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ABSTRACT

Measuring design creativity is crucial to evaluating the ef-
fectiveness of idea generation methods. Historically, there has
been a divide between easily-computable metrics, which are of-
ten based on arbitrary scoring systems, and human judgement
metrics, which accurately reflect human opinion but rely on the
expensive collection of expert ratings. This research bridges this
gap by introducing a probabilistic model that computes a family
of repeatable creativity metrics trained on expert data. Focusing
on metrics for variety, a combination of submodular functions
and logistic regression generalizes existing metrics, accurately
recovering several published metrics as special cases and illumi-
nating a space of new metrics for design creativity. When tasked
with predicting which of two sets of concepts has greater variety,
our model matches two commonly used metrics to 96% accu-
racy on average. In addition, using submodular functions allows
this model to efficiently select the highest variety set of concepts
when used in a design synthesis system.

INTRODUCTION

With Design, Creativity, and Innovation increasingly impor-
tant for competitive advantage, businesses and academics alike
are creating various techniques to increase humankind’s capabil-
ity for creativity. As a result, a vast number of books, papers
and tools are published every year claiming to increase a per-
son’s creativity. In turn, practitioners and researchers need reli-
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able ways of measuring the effectiveness of proposed techniques
- in essence, design creativity metrics.

However, researchers have yet to reach widespread agree-
ment on appropriate design creativity metrics [1, 2, 3, 4, 5, 6].
Some researchers define the unit of creativity in different ways,
including creative design outcomes, design processes, people,
and environments [7]. Others draw distinctions between Histori-
cal (H) and Psychological (P) creativity [1] (e.g., is an idea novel
with respect to all known ideas, or just with respect to an indi-
vidual?). This paper considers outcome-based metrics (e.g., the
novelty of a particular design) judged in a P-creative sense (i.e.,
from the standpoint of an individual’s assessment) [1].

For outcome-based metrics, there have been two primary
approaches that past researchers have taken to model creativity:
model-based metrics and human judgement-based metrics.

The first approach, model-based metrics, encodes a set of
designs into a vector of numbers, which a mathematical formula
then evaluates to calculate a score for some aspect of creativity
(e.g., variety or novelty). The advantages of model-based metrics
are their easy use by both humans and computers in creativity
judgement, and their consistency, which encourages reproducible
science. The disadvantages are the arbitrary weightings used by
some model’s scoring systems, and the difficulties in adapting
these formalized models to new domains or audiences.

The principle of diminishing marginal utility lies at the core
of this class of metrics: the more you have of some design at-
tribute, the less an additional unit is worth. Although this prin-
ciple is not typically discussed in the context of creativity, it ap-
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plies to many aspects creativity. For example, variety, novelty,
and unexpectedness all depend on diminishing marginal utility.

The second approach, human-judgement metrics, measures
creativity by asking a panel of humans to score concepts using
their prior experience. This approach ensures high external va-
lidity, but remains expensive to collect and difficult for computa-
tional systems to use efficiently.

This paper combines the advantages of these two approaches
by proposing a family of easily computable and expressive met-
rics that can be automatically trained from collections of hu-
man judgements. Specifically, it discusses how many existing
model-based metrics are based on diminishing marginal utility,
and presents a model that ties these metrics together under a gen-
eral theory. It does so using a special class of functions called
submodular functions that represent diminishing marginal utility
in computationally advantageous ways. Rather than a single met-
ric, our model allows researchers to automatically test and select
from an entire family of metrics. This approach essentially finds
a specific metric that is best-suited for a given set of human data,
also providing a principled method for evaluating among other
candidate metrics a researcher might be interested in.

This approach creates strategies that mitigate the two main
disadvantages of model-based metrics. By training our model
on collections of human judgements, we pair the external va-
lidity of human assessment with the computational friendliness
and repeatability of model-based metrics. Moreover, by general-
izing prior model-based metrics as special cases of diminishing
marginal utility, this model allows researchers to adjust existing
model-based metrics to better match human assessment.

The main limitation of our approach is that it only mod-
els aspects of creativity that exhibit diminishing or constant
marginal utility: variety, novelty, unexpectedness are easily mod-
eled, whereas it is not designed to model feasibility, quality, or
adherence to requirements. Those aspects of creativity are cur-
rently best addressed by other model-based metrics, and combin-
ing the two areas is a possible avenue for future work.

Throughout this paper, we use variety metrics as a work-
ing example. To validate this approach, experiments demonstrate
how the algorithm accurately recovers the existing variety met-
rics of Shah er al. [8] and Verhaegen et al. [9] to an average of
97.5% accuracy after 500 binary ratings. The paper also presents
results regarding the convergence rate of the algorithm and its
robustness under increasing signal-to-noise ratios.

Lastly, our model’s use of submodular functions has sig-
nificant implications for Computational Design Synthesis (CDS)
systems that wish to produce creative designs. Notably, a greedy
algorithm that selects designs that maximize the proposed sub-
modular function will select the optimally creative set of designs,
due to an important connection between creativity and the max-
imum coverage problem [10]. Through this result, the model
provides an efficient means for CDS systems to learn and utilize
human creativity when generating new designs.

RELATED WORK

This paper seeks to solve the problem of enabling creative
Computational Design Synthesis (CDS) systems, which seek to
generate a design, or set of designs, subject to some objective
function and constraints [11]. Of particular interest, are systems
that produce discrete sets of designs, since in these systems the
use of submodular functions can have significant impact. Exam-
ples of such CDS systems include Genetic Algorithms (GAs),
shape or graph grammar systems [12, 13, 14], agent-based sys-
tems [15], and density estimators [16]. In these cases, generating
a set of designs typically requires discrete optimization, such as
selecting the breeding population in GAs or the production rules
in a grammar, to maximize some measure of fitness.

To add creativity to CDS systems, the field needs objective
functions that allows model to maximize over aspects of creativ-
ity. Some of the model-based metrics mentioned below provide
those functions, but do not easily adapt across domains or opti-
mally agree with human judgements. This paper presents a class
of convex objective functions that generalizes current metrics and
is easy to implement, while also providing a means to adapt to
new domains or types of evaluators.

To do so, this paper’s contributions build upon two bodies of
work: 1) design creativity metrics; and 2) submodular functions.

Model-based Design Creativity Metrics

Outcome metrics that are model-based attempt to mathemat-
ically describe the creativity of a set of designs. A critical ele-
ment in all model-based metrics is some type of formal rubric
which allows a person to take a design idea and reliably encode
it into a set of numbers summarizing the idea. This encoding pro-
cess needs to be performed for each concept under consideration,
but can often be performed by non-experts provided the rubric is
sufficiently well-designed; in contrast, the Judgement-based met-
rics we review below require expert-level raters for each concept.
Although model-based metrics come in many varieties, the most
widely used are hierarchical and graph models.

Hierarchical models measure creativity for sets of designs by
encoding the set as levels in a tree. An outcome metric, such as
variety, is then calculated by measuring various parts of the tree.
For example, a popular metric by Shah et al. [8] uses a rubric that
decomposes concepts into a tree of functions at multiple levels:
physical principles, working principles, embodiment, and detail.
They then analyze creativity as a combination of four additive
sub-metrics: the quantity and variety of the set as a whole, and
the quality and novelty of each idea individually [8].

Several researchers have since altered Shah’s hierarchical
model for various reasons. Nelson et al. [17] offer a refined
version that fixes several modeling errors. Verhaegen et al. [9]
combine Shah’s metric with a tree entropy penalty, called the
Herfindahl index, to encourage “uniformness of distribution” —
essentially preferring trees that have even branching. Chakrabarti
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et al. [18] propose to a broader set of functional categories.

Graph-based outcome metrics take a similar approach, but
instead of breaking down designs into trees, they compute graph
features using attributes like similarity or cluster distances and
then combine weighted sums of those features. For example,
Mabher [19] defines novelty as how far away a new concept is
from clusters of previous concepts, where the clusters are created
using a prior concept similarity graph.

Human Judgement-based Design Creativity Metrics

Human judgement-based outcome metrics assume that the
full extent of what defines creativity cannot be captured in a sim-
ple mathematical model. Instead, judgement regarding what is
creative is given by a human, usually a domain expert. These
metrics typically use a small set of human raters who manually
rate designs on a Likert-type scale. The desired outcome metric
(e.g., novelty, variety, efc.) is then a combination (typically the
average) of the human ratings. Metrics that fall under this cate-
gory include Amabile’s Consensual Assessment Technique [20],
Carrol et al.’s Creativity Support Index [21], and the Creative
Product Semantic Scale [22]. Oman et al. [23] offer a compre-
hensive comparison of different metrics, where different methods
of evaluation include scale ratings, flow charts, novel models, ad-
jective pairings, and A/B tests.

While human judgement-based metrics have excellent valid-
ity (a high score, by definition, is what real humans considered
creative), they suffer from two fundamental challenges: repro-
ducibility and expense. Even if it were possible for multiple stud-
ies to utilize the same expert raters, differences in knowledge or
attitude at time of rating can make evaluators inconsistent with
prior ratings. This inconsistentcy makes it difficult to exactly re-
produce findings from other papers, even using the same design
concepts. Srivathsavai et al. [24] found that inter-rater reliability
between experts can be low, depending on which aspects of cre-
ativity are being evaluated. Collecting expert ratings is also ex-
pensive, requiring multiple raters for every concept considered,
making judgement of creativity difficult on a large scale.

The model proposed in this paper encompasses a broad
range of model-based metrics — it is a family of metrics defined
by a few free parameters. When these parameters are set to par-
ticular values, the model to becomes either a previously pub-
lished metric or new a metric. Our approach automatically fits
these parameters to human judgement data, thereby selecting the
particular metric which best matches human judgements. This
requires a small, one-time collection of expert-level human eval-
uation data, but then pays off with a reproducible model-based
metric with high external validity that can be used by non-experts
provided they use a rubric that can encode designs into a set
of numbers. In essence, our model is a middle-ground between
model-based and human judgement-based metrics.

Submodular Functions

We use submodular functions as a fundamental tool to model
and use creativity in an efficient way. For example, say we add
an item x to a set of items A; a function is submodular if we get
a greater increase in value from adding x to A, than adding x’ to
the set {AUx}. In short, the more items we add to A, the less
each additional item is worth. A common example of a submod-
ular function is the logarithm (for each positive x we move, dy
decreases). This definition is where submodular functions gain
their usefulness: it is identical to the principle of diminishing
marginal utility. The formal definition is that submodular func-
tions are set-based functions where, for a function p and two sets
A,BeQ: p(A)+p(B) > p(AUB)+ p(ANB). This definition
is similar to the behavior of the logarithm as described above,
except that A and B are sets, rather than a continuous variable x.

Recently, machine learning researchers have adapted sub-
modular functions to solve large-scale problems, particularly in
developing algorithms that recommend an optimally diverse set
of relevant webpages during a search. These opportunities lead
to formally defining the idea of “coverage” for a set of docu-
ments as the extent to which a set of items covers all possible
elements. Finding maximum coverage is called the Maximum
Coverage Problem, and has been proven to be NP-Hard.

Khalid et al. [25] demonstrated how submodular functions
could produce diverse webpage results, since lower bounds on
the performance of submodular functions [10, 26] provide the
optimal approximation for solving the Maximum Coverage Prob-
lem. Since that time, others have built upon the use of submod-
ular functions for diverse retrieval, notably the work by Ahmed
et al. [27], upon which our model is based.

By demonstrating the connection between creativity, dimin-
ishing marginal utility, and submodular functions, this paper al-
lows the design community to make use of advances in other
fields to develop better creativity metrics and CDS systems.

CREATIVITY MODEL
This paper’s core insights lie in the following connections,
resulting in the approach shown in Fig. 1:

1. Many common elements of creativity, such as variety or nov-
elty, are naturally expressed via the principle of diminishing
marginal utility.

2. Diminishing marginal utility can be expressed in a compu-
tationally advantageous way via submodular functions.

3. Submodular functions can easily utilize many of the design
representations used in current creativity metrics.

4. Given a set of designs, human experts have a hard time
agreeing on real numbered values for its creativity, but easily
make binary “greater than” or “less than” judgements.
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FIGURE 1. The overall approach 1) takes in two set of design con-
cepts (A and B), 2) encodes each set into a vector of features, 3) trans-
forms those features through submodular functions (p(A), p(B)), and
4) determines which set has greater variety using a weighted (w) differ-
ence (p(A) — p(B)) between the submodular features of the two sets. A
logistic regression optimizes the weight of each submodular feature (w)
so that the model closely matches expert-rated comparison data.

Connecting Creativity, Diminishing Marginal Utility,
and Submodular Functions

To see how creativity, diminishing marginal utility, and sub-
modular functions are related, we return to the example of es-
timating variety. We use a variant of the example presented in
Shah er al. [8]: suppose we have a set of student-generated de-
signs whose purpose is to move an object from point A to point
B. We want to select the two designs from that set which have the
most variety. For simplicity, assume that we have just three de-
signs: 1) a small cart that propels itself forward using a balloon
filled with air; 2) a similar cart, but propelled using a balloon
filled with water; and 3) a small catapult.

Say that we choose the first cart as one of your two final
choices: which of the other two designs do we pick? Since we
already have a balloon-propelled cart design, we do not get much
value from picking the second cart. This additional value is our
marginal utility, which diminishes because the second cart de-
sign is not as valuable as the first (even if they are equally good
designs). On the other hand, selecting the catapult to go along
with the first cart would give us higher marginal utility, since a
catapault is a completely new way of transporting the object and
thus has higher variety.

Various metrics try to address this notion of diminishing
marginal utility. Hierarchical metrics proposed by Shah ez al. [8]
and subsequent work [18, 17] represent this principle by assign-
ing a higher reward for solutions at higher functional levels. Ver-
haegen et al. [9] take those metrics a step further by accounting
for the entropy of the concept distribution, which is similar in
purpose to diminishing marginal utility. Maher [19] models it as
areward for greater aggregate distance from existing cluster cen-
ters. Whether a discrete or continuous space, the idea remains
the same: if a new idea is similar to what you already have, it is
less valuable — that is, it has a diminished marginal utility.

As we showed above, submodular functions closely model
diminishing marginal utility, which we can use to measure cre-
ativity. To operationalize this new knowledge, we need to ad-
dress the following questions: 1) how are aspects of creativity
expressed as submodular functions, 2) how do we represent de-
signs for use in submodular functions, and 3) how do we use
those functions to emulate human judgments?

Modeling Creativity with Submodular Functions

As with most published creativity metrics, we use a lin-
ear model where the outcome metric is modeled as a vector of
weights multiplied by a vector of features. Returning to variety
as the example: variety(A) = w’ -d(A), where A is the set of de-
signs, d is a vector of numbers summarizing the features of A,
and w is a vector of weights for each feature. In prior metrics the
feature weights (w) are typically set to some constant value (e.g.,
Shah et al. [8] choose w = [10,6,3,1] ).

This is where our work departs from prior work. We use sub-
modular functions (p(x)) to transform the design features such
that they obey specific forms of diminishing marginal utility:
variety(A) = w! - p(d(A)). We apply a variant of the model of
Ahmed et al. [27] for the purposes of modeling design creativity.

Formally, the submodular score for a set A is given by

f(A)=7"-d(A)+ B p(d(4)) (1)

where the weight vector w has been broken into two parts: ¥
and B, representing the modular and submodular contributions
to variety, respectively. This arrangement allows the algorithm
to determine how whether a feature obeys diminishing marginal
utility. Either ¥ or B can be set to zero to use only the submodular
or modular parts, respectively. This paper assumes that variety
behaves fully sub-modularly, so that we set ¥ = 0, resulting in
f(A) =B -p(d(A)). In this paper p(d(A)) is a vector where p
has been applied to each element in the vector d(A).

While any submodular function can be used for p, some use-
ful options given by Ahmed et al. [27] include:

Set Cover: p(x)=1ifx>0;0ifx=0
Probabilistic Cover: p(x) =1—e % for 6 >0
Logarithmic Cover: p(x) =1log(6x+ 1) for 6 >0

This paper demonstrates in the experiment section below that the
metrics of Shah er al. [8] are a special case of this paper’s model
where p = set cover, while the metric of Verhaegen et al. [9] is
well approximated by p = probabilistic cover.

Encoding Designh Concepts

Now that we have some candidate submodular functions, the
next step is to define d(A), i.e., how a specific set of designs (A)
becomes a vector of numbers that can be used by the submodular
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ativity metrics; it can handle graph-based creativity features, over which

This model can encode more than just hierarchical cre-

linear and hierarchical features are a subset.

function. We refer to this process as encoding the design con-
cepts, and it is required for any model-based metric. Typically
this is done using a rubric that describes how a human evaluator
should take a design and summarize it into a list of real num-
bers. For example, in Shah et al. [8, Tab. 6-7] a set of designs is
encoded as a functional tree decomposition, where each of four
levels is summarized by the number of bifurcations in a particu-
lar level of the tree; counting these branches provides you with
four numbers that describe the set.

Various authors have proposed different encodings, but the
end result is the same: designs become a vector of real numbers
(d(A)) (we call these features) that get used in a linear model.
Our model is agnostic to the choice of rubric or encoding, leaving
the researcher free to try whatever rubric they believe accurately
captures the aspects of design they are interested in. For human-
generated concepts this encoding is performed manually for each
concept, while computationally generated designs are typically
encoded automatically through a fixed algorithm. While need-
ing to manually encode each concept is disadvantageous, it is a
limitation shared across all model-based metrics.

Given a particular encoding, this paper’s model determines
how each of the encoded features impacts creativity. As Fig. 2
demonstrates, this approach works for linear design encoding,
such as those commonly used in consumer preference mod-
els; hierarchical encodings, such as Shah ef al. [8] and oth-
ers [18, 17,9]; and graph-based encodings, such as the cluster
model of Maher [19] or the Function-Behavior-Structure (FBS)
model [28].

By choosing the appropriate encoding, our model can mea-
sure the creativity of any aspect of design, and replace many ex-
isting metrics. Our model can also be used to compare different
encodings and determine which is best for a given problem — a
strategy we revisit later in the discussion section.

Model Inference

Given the above model and a particular encoding, the next
task is to estimate the weights w and any hyperparameters (e.g.,
0) using a dataset of human given ratings. Given perfect hu-
man raters, we could calculate these properties by asking human

judges: “on a scale from 0-10, how much variety does this con-
cept set have?” Unfortunately, this task is unfeasible in practice,
since every judge has a different definition of variety, making
simple numerical answers difficult to compare across judges.
Instead, we can ask a human evaluator to compare two sets:
“Given a set of concepts A and another set B, which set has
greater variety?” The result is a binary “A > B” or “A < B” an-
swer which is easily comparable across raters and is more accu-
rate than absolute value scaled scores [29]. Although this method
is still prone to differences in opinion and background (as are
all creativity metrics that depend on human evaluation), it re-
duces differences in absolute measurement between individuals.
Possible alternatives to binary rating include ordinal ranking of
more than two sets, as well as ordinal categories, e.g., “high”,
“medium”, and “low” variety. These, among other options, can
easily be translated to binary greater than/less than judgements
that our approach can use when greater fidelity data is available.
Given a dataset of binary judgements (i.e., is A > B or not)
between various pairs of sets, standard logistic regression can
determine the optimal weights w that best match the judgements
given by human experts. Formally, the likelihood function for
predicting whether a human would rate a set A > B is given by:

-1
P(A > B|A,B) = |1 +e7(f('4)*f(3)) (2)

where f(A) and f(B) are given by Eqn. 1. Using the entire
dataset, maximum likelihood estimation on the above likelihood
function determines the optimal weights. The value of the hy-
perparameters, if needed, can be determined either through grid
search or through stochastic gradient descent for certain forms of
the submodular function. Maintaining the model is also simple:
if new data is collected after initial training, the model can be
easily updated using any sequential gradient descent algorithm,
since maximum likelihood for logistic regression is an uncon-
strained convex optimization problem.

The end result after fitting the model to the human judge-
ment data is an optimized vector of weights w, and, optionally,
any hyper-parameters (8). These quantities can then be used in
Eqn. 1 to produce a numerical score (f(A)) for a set of new de-
signs. Alternately, you could also calculate the predicted human
judgement between two sets of designs (P(A > B|A, B)) by using
the optimized parameters in both Eqns. 1&2.

EXPERIMENTAL RESULTS

Validate our approach, we trained our model to predict
which of two randomly generated concept sets had greater con-
cept variety, and recorded whether the model made correct pre-
dictions on new data. To do this, we generated synthetic hu-
man judgement data by using two different existing model-based
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metrics, Shah er al. and Verhaegen er al. to simulate users. By
using these metrics to simulate human judgements, we could
assess how closely the model uncovered the true judgements,
while also making it easy for others to reproduce these re-
sults. Our full experiment code is available, for those who to
wish to replicate or extend our results: www .markfuge.com/
research/creativity.html. Work is currently under
way to apply this model to collections of human ratings.

For our synthetic dataset, we chose Shah’s metric because
of its broad adoption and because it is useful example of how
hierarchical metrics are encoded as a linear model. We chose
Verhaegen’s metric since it attempts to account for “uniform-
ness of distribution” within the hierarchical branches using the
Herfindahl index. This is similar in spirit to modeling diminish-
ing marginal utility, and makes that metric a natural candidate
with which to assess the utility provided by different submodular
functions.

To create the synthetic dataset, we leveraged the fact that
both Shah’s and Verhaegen’s metrics involve hierarchical metrics
defined on trees of depth D = 4, where random concept set gen-
eration amounts to randomly generating functional trees for sets
of M concepts. These randomly generated function trees were
the objects used when creating the A > B binary judgements. In
practice, actual human ratings would be used in place of the sim-
ulated data, with the researcher free to determine what encoding
they are interested in. Function trees are used here only to be
consistent with the encodings used by Shah’s and Verhaegen’s
metrics.

The results in this section were generated using the follow-
ing experimental procedure:

1. Select a variety metric to simulate human judgements (i.e.,
Shah or Verhaegen).

2. Randomly generate multiple sets of M = 10 concepts and
calculate their variety with respect to the chosen metric.
These values are the ground truth variety scores (V (X)).

3. Transform the feature vector of each set of concepts using a
submodular function (set cover for Shah, probabilistic cover
for Verhaegen) - This transformation is the function p (X).

4. Use Eqn. 1 to determine the submodular difference vector
between two sets of concepts - x; = {p(A) — p(B)} in the
case of fully submodular features. These difference vectors
become the input features for the logistic regression.

5. Recall the ground truths for each set (A & B). The equation
yi =sign(V(A) + €4 > V(B) + €p) decides whether the vari-
ety of A is greater than B, where € = N(0, 62). This decision
becomes the classification label for the logistic regression.

6. Steps 4 & 5 are repeated for as many training samples as
desired (“# of A/B Comparisons” in Figs. 3-5).

7. Using the difference vectors from step 4 and corresponding
classification labels from step 5, use logistic regression to
learn the optimal weights (w).

Metric n=100 200 300 400 500
Shah 952 969 97.6 98.1 98.6
Verhaegen | 919 944 955 960 963

TABLE 1.  Prediction accuracy across metrics. Randomly guessing
achieves a baseline score of 50%.

Results for shah variety metric
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the Shah metric to within 95% by 100 ratings. When more random error

With no error (top-most curve), our approach recovers

is added, the algorithm’s convergence is slower. Randomly guessing
results in a prediction accuracy of 0.5 (50%).

8. Evaluate the model on unseen test data via 30 randomized
cross-validation trials, comparing predicted decisions with
ground truth labels to determine prediction accuracy.

Figures 3 and 4 demonstrate the convergence and robustness
results of the model under Shah er al.’s and Verhaegen et al.’s
metrics, respectively. As Table 1 shows, in both cases the al-
gorithm converges to above 90% accuracy within the first 100
ratings, and to above 95% accuracy within the first 300 ratings.
Changing M demonstrated no meaningful change in any results,
which matches expectations. At N = 500 binary ratings in the no-
noise condition, for D = {4,10,25,50} the resulting accuracies
were {98.9,97.5,95.0,93.2} respectively, again matching expec-
tations; the performance curves look similar to those in Fig. 3,
but were omitted for space. In the presence of noise, the conver-
gence rate is slower but the model is able to recover the underly-
ing metric to high accuracy, given sufficient training samples.

Figure 5 demonstrates how the choice of submodular cover
type affects the recovery accuracy of the model: for Shah’s met-
ric, using set cover makes the model equivalent, and thus it cap-
tures the metric with complete accuracy. Using probabilistic
cover reduces the accuracy, since Shah’s metric does not encode
diminishing marginal utility within each level of the tree. Under
Verhaegen’s metric, using set cover does not capture the model
as accurately as using probabilistic cover, since their metric does
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by 300 ratings. The average scores are lower, since, unlike Shah’s met-
ric, our model class does not perfectly contain Verhaegen’s metric.

Our model recovers Verhaegen’s metric to within 95%
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FIGURE 5. Comparison of different submodular set cover types.
Shah’s metric performs better under set cover, where Verhaegen’s per-
forms better under probabilistic cover.

attempt to encode diminishing marginal utility within each level
of the tree. Both of these results confirm expectations. Logarith-
mic cover and probabilistic cover achieve similar results in both
cases, so we present only probabilistic cover to improve figure
clarity.

DISCUSSION
The above results raise the following questions for discus-
sion:

1. To what extent does this model extend to aspects of creativ-
ity other than variety?

2. How would these results fare under actual human evaluation,
instead of simulated sources?

3. What do these results mean for other work in Design Cre-

ativity measurement?
4. How does this model affect Computational Design Synthesis
systems?

Extensions to Other Aspects of Creativity

This paper provides two possible avenues for extending met-
rics: 1) testing other structures and domains for variety, and 2)
modeling other aspects of creativity, such as novelty and useful-
ness. In each case, the resulting mathematical model and infer-
ence procedures remain unchanged: the only change is how the
model encodes design concepts. This leads to a general proce-
dure for experimenting with various encodings and datasets.

The experiments in this paper focused on hierarchical met-
rics that are commonly used to analyze variety in engineering
design. However, this model extends to any encoding that can be
expressed as a linear set of features. This extension opens up fu-
ture work in formulations of variety on existing domains, as well
as transferring existing metrics to different domains.

For example, a new graph-based metric could be applied to
studying sets of FBS models or patent networks to determine
which features accurately predict variety. Likewise, by training
on a different set of experts, a hierarchically structured metric
similar to Shah et al.’s could be adapted to describe functions in
an organizational or service context.

The presented model can also be adapted to describe any
creativity metric that utilizes a form of diminishing marginal util-
ity. For example, novelty (e.g., [8, 18, 19]) or unexpectedness
(e.g., [19]) are recreated by altering which training sets are used.

Novelty would be the marginal utility between the current
set A, and anew set B = {xUA}. Judges could rate two sets to de-
termine what aspects affect novelty. Unexpectedness can be for-
mulated similarly; unlike novelty, however, unexpectedness only
considers the most recently seen designs. The unexpectedness
model essentially “forgets” old designs over time, and becomes
“surprised” if something breaks a chain of similar designs.

As mentioned earlier, a limitation of our model is that it is
not designed to model aspects of creativity that do not exhibit
constant or decreasing marginal utility. In cases where includ-
ing those aspects is desired, we recommend using our model in
concert with other good model-based metrics that cover those as-
pects. We have made our model code freely available to provide
a platform for future work in this area.

The Utility of Human Evaluation

The proposed model requires the collection of human rat-
ings, raising a natural concern: If the ratings are noisy, or even
contradictory, will this model be of any use? What if humans are
consistently poor judges of a certain aspect of creativity?

Fig. 3 and 4 provide an answer to this question: the model
handles noise gracefully, even if the raters’ assessments differ by
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a large amount. Increased noise translates to increased conver-
gence time, but even under high levels of noise (N(0,5%) for a
10 point variety metric), the model can combine multiple ratings
and uncover the underlying variety score to within 95% accuracy.

These experimental results assume that experts’ ratings are
normally distributed around a “true” variety score. This assump-
tion is not quite true, but reasonably approximates reality and
allows us to offer these initial robustness results.

The proposed model naturally accounts for differences be-
tween individual raters or groups of raters. By extending the
score function (Eqn. 1) with a set of user or group-specific bias
terms, this model can automatically learn these differences given
additional training data. This approach is commonly used to cap-
ture of possible bias terms in linear models (e.g., [30]).

If human judgements contradict each other, or if expert
judgements are consistently wrong about a set of metrics, then
the proposed model will mirror that behavior. However, this case
can be easily checked since the model can provide confidence
estimates for its accuracy (a non-trivial task for a human rater).

A relevant issue is the selection of an appropriate population
of human judges. Do we need domain experts and professional
designers, or can we settle for non-experts? This question is best
answered through appropriate controlled studies, such as the one
conducted by Kudrowitz and Wallace [31], who demonstrated
that Mechanical Turk raters showed strong correlation with nov-
elty but poor correlation with feasibility.

Lastly, the convergence behavior suggests the number of rat-
ings required to train the model. Both Shah and Verhaegen’s
variations reached or exceed 90% accuracy within 500 samples,
even under extremely noisy conditions. This level of conver-
gence could be achieved with 10 raters, who each supply 50 rat-
ings. Up to an order of magnitude more data could easily be col-
lected in practice, implying that our approach is feasible. Once
the model is trained, it requires no additional expert data achieve
results, unlike traditional methods. When a researcher wishes to
estimate additional creative factors, our results on increasing D
demonstrate that the amount of data needed increases, but not
prohibitively so.

Impact on Design Creativity Measurement

The generalizability of the proposed approach opens up
many new questions and future work opportunities for those
working in design creativity measurement:

To what extent does diminishing marginal utility occur in
aspects of creativity? Figure 5 demonstrates how to identify
the presence of diminishing marginal utility: the group of users
simulated by Verhaegen’s metric were more accurately modeled
by introducing diminishing marginal utility across the function
tree branches, while those simulated by Shah’s metric were not.
This suggests a method for systematically investigating which at-

tributes of designs obey diminishing marginal utility — evaluate
different models with different types of submodular functions to
hypothesize possible models for creative behavior.

Likewise, researchers can try different encodings (e.g., lin-
ear, hierarchical, or graph structured) to determine which model
best matches the creativity judgements provided by experts. By
using the same set of human judgements, new and published met-
rics can be assessed for how closely they match reality. Our ap-
proach creates a feedback loop for hypothesis-driven creativity
research that enables the research community to to systemati-
cally select and develop more accurate creativity metrics.

Are some features more important to creativity than others?
In order to use the proposed approach to evaluate how important
different design attributes are for creativity, we can do one of two
things: 1) compare a large number of different design encodings,
determine which one best fits human data, and then inspect that
model’s weights (w) to determine importance, or 2) create a de-
sign encoding with as many design features as possible, and then
train the model using L1 regularization in Eqn. 2 to encourage
unimportant weights to be driven to zero. In addition, new com-
putational algorithms can be derived to identify important fea-
tures not yet known: algorithms that cluster ideas according to
diminishing marginal utility could be given to domain experts to
uncover patterns in human evaluation.

Do different domains, experience levels, or backgrounds
judge the same creativity metric differently? By using a
particular design encoding and training the model on different
groups of people, future work could formalize differences in
opinion regarding the same metric. For example, given a Shah-
like variety metric, would architects and engineers view the im-
portance of physical function differently? Comparing the learned
weights of the metric for each group could provide an answer.

Impact on Computational Design Synthesis Systems
The use of submodular functions has several advantages for
CDS systems that wish to optimize over creativity:

The objective function is convex in the input features. The
convexity of Eqn. 1 has obvious advantages when optimizing
over a continuous design space.

The objective function in Eqn. 1 can be easily incorporated
in multi-objective optimization. After training the creativity
model using logistic regression (Eqn. 2), the submodular func-
tion and weights (Eqn. 1) can be reused separately to provide a
variety score. This score can be used inside of a multi-objective
optimization loop to balance creativity with other performance
objectives.
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Finding the most creative set of designs is an NP-Hard prob-
lem, but our model offers the best possible approximation
guarantee. Selecting the highest variety set of concepts (and
by above extension, highest novelty or most unexpected) is
equivalent to the Maximum Coverage Problem. This means that
CDS algorithms will not be able to efficiently select the most cre-
ative set in polynomial time, and any polynomial time algorithm
can only approximate the solution to ~ 63.2% or less of opti-
mum [10]. This seems to paint a daunting picture for the future
success of creative CDS systems.

Thankfully, the use of submodular functions provides relief:
a greedy algorithm that sequentially selects the designs that max-
imize Eqn. 1 is guaranteed to approximate the Maximum Cover-
age solution to at least 1 — % =~ 63.2% of optimum [10]. This
essentially matches the upper bound on the approximate solution
of the Maximum Coverage Problem, meaning that our approach
provides the best possible approximation you can hope for when
attempting to optimize the creativity of design sets. For proof
regarding this optimality or details about the greedy selection al-
gorithms that achieve that optimality, we direct readers to the
following papers: [10,32]. This approximation provides signifi-
cant cost savings when the set of possible designs is large, such
as in CDS systems that automatically generate designs [11].

CONCLUSIONS

The strength of this paper lies in drawing an important the-
oretical connection between certain aspects of creativity, such as
novelty and variety, and the principle of diminishing marginal
utility. By utilizing submodular functions to express diminishing
marginal utility, this paper described a creativity model that ties
together many existing metrics under a common framework.

Our model generalizes different configurations of creativity
metrics, such as linear, hierarchical, or graph based metrics. The
model can also adapt to human evaluators from different back-
grounds. It does so by requiring only simple A/B comparisons
between sets of concepts, simplifying data collection with a rat-
ing task easily processed by human judges.

As validation, this paper demonstrated how the proposed
model can reliably predict judgements produced by simulating
two published creativity metrics. Using the variety metrics of
Shah et al. [8] and Verhaegen et al. [9] to simulate judgement
data, the model predicted future judgements with 100% and
96.4% accuracy, respectively. Under increasingly noisy input
conditions, the model is still able to recover the judgements ac-
curately, at the cost of some convergence speed.

The use of submodular functions to model diminishing
marginal utility carries with it several advantages: 1) the model
parameters can be interpreted easily, 2) the likelihood and objec-
tive function are convex allowing for efficient optimization, and
3) Computational Design Synthesis systems can use the model
to perform optimal set selection in an efficient way.

These strengths come with a major limitation: there are
several aspects of creativity that do not have the diminishing
marginal utility property, such as feasibility or quality. While
our approach of sub-modular functions cannot be used to cap-
ture these aspects of creativity, the proposed model can be used
in concert with other model-based metrics that address those as-
pects. Future work could apply our data-driven approach to mea-
surement of creativity metrics across a broad spectrum of areas.

Rather than claiming to provide a universal metric for cre-
ativity, this work instead presents a family of metrics that can
act as a catalyst with which design creativity researchers can ask
new questions:

1. How does human evaluation of a particular creativity met-
ric vary across different conditions (disciplines, countries,
professional experience, etc.)?

2. What are the important elements that determine creativity?
What kinds of model structure appropriate? To what extent
can we discover those structures given human rating data?

3. How can Computational Design Synthesis systems utilize
models of creativity to generate creative designs? What are
the most efficient ways for CDS systems to query human
evaluators to best emulate creative design?

By combining the reproducibility of mathematical models
with the credibility of human judgements, this paper allows de-
signers and researchers access to more robust, adaptable, and ex-
ternally valid ways of quantifying creativity.
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