision, and vice versa. Setting this A properly can achieve a good balance between both worlds.
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Fig. S2: MMD against A.

We select the final A out of five candidates—0.5, 1, 5, 10, 50. The experiment setting is similar to the previous one,
except we now fix the batch size at 128. The result is shown in Fig. S2 in the same manner as before. We can see that in
general the aforementioned trend holds, a smaller A leads to better performance, but the improvement seems marginal as A
goes under 10. It is also interesting to notice that although a S; with larger A is closer to MMD, minimizing it results in
an MMD larger than that of minimizing one with smaller A, probably due to the vanishing gradient issue associated with
MMD [6]. Therefore, minimizing the metric directly as the loss function is not always a wise choice. In terms of time cost,
under our configuration, training the CEBGAN with S;_s takes nearly half as much time as with S)_ 5, while it takes the
similar amount of time as with A = 50. We hence choose A = 5 as our final setting.

2.3 Cost Function c

This cost function c is the one involved in the definition of regularized optimal transport distance (Eqn. 7). We only
investigate the ones constructed with L; and L, distance here, as they are quite common choices among the existing materials
and very easy to realize. Although it is alleged that an adaptive cost function [4]—which should be trained throughout
EGAN’s training process to adapt to the dataset—could further improve the performance of EGANs, we do not implement it
in this work, given its greater complexity, larger time cost, the already satisfactory performance of the ordinary cost functions,
and that it may not be compatible with the surrogate log likelihood.

Specifically, in the experiment we construct two candidate cost functions by:

c1((x,y,b], [&,§,B]) = [lx— &1 + [y — {1 + b —b]:
c2([x,y,b],[%,3.b]) = [|lx —Rl|2 + |y — §l2+ b — B2

and set the batch size to 128, A to 5 and the number of iterations to 42000, the same as before. The result is plotted in Fig. S3.
We can see the cost function ¢ performs better, so we make it our final choice.
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Fig. S3: MMD against cost function.

2.4 Number of Epochs

The number of training epochs can significantly affect performance: too few may lead to underfitting whereas too many
may lead to overfitting. To check this on our inverse airfoil design application, for the final choice of hyperparameters—batch
size of 128, A = 5, cost function set to c;—we increase the number of iterations from 42000 to 120000 and plot the MMD
history throughout the training process. To achieve this, for each of the four cross validation folds, we correspondingly
increase the number of epochs from 7000 to 20000, and record the MMD every 100 epochs.

The result is shown in Fig. S4, with the full scale history on the left and the magnified plot on the right to reveal its
asymptotic behavior. The shades cover the +StdDev region. We can see that the MMDs rapidly drop before epoch #5000
on both the training set and the validation set, then gradually converge to their limits, with a smaller variance on the training
set and a larger one on the validation set. There is generally no uptick in the MMD on the validation set, which suggests
the absence of overfitting. Since the improvement after epoch #15000 is marginal, and given that once we use all the 995
samples to training the final model, there will be more training iterations for the same number of epochs, we train our final
model with 15000 epochs.
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Fig. S4: MMD history throughout the training process.
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