
Proceedings of the ASME 2022 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference

IDETC/CIE2022
August 14-17, 2022, St. Louis, Missouri

DETC2022-90068

EFFECT OF OPTIMAL GEOMETRIES AND PERFORMANCE PARAMETERS ON
AIRFOIL LATENT SPACE DIMENSION

Alec Van Slooten∗

Dept. of Mechanical Engineering
University of Maryland

College Park, MD 20742
Email: vansloot@umd.edu

Mark Fuge
Dept. of Mechanical Engineering

University of Maryland
College Park, MD 20742
Email: fuge@umd.edu

ABSTRACT
Although learning low-dimensional airfoil manifolds can fa-

cilitate aerodynamic optimizations, the properties of these latent
spaces are not well understood. This paper investigates airfoil
manifolds to provide greater insight into the effects of optimized
geometry and data set features on latent spaces. Specifically,
we investigate if optimized geometries occupy lower dimensional
manifolds than non-optimized geometries. We also examine the
effect of including target optimization conditions as data set fea-
tures for a range of latent space sizes. We explore these areas
using the UIUC airfoil database and a subset of these airfoils op-
timized with CBGAN and CEBGAN models. Lower dimensional
airfoil manifolds are learned using both autoencoders and prin-
cipal component analysis (PCA) models. The performance of
these models are also compared to each other in ranges of train-
ing sample sizes and latent dimension size using mean squared
error (MSE) between the original testing samples and the repro-
jected data constructed from the models as a metric. The results
of this study suggest that optimized geometry does not always lie
in a lower dimensional latent space as the two data sets were ob-
served to have similar intrinsic dimensionalities. This study fur-
ther demonstrates that including input parameters used in airfoil
coordinate generation as data set features does not necessarily
decrease the latent space dimensionality.

∗Corresponding Author

1 INTRODUCTION
Airfoil optimization is a established field that is commonly

explored in the design of turbine blades, While much progress
has been made in the past in this field, numerical optimizations
are still time consuming. These optimization techniques need to
be executed repeatedly to find an optimal design resulting in a
process often constrained by the run time [1]. The dimensional-
ity reduction (DR) type of unsupervised machine learning can be
leveraged to help solve this problem. DR creates a smaller sub-
space from the original data wherein little of the explained vari-
ance is lost. Optimizations within this space typically converge
much faster. Once finished, the results can be reprojected from
the latent space back into the real space. This workflow is be-
coming increasingly common in many areas of optimization and
has been used recently in everything from aerodynamic design
optimization [2,3] to molecular drug design [4] and optimization
of robotic motion [5].

Although this methodology has already been established,
exploring this reduced subspace may still be computationally ex-
pensive. The cost of sampling the design space of high dimen-
sional models often increases exponentially with dimensional-
ity [6]. This phenomena, dubbed the curse of dimensionality [7],
illustrates the importance of minimizing the subspace dimension-
ality to reduce the computational time necessary for design space
exploration. To streamline this reduction, it is critical to under-
stand the properties of low-dimensional design manifolds. With
respect to airfoils, the effects of using optimal geometry and
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including performance parameters the geometry was optimized
for are of particular interest. Were the use of optimal geometry
or performance parameters to result in lower dimensional mani-
folds, they could be leveraged to expedite aerodynamic shape op-
timization. These properties are studied using PCA and autoen-
coder models as investigative tools to learn generalities about the
manifold. The key contributions of this paper are three-fold.

First, we compared the performance of PCA and autoen-
coders on an optimized airfoil data set to provide insight into
each model’s behavior with respect to the amount of training
data used and the latent space size. Performance was measured
by reconstruction testing MSE values using 1-20 dimensions and
0.5% to 98% training data. Figs. 1, 2, 3, and 4 show that the
autoencoders perform better in low dimensional spaces but PCA
has greater stability with extremely low or high fractions of train-
ing samples.

Second, we tested the hypothesis that optimal airfoil geome-
tries live on a lower dimensional space than non-optimized ge-
ometries. We found, surprisingly, that this is not necessarily true
and show in Fig. 4 that UIUC airfoil and optimized airfoil data
sets have similar intrinsic dimension.

Third, we studied the effect of including the properties that
the airfoils were optimized for (target lift coefficient, Mach num-
ber, angle of attack, and Reynolds number) as features on the
intrinsic dimensionality of the latent space. We found in Fig. 5
that appending these features to the optimized airfoil data set do
not result in a significant change in dimensionality.

2 BACKGROUND AND RELATED WORK
The related work to the key contributions of this paper fall

into roughly six categories: (1) dimensionality reduction, (2) air-
foil decomposition, (3) optimized and UIUC airfoil databases,
(4) dimensionality and estimation methods, (5) latent space of
optimized geometry data sets, and (6) impact of feature selection
on latent spaces.

2.1 Dimensionality Reduction
Dimensionality reduction is the process of deriving a set

of degrees of freedom which can be used to reproduce most of
the variability of a data set [8]. There are numerous methods
of DR which are classified by their linearity. The most popu-
lar linear methods are PCA and metric Multi-Dimensional Scal-
ing [9]. Commonly used nonlinear models include autoencoders,
isomaps, locally-linearly embedding (LLE), non-metric Multi-
Dimensional Scaling and kernal PCA [9, 10]. Although each
modeling method comes with its advantages, PCA and autoen-
coders were selected as the DR models to keep the scope of this
investigation sufficiently narrow.

PCA is a fast and computationally inexpensive method of
dimensionality reduction that is used as a baseline in this paper.

PCA is a basic linear model commonly used to perform a change
of basis on a given data set [11]. Although the transformation is
linear, many principal components can be neglected depending
on the percentage of explained variance they account for. The
explained variance ratio is the percentage of variance attributed
by each component and is a typical metric used when determin-
ing how many principal components are necessary [12]. Besides
speed and simplicity, PCA also has the advantage of axes ordered
based on their representational power. This makes it easier to in-
terpret and identify the component with the greatest explained
variance [13].

An autoencoder is a neural network commonly used in un-
supervised learning. They are constructed of an encoder to learn
a representation for a set of data, and a decoder to reproject
that representation back into the original design space. Autoen-
coders are more computationally expensive processes that are
better able to model nonlinear data and data with recurring pat-
terns [14, 15]. Nonlinear deep autoencoders typically reduce di-
mensionality better than linear methods such as PCA [16, 17].
In fact, PCA is a special case of an autoencoder using squared
loss and identity activation functions [18]. Additional layers and
nonlinear activation functions allow autoencoders to model more
complex and nonlinear functions. Our work uses both PCA and
autoencoder models to reduce data set dimensionality.

2.2 Airfoil Decomposition
Previous works in airfoil decomposition have generally used

proper orthogonal decomposition (POD). This method is synony-
mous with PCA and Karhunen–Loève expansion [19]. POD has
been successfully implemented for airfoil design optimization,
reducing computational cost by approximately three orders of
magnitude for a two-dimensional invicid flow calculation [20].
It has also been applied to micro air vehicle wing CFD simula-
tion data [21] and demonstrated to be effective for reconstructing
flowfields from incomplete aerodynamic data sets [22].

More recently, models such as generative adversarial net-
works and autoencoders have been used in airfoil decomposi-
tion. A modified generative adversarial network dubbed Bézier-
GAN has been applied to learn an interpretable low-dimensional
space that encodes major shape variation of aerodynamic de-
signs [23]. Autoencoders were applied to unsteady flows around
a two-dimensional airfoil [24], as well as inverse design of air-
foil shapes [25]. These deep learning techniques aim to improve
upon the limitations of linear methods and model complex and
nonlinear data with greater accuracy.

2.3 Aeronautical Databases
To test the effects of geometry and additional parameters on

the latent space for each model, non-optimized and optimized
databases are necessary. The UIUC airfoil database was selected
as the non-optimized database for its content and previous use
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in dimensionality reduction studies. The intrinsic complexity
and dimensionality of the design space has been measured via
shape reconstruction error, pairwise distance preservation, and
captured semantic attributes. Using MLE estimator, TwoNN es-
timator, and the Geo MLE estimator, the dimensionality of the
UIUC data set was found to be between 2 and 6 with a greater
probability around 4 dimensions [26]. More recently, the UIUC
airfoil database was used to visualize the effect of latent dimen-
sion on airfoil manifold learning [27].

The optimized airfoil data set was previously generated
using the open-source PDE analysis toolset SU2 to perform
gradient-based shape optimization on airfoils from the UIUC
database [28]. This data set was originally used to evaluate the
ability of CBGAN and CEBGAN generative models to perform
an inverse design of two-dimensional airfoils. [28]. To date, di-
mensionality reduction has yet to be performed on this optimized
airfoil data set. Since it was constructed from optimizing UIUC
database airfoils it provides a means to investigate the impact of
geometry optimization on the latent space when modeled in con-
junction with the UIUC airfoil database.

2.4 Airfoil Training Size and Dimensionality Estima-
tion

Having selected the models and established the airfoil
databases, determining model latent space size is the next es-
sential step. The dimensionality of the latent space is a crucial
model hyperparameter that has been shown to greatly impact the
autoencoder model accuracy [29]. In previous studies on the low
complexity MNIST data set, best results were achieved when the
number of hidden layer nodes in the autoencoder is set around
the intrinsic dimensionality of the data [16]. Although this spe-
cific trend was not observed in a greater complexity data set in
the same study, it is clear that latent space size is an important
modeling parameter. Intrinsic dimension also has a close corre-
lation with the number of samples needed for learning [30]. The
effects of latent space dimensionality and sample size are inves-
tigated in this paper.

A common method to estimate data set dimensionality is to
perform Maximum Likelihood Estimation (MLE). This method
has been applied to a range of real and simulated datasets,
demonstrating its performance over other dimensionality estima-
tors [31]. The efficacy of MLE was confirmed on the UIUC air-
foil database as estimates were found to agree with brute-force
hyperparameter tuning [27]. Estimators such as MLE rely on in-
dependent and identically distributed data as well as smooth and
locally uniform data density. While MLE has been previously
applied to the UIUC database, it is not clear that these assump-
tions were met. Since the optimized airfoil data set runs into
this same issue, intrinsic dimensionality is determined based off
model performance.

2.5 Effects of Optimized Geometry in Latent Spaces
While this investigation is specifically interested in the ef-

fect that these models have on uncovering the intrinsic dimen-
sion of non-optimized and optimized geometries, to the best of
our knowledge we were not able to find prior research addressing
this question. The closest field of research is in geometric param-
eterization for dimensionality reduction where largely studies
have centered around automotive evolutionary shape optimiza-
tion. Rios et al. explored the efficiency of the bottleneck layer of
a point cloud autoencoder as a geometric representation for opti-
mization [32]. In later work, aerodynamic drag and lift of five car
shapes were optimized within latent spaces of PCA, K-PCA, and
autoencoder models to identify model advantages in shape opti-
mization. Autoencoder representations were shown to be more
sensitive to changes in latent variables [33]. While this is not di-
rectly related, aerodynamic optimizations of vehicles share many
similarities with airfoils. These types of techniques have been
helpful in investigating the latent space of various optimization
generations. From intuition, optimized geometry should gener-
ally be able to be represented in fewer dimensions than an entire
database of non-optimized geometries.

2.6 Feature Selection and Latent Spaces
Using all of the features of a data set is not always neces-

sary to create an efficient and accurate model. In fact, several
studies have found that using more features than necessary may
increase the computational load and thereby slow down the learn-
ing process, while yielding similar results as those obtained with
a much smaller feature subset [34–36]. For these reasons, a com-
mon goal of feature selection is to use as few features as possible.
Although it is generally best to follow this rule of thumb, features
having a direct impact on the latent space representation may be
useful points to consider.

Disentanglement and consistency are shared properties fa-
vorable latent spaces [37, 38]. One such measure of consistency
within this basis is Latent Space Consistency, which uses the
Pearson coefficient as a metric of how the data changes along
any basis of the latent space [38]. While we do not apply these
metrics since the autoencoder latent space does not specifically
refer to the parameters; we focus on using the MSE between test-
ing data and reprojected samples to evaluate the performance of
each latent space dimension.

3 METHODS
In contrast to the related work, our contributions focus on

the effects of optimized geometry and training models using per-
formance parameters as additional features on the latent space
dimensionality. To evaluate these contributions, we performed
three steps: (1) preprocessing of the airfoil data sets, (2) con-
struction of the dimension reduction models, and (3) model hy-
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perparameter tuning.

Preprocessing Preprocessing of the data was necessary to
ensure all features were equally valued. The parameters of
Reynold’s number, Mach number, angle of attack, and target lift
coefficient for each individual sample were added to the opti-
mized airfoil data set to create a new third set. A data frame was
then created for each set, where all values were scaled between 0
and 1 using the MinMaxScaler from scikit-learn [39].

Dimension Reduction After scaling the data sets, two main
trials were conducted to evaluate our models. The first trial com-
pared our models to better understand the effects of using PCA
and autoencoders on variable training fractions. The second trial
holds this training fraction constant and evaluates model perfor-
mance with respect to latent space size.

Trial 1 iterated through fractions of training data using the
optimized airfoil data set and fixed latent space dimensions.
Sample sizes ranged from 5-1025 airfoils to get a full range of
sizes while saving close to 2% of the data for testing. The lower
bound was selected to be 5 since the number of components must
be less than or equal to than the number of samples. For each
sample size, 25 training and testing splits were conducted so that
reconstruction error could be averaged and a confidence inter-
val could be determined. This was done in sub-trials with latent
space sizes of 3, 4, and 5 for PCA and autoencoder models.

Trial 2 iterated through latent space sizes of 1-20 while hold-
ing the training testing split constant at 80%-20%. For each latent
space size, 25 training and testing splits were conducted. This
cross validation was performed so reconstruction error could be
averaged over many training and testing splits, and to generate
confidence intervals for PCA and autoencoder models. This trial
was conducted with three datasets: UIUC airfoil, optimized air-
foil, and the optimized airfoil data set with target optimization
conditions.

Model Tuning After creating these models, optimization of
their performance is necessary to ensure a fair comparison be-
tween PCA and autoencoders. This is accomplished via hyper-
parameter tuning. One such hyperparameter that requires fine
tuning is an autoencoder’s learning rate. This sets the step size of
the optimizer at each iteration while it is minimizing loss. Since
its value directly affects the training of the model, it also impacts
the model accuracy. If this parameter is too small, the model
will likely get trapped in local minimum. If this parameter is too
large, its step size will be too big resulting in passing over the
global minimum.

To mitigate the effects of learning rate on the model accu-
racy, this value needs to be optimized. From human fine tun-
ing, the optimal learning rate was found to be approximately
1.0× 10−4. Additionally, ReduceLROnPlateau, a PyTorch dy-
namic scheduler, was utilized to further optimize the learning

rate [40]. This scheduler works by reducing the value of the
learning rate every time that learning stagnates and the loss re-
mains the same for a given number of epochs. Unfortunately,
after tweaking the parameters of this function, the results were
no better than the constant learning rate, so this constant value
was used throughout experimentation. An additional sensitivity
study suggested that further optimization of learning rate would
not result in significant performance enhancement with the data
and model architecture used.

Model architecture may additionally impact autoencoder ac-
curacy. The encoder was simplified to have one fully connected
layer followed by a hidden layer with 1-20 nodes depending on
the trial. The decoder is identically opposite to the encoder, ex-
panding from the hidden layer to the fully connected layer. The
number of nodes in the hidden layer were variable to account
for many latent space sizes. The number of features in the data
set were used as the number of nodes in the fully connected lay-
ers. This value was typically 384, however it was increased to
388 in the trial where additional airfoil properties were included
as features. Reconstruction error was calculated by taking the
MSE of encoder input and decoder output. We conducted a brief
study by examining the testing MSE of autoencoders with addi-
tional hidden layers, finding that extra hidden layers do not result
in significant performance benefits on the optimized airfoil data
set. However, the inclusion of additional hidden layers resulted
in increased computational expense. For these reasons only the
simple autoencoder with one hidden layer was used throughout
the study.

4 RESULTS
This section first demonstrates the model performance on

the optimized airfoil data set. We then highlight the effects on
the latent space of using non-optimized airfoils and finally ex-
hibit the effects on the latent space of adding the specific input
conditions the airfoils were optimized for as features of the data
set.

4.1 Model Performance on Optimized Data set
Figure 1 displays the averaged mean testing MSE for each

sample size along with bootstrapped empirical 95% confidence
intervals over mean testing MSE values. Both PCA and autoen-
coder (AE) models are evaluated with latent space sizes of 3,
4, and 5 dimensions. In low dimensions, the autoencoder mod-
els have a significantly more narrow confidence interval and per-
form better than PCA on the majority of the training data frac-
tions. With larger latent space sizes, extreme training sample
sizes begin to result in high MSE values. As latent size increases,
the mean testing confidence interval for PCA narrows consider-
ably until it is similar to that of autoencoders at five dimensions.
Please also note that it is somewhat deceptive to evaluate the con-
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FIGURE 2. EFFECT OF WEIGHT DECAY ON MEAN TEST MSE
AND TRAINING SIZE

fidence interval in a log-based scale. In this case the upper bound
is substantially more telling of the confidence interval than the
lower bound.

Secondly, the mean testing MSE of the autoencoder mod-
els increase considerably with high training sample fractions and
greater latent dimensions. The confidence interval is much wider
in this area for the autoencoder than for PCA. This may have
occurred simply because the testing data size was small or be-
cause the autoencoder models became overfit with large sam-
pling sizes. On the other hand, PCA is more stable with extreme
training sample sizes and there was no systematic increase in
testing MSE in the high training sample size regiment.

To address the concerns of overfitting, L2 regularization was
applied and the previous trial was repeated for several weight de-
cay parameters. Figure 2 shows that increasing weight decay
results in higher test MSE values. From these results, there does
not appear to be much overfitting as an increase in the weight

decay parameter (as shown below the plot) typically corresponds
to an increase in testing MSE. Nevertheless, there is still signifi-
cant variance in testing MSE between cross validation trials that
could potentially obfuscate overfitting.

Figure 3 displays histograms of the reconstruction error for
each testing sample averaged over 25 trials for latent space sizes
of 3, 4, and 5 dimensions. This suggests that in low dimensional
spaces, autoencoders perform significantly better than PCA on
this data set. Figure 4 shows the full story where autoencoder
models start off with lower reconstruction error with low latent
space dimensionality but are outperformed in higher dimensions
by PCA. We interpret this as the autoencoder is likely getting
stuck in local optima, a common issue for this model type.

4.2 Optimized Geometry vs Non-Optimized Geometry
We had originally hypothesized that the optimized airfoil co-

ordinates would likely lie on a lower dimensional design mani-
fold. Although this study did not confirm our hypothesis, it did
show us some of the differences between these two datasets. For
one, from Fig. 4 it is clear that the optimized airfoil data set is
highly nonlinear. Testing MSE for PCA was substantially higher
with this data set than that of the UIUC airfoil database. It took
an additional two dimensions for the PCA models to reach the
same accuracy as the autoencoder models for the optimized air-
foil dataset. On the UIUC data set, autoencoder and PCA models
performed similarly in lower dimensions.

The bootstrapped empirical 95% confidence interval over
mean testing MSE is given by transparent shading for PCA mod-
els and darker shading for autoencoder models. This confidence
interval is significantly wider for the optimized airfoil data set
than the UIUC set. This implies that that both PCA and autoen-
coder models were struggling to model this data more so than
the UIUC airfoil database. The optimized airfoil coordinates do
not appear to lie on a lower dimensional design manifold. Of
course, further studies are necessary to confirm this given that
not all modeling methods and activation functions were tested.
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4.3 Including Parameters
The input parameters of Reynold’s number, Mach number,

angle of attack, and coefficient of lift were introduced as data
set features. The optimized airfoil coordinates were generated
using these conditions. Since the original features are dependent
on these four inputs, we examine their effect on the latent space
dimensionality in Fig. 5.

There are no significant differences in performance and di-
mensionality between the data sets. The greatest contrast is be-
tween the selected models. Once again, the autoencoders per-
form considerably better than PCA in lower dimensional latent
spaces until five dimensions.

After adding the input parameters, the autoencoders took
over four times as long to run as they did on the original opti-
mized airfoil data set. This computational cost is great for in-
significant performance benefits. Input parameters were found
to be not only unnecessary for model fitting, but to hinder it. As
discussed in Section 2.6, previous work has found larger feature

sizes to take longer to run. We attribute the increased run time to
increased feature size and to the model selection. Extensions of
this work using various autoencoder architectures and activation
functions may yield different results.
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FIGURE 5. EFFECT OF INPUT PARAMETERS ON MEAN PCA
AND AUTOENCODER TESTING MSE VALUES VS. DIMENSION

5 DISCUSSION
This section first discusses how geometry optimality and

performance parameters affect reconstruction and latent space
dimensionality. We then digress to an overview of the limita-
tions of this study such as autoencoder architecture, activation
functions, and the issue of autoencoders getting stuck in local
optima.

How Does Geometry Optimality Affect Latent Space Dimen-
sionality? Using various methods, the UIUC data set intrinsic
dimensionality was found to be between 2 and 6 with a greater
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probability around 4 dimensions [26]. Using PCA and autoen-
coders, we found that these methods had similar performance
around 4-6 dimensions for the UIUC and the optimized airfoil
data set. While our data suggest that optimized geometry does
not necessarily lie in a lower dimensional latent space than the
original geometry, the model variety used was not comprehen-
sive. Alternative generative models such as variational autoen-
coders or generative adversarial networks may exhibit different
behavior.

How Does Including Performance Parameters Affect Recon-
struction? We found that including input parameters as data
set features from which the airfoil coordinates were generated
does not necessarily decrease the latent space dimensionality.
Since additional features only increase the computational cost,
this finding suggests that there is no benefit to including addi-
tional features in the data set on which the rest of the airfoil ge-
ometry is dependent on. It also could be the case that the range of
physical parameters over which the geometries were optimized,
such as the range of Reynolds numbers, Mach numbers, angles
of attack and lift coefficients, may not have been helpful to the
dimensionality reduction. Extensions of this work into broad
aerodynamic regimes or alternative flow models may alter our
findings.

How Might the Autoencoder Architecture Alter Our Results?
Autoencoder architecture may additionally impact reprojection
accuracy. For uniformity, all autoencoder models were given the
same architecture in the results shown. A separate study was con-
ducted to validate that this architecture was appropriate. Deeper
neural networks from 2 to 10 hidden layers were additionally in-
vestigated to confirm that there was no significant performance
increase for various architectures using the optimized airfoil data
set. It was found that shallow networks were sufficient and that
increasing the number of hidden layers actually results in worse
performance for deep models. Moreover, as the network depth
grew, so did the training time. For this reason and for unifor-
mity, the original model with one hidden layer was used for all
experiments. Autoencoder architecture was also validated by re-
peating some of the trials after removing the nonlinear activation
functions. Since the loss metric was already MSE, this newly-
constructed autoencoder represents the same linear transforma-
tion as PCA, resulting in the same solution as in the PCA trial.

How Might the Activation Functions Alter Our Results?
The ReLU activation function was used throughout this study
because it is fast, does not typically have the problem of van-
ishing gradients, and it generates sparse representations. We also
assumed that the since PCA performs worse on the optimized air-
foils than on the UIUC airfoils that the optimized data set is more
nonlinear. While we did make this assumption, the curvature of
the manifold was not thoroughly studied. We plan to investigate

this phenomenon further and assign explicit manifold curvature
metrics. Methodologies to better investigate the manifold cur-
vature would likely need to rely on other, more differentiable
activation functions.

Additional activation functions were used in combination
with the architecture study. Sigmoid, Tanh, ELU, and CELU
were tested in models ranging from 1-10 hidden layers. Sigmoid
and Tanh were expected to have poor performance as they can of-
ten have vanishing gradients. This was observed when Sigmoid
activation was used. On the other hand, Tanh, ELU, CELU, all
performed reasonably similar to ReLU throughout all architec-
ture sizes. Further study of these activation functions is neces-
sary for future curvature investigations.

How Might Autoencoders Be Forced to Global Optima?
Throughout this study, one of the major issues observed was
autoencoders losing their way with local optima and not con-
verging to global minima. A method to solve the problem is
to learn their optimal representations using gradient-based op-
timizers. This method was recently developed and applied to
linear autoencoders [41]. Gradient-based approaches and regu-
larization methods show promise in learning the optimal repre-
sentation of principal components. We plan to conduct further
research in applying these methods to nonlinear autoencoders.

6 CONCLUSION
In this paper we investigated three characteristics of airfoil

manifolds. First, the impact of latent dimension size and sam-
ple size on the optimized airfoil data set reconstruction error was
explored. We found that autoencoders perform better in low di-
mensional spaces but PCA is more stable with extremely low
or high fractions of training samples. Second, we investigated
the intrinsic dimensionality between the UIUC airfoil database
and a subset of these airfoils optimized using CBGAN and CE-
BGAN models. From this study we determined that optimized
geometries do not necessarily live in lower dimensional mani-
folds. Finally, we investigated the effect of including target op-
timization conditions as data set features on reconstruction error
over a swath of latent space sizes. We found that adding features
that all data is dependent on does not necessarily reduce data set
dimensionality.

Airfoil manifolds remain a complex area of study with nu-
merous factors impacting latent space dimension and reprojec-
tion accuracy. Our approach provides several experiments to help
understand the implicit effect of data and model selection on the
latent space. Our findings suggest that performing DR on opti-
mized airfoil geometries and including dependent features in the
data set do not benefit the latent space dimensionality or repro-
jection error. With our contributions, we hope to shed some light
on various characteristics of airfoil manifolds and to lay ground-
work for future studies in this field.
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