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ABSTRACT
This paper shows how to measure the complexity and re-

duce the dimensionality of a geometric design space. It as-
sumes that high-dimensional design parameters actually lie in
a much lower-dimensional space that represents semantic at-
tributes. Past work has shown how to embed designs using tech-
niques like autoencoders; in contrast, this paper quantifies when
and how various embeddings are better than others. It captures
the intrinsic dimensionality of a design space, the performance of
recreating new designs for an embedding, and the preservation
of topology of the original design space. We demonstrate this
with both synthetic superformula shapes of varying non-linearity
and real glassware designs. We evaluate multiple embeddings
by measuring shape reconstruction error, topology preservation,
and required semantic space dimensionality. Our work gener-
ates fundamental knowledge about the inherent complexity of a
design space and how designs differ from one another. This deep-
ens our understanding of design complexity in general.

INTRODUCTION
Products differ among many design parameters. For exam-

ple, a wine glass contour can be designed using coordinates of
B-spline control points: for 20 B-spline control points, a glass
would have at least 40 design parameters. However, we can-
not arbitrarily set these parameters because the contour must still
look like a wine glass. Therefore, high-dimensional design pa-
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rameters actually lie on a lower-dimensional manifold—what we
call a semantic space—that encodes semantic design features,
such as roundness or slenderness.

Past researchers, both within and beyond design, have pro-
posed many algorithms for mapping high-dimensional spaces to
lower dimension manifolds and back again—what we call a de-
sign embedding. But how do you choose which of these methods
you should use for a given design space? What properties should
a good design embedding possess? What, if anything, do embed-
dings tell us about the broader nature of a design space?

This paper answers those questions by proposing methods to
study design embeddings. Specifically, by comparing three types
of design embeddings—Principal Component Analysis (PCA),
Kernel PCA, and Neural Network Autoencoders—along several
factors that matter to design: accurately reconstructing embed-
ded designs, preserving a design space’s topology, and distribut-
ing points well within the semantic space. We demonstrate our
approach on synthetic superformula examples [1] with varying
non-linearity and a real world example of glassware.

Our approach helps novice designers rapidly and intelli-
gently create new shapes by selecting appropriate embeddings
that capture the complexity of design spaces. More importantly,
our work deepens our understanding of design complexity in
general by illuminating how design embeddings model a design
space, how to judge the inherent complexity of a design space,
and how designs differ from one another.
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RELATED WORK
Our hypothesis is that while shapes are represented in a

high-dimensional design space, they actually vary in a lower-
dimensional manifold, or surface within the larger design
space [2, 3]. One would then navigate a shape space by moving
across this manifold—like an ant walking across a surface of a
sphere—while still visiting all valid designs. This raises several
questions: How does one find the manifold (if it exists)? How
does one “jump back” to the high-dimensional space (raw geom-
etry) once one has wandered around on the manifold? How does
one choose a manifold that has similar topological structure to
the high-dimensional space?

Design Space Exploration and Shape Synthesis
Past work has explored and synthesized new shapes. Mac-

Donald et al. [4] used conjoint analysis to design wine bottle
shapes that conveyed semantic messages of wine flavor. Yumer
et al. [5] proposed a method to allow continuous shape editing by
using semantic attributes. Yumer et al. [6] used an autoencoder to
enable continuous exploration of the high dimensional procedu-
ral modeling spaces within a lower dimensional space represent-
ing shape features. Ulu et al. [7] trained a neural network to map
between the loading configurations and the optimal topologies,
and estimate the optimal topologies for novel loading configu-
rations. Ulu et al. [8] proposed a biologically inspired growth
algorithm to automatically generate support structures based on
the input structures. Unlike past work, this paper directly inves-
tigates the inherent complexity of a design space.

Manifold Learning Methods
Past researchers have taken four complementary approaches

to project high-dimensional data set onto a manifold: 1) Us-
ing linear transformation like Principal Component Analysis
(PCA) to find low-dimensional subspace that retains maximal
variance [9]; 2) Creating Embeddings that minimize nearest-
neighbor graph or distance quantities, including approaches like
Principal Surfaces [10, 11], Matrix Factorizations [12, 13], and
variants of Local Linear Embedding and Multi-Dimensional
Scaling [5]; 3) Using embeddings within a Reproducing Ker-
nel Hilbert Space (called Kernel Methods) [14, 15]; or 4) us-
ing multi-layer Neural Networks such as autoencoders to extract
low-dimensional features from high-dimensional data [16, 6].
Our approach builds upon PCA, Kernel PCA, and the autoen-
coder and introduces new ways to compare and contrast those
manifolds—or embeddings—to better understand how they cap-
ture a design space.

Original Design Space Reconstruction
To “jump down” to the lower-dimensional manifold is not

enough; to explore high-dimensional design space (raw ge-
ometry) using the low-dimensional semantic attributes, it is
also essential to “jump up” (to the high-dimensional raw ge-

ometry)—most techniques do one direction well, but not the
other [17]. To solve this, past research has either: used two
(separately trained) manifold learning approaches (one high-to-
low, another low-to-high) [5, 18], or have used models that train
both directions simultaneously [6, 19]. The methods used in our
work, i.e., PCA, Kernel PCA, and the autoencoder, map both
directions (“jump-down” and “jump-up”) simultaneously—the
first two methods use the learned parameters to do inverse trans-
form; while an autoencoder simultaneously trains an encoder and
a decoder so that it can both encode high-dimensional inputs to a
low-dimensional set of central network activations and then back
out by decoding these activations to the original inputs.

Topology Preservation in Manifold Learning
For a manifold learning method, the topological structure

of the original high-dimensional space should be preserved in
the projected lower-dimensional space [20]—points far away or
near to each other in the original space should likewise be far or
near in the projected space. In our case, two objects with similar
shapes should also have similar semantic features, and vice versa.
One way to evaluate this topology preservation is by measur-
ing the difference between the nearest neighbors graph of high-
dimensional data set and its low-dimensional projection [21,22].
Another way is to measure the preservation of pairwise distances
between points in the two spaces [23, 24]. Persistent homol-
ogy [25] can also be used for evaluating topology preservation of
dimensionality reduction methods with high robustness against
noise [26].

SAMPLES AND DESIGN SPACE CONSTRUCTION
To create a high-dimensional design space X , we generate

a set of design parameters or shape representations X ∈ X as
training and testing data. We fit sample shapes with B-spline
curves and use coordinates of B-spline control points as X . The
sample shapes come from two sources: 1) the superformula [1]
as synthetic example to control and compare the complexity of
design spaces; and 2) glassware contours as a real world exam-
ple.

Superformula Examples
The superformula generalizes the ellipse. With a radius (r)

and an angle (θ ), the superformula can be expressed in polar
coordinates:

r(θ) =

(∣∣∣∣∣cos(mθ

4 )

α

∣∣∣∣∣
n2

+

∣∣∣∣∣ sin(mθ

4 )

β

∣∣∣∣∣
n3
)− 1

n1

(1)

According to Gielis, two-dimensional superformula shapes
have a multidimensional parameter space in R6 with the vari-
ous parameters (α,β ,m,n1,n2,n3) [1]. For ease of visualization,
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(a) Linear superformula (b) Slightly nonlinear superformula (c) Highly nonlinear superformula

FIGURE 1: THE ORIGINAL a-b SPACE OF SUPERFORMULA EXAMPLES.

we look at two-dimensional subspaces of the superformula pa-
rameter space. To artificially control the dimensionality of the
design space, however, we fit B-splines to the generated shapes
and use the coordinates of the spline control points as our high-
dimensional features. Our examples consist of three different
cases in which we control two variables a and b such that the
spline control points—the design space—vary at different levels
of non-linearity.

The first example (the “linear example”) is the set of linear
scalings of one particular case of the superformula (Fig. 1a). The
spline points (x,y) vary linearly up to noise from the fitting pro-
cess, since the shape is simply stretched.

(x,y) = (a · r(θ)cosθ ,b · r(θ)sinθ)

(α,β ,m,n1,n2,n3) = (1,1,3,7,18,18)
The second example (the “slightly nonlinear example”) in-

volves manipulating n1,n2, and n3. These parameters change
whether the shape is circumscribed or inscribed in the unit circle
as well as otherwise altering the shape. Thus a shape can either
be convex or concave (Fig. 1b). The points of the spline there-
fore do not vary exactly linearly in a and b. This means that the
changes in the spline points are not linear, and the space is two-
dimensional. These changes, however, are fairly small compared
to that of stretching, so a linear transformation can still explain
much of the variation.

(x,y) = (a · r(θ)cosθ ,b · r(θ)sinθ)

(α,β ,m,n1,n2,n3) = (1,1,3,7−a+b,12+a,12+b)
The third example (the “highly nonlinear example”) is also

in a two-dimensional space, but involves manipulating the sym-
metry of the resulting shapes (m), so that the splines vary dras-
tically as parameters change (Fig. 1c). A linear approximation
should therefore explain far less of the variation.

(x,y) = (a · r(θ)cosθ ,b · r(θ)sinθ)

(α,β ,m,n1,n2,n3) = (1,1,3+(a+b) mod 4,7,12+a,12+b)

We randomly choose parameters a and b to generate training
samples and testing samples for the above three cases. Fig. 1a,
Fig. 1b and Fig. 1c shows the generated shapes according to pa-
rameters a and b for linear, slightly nonlinear and highly non-
linear cases, respectively. We call such space the original a-b
space, and compare it with the 2-dimensional semantic space F
to evaluate an embedding.

Real World Glassware Example
Glassware is a good real world example because 1) B-

splines shape representation (design parameters) smoothly fits
the glass boundary contours, and 2) we can interpret the se-
mantic features of glassware—e.g., roundness, slenderness, type
of drink, etc.We use 115 glass image samples, including wine
glasses, beer glasses, champagne glasses, and cocktail glasses.
We fit each glass contour with a B-spline curve, and build the
design space X using the coordinates of B-spline control points.

METHODOLOGY
To understand design embeddings, we first train three

dimensionality reduction models that map from a high-
dimensional design space X to a lower-dimensional semantic
space F , and back again. Then given new points in F (i.e., se-
mantic attributes), we can reconstruct designs using the trained
model, and vice versa. To compare design embeddings, we
use two metrics—reconstruction error and topology preserva-
tion. Our overall approach consists of four steps: model training,
shape reconstruction, model evaluation, and confidence predic-
tion.

Model Training
We compare three different dimensionality reduction meth-

ods: PCA, kernel PCA, and an Autoencoder. These methods all
simultaneously learn a mapping from the design space X to the
semantic space F ( f : X → F), and from the semantic space
back to the design space (g : F →X ).
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(a) Create a convex hull of the training set in the semantic
space

(b) Copy the boundary of the convex hull to the grid (c) Remove samples outside the boundary

FIGURE 2: RECONSTRUCTED SHAPES IN THE FEASIBLE SEMANTIC SPACE.

PCA performs an orthogonal linear transformation on the
input data. Kernel PCA is an extension of PCA which achieves
nonlinear transformation using the kernel trick [27]. An autoen-
coder is an artificial neural network nonlinearly maps X and F
when it uses nonlinear activation functions. According to Hornik
et al. [28], a “shallow” neural network with only one arbitrarily
large hidden layer can approximate a mapping to any level of
precision. Thus an autoencoder should embed designs well when
you possess sufficient data to train it.

We split any design data into a training set and testing set.
We further split the training data via 10-fold cross validation to
optimize the hyper-parameters using Bayesian optimization [29].
After optimizing any hyper-parameters, the model trains each ex-
ample with the entire training set. We test each model with the
testing set. For those who wish to fully reproduce our results,
we have put our full experiment code, including the settings for
kernel PCA and the autoencoder on GitHub 1.

New Shape Reconstruction
After mapping from design space X to semantic space F ,

we also need to map back to the original X from F—i.e., given
certain semantic attributes, we want to generate new shapes. To
visualize this mapping g :F →X , we uniformly sample from F ,
reconstruct those samples in X , and then plot the reconstructed
shapes in Fig. 2b. Some of those reconstructed shapes, how-
ever, may not be valid real world shapes—e.g., glasses on the
right bottom of Fig. 2b, where the glass contours on the two
sides intersect. We call these infeasible shapes. To limit F to
only feasible shapes, we take the convex hull of the training sam-
ples in F as shown in Fig. 2a. We sample F inside the convex
hull creating the glass shape distribution—the feasible semantic

1https://github.com/IDEALLab/design_embeddings_
idetc_2016

space—shown in Fig. 2c. Because training samples all have fea-
sible shapes, the created samples lying between any two training
samples should show valid designs if the semantic space pre-
serves the topology of the original design space (i.e., the space
is not highly distorted). This method does take some risks of
removing potentially innovative designs. However, whether the
generated shapes are infeasible, absurd, or innovative is difficult
to tell since by definition designs off the manifold are “unusual.”
This paper’s main focus is exploring the complexity of an exist-
ing design space rather than recommending innovative designs,
though this could be an interesting topic for future research.

Evaluation
To evaluate embeddings, we consider these questions:

1. Given known semantic attributes (e.g., roundness and slen-
derness), can the embedding precisely restore the original
design parameters that created it?

2. Do samples with similar shapes (design parameters) have
similar semantic attributes?

3. Do shapes in the semantic space (F) vary similarly com-
pared to the original shapes in the design space (X )?

To answer these questions, we propose two metrics for compar-
ing embeddings: 1) reconstruction error and 2) topology preser-
vation.

Reconstruction Error. Reconstruction error measures
how the actual B-spline control points differ from the recon-
structed control points:

ε =
1

mn

m

∑
i=1

n

∑
j=1
‖r(i)j − s(i)j ‖ (2)

where m is the number of designs, n is the number of spline con-
trol points, r(i)j is the ith reconstructed control point for the jth

4 Copyright c© 2016 by ASME

https://github.com/IDEALLab/design_embeddings_idetc_2016
https://github.com/IDEALLab/design_embeddings_idetc_2016


FIGURE 3: ALGORITHM FOR COMPUTING TOPOLOGI-
CAL ALIGNMENT.

design, and s(i)j is the ith original control point for the jth design.

Topology Preservation. To answer the second and
third question, we have to compare the topologies of the high-
dimensional design space X and the low-dimensional semantic
space F . Specifically, we compare the nearest neighbors of each
sample. If the nearest neighbors of each point in F are also its
nearest neighbors in X , similar shapes will remain close in F .
Furthermore, we prefer that shapes that vary continuously in X
also do so in F . Thus each design in either space should have
similar neighbors in similar proximity. If an embedding satisfies
those two conditions, it preserves the topology of X after pro-
jecting into F .

We measure how well an embedding preserves a neigh-
borhood ordering using the ordered neighborhoods coincidence
(ONC) index [22]:

o(k) =
1
pk

p

∑
i=1

u(i,k) (3)

where k defines the neighborhood size around each point; p is
the number of designs in the set; i is a design’s index in that set;
and u(i,k) compares the index for each point xi in X compared
to a corresponding point x′i in F . It computes the the number of
neighbors arranged in the same topological ordering in both X
and F . We get this topology alignment number u(i,k) using the
algorithm shown in Fig. 3. For a point xi in X , we find a list of
its neighborhood indices L = [n(i)1 ,n(i)2 , ...,n(i)k ]. Then given f :
X → F , we get x′i = f (xi) and its corresponding neighborhood
indices L′ = [n′(i)1 ,n′(i)2 , ...,n′(i)k ] in F . We look for items of L
one by one in L′ and skip any items which do not exist in L.

(a) Distribution of training samples in semantic space

(b) Kernel density estimation using training samples

FIGURE 4: TRAINING SAMPLE SPARSITY IN SEMANTIC
SPACE.

To determine the topological alignment, we add directed edges
in L′ to connect two successive neighbors in L. For example, if
n j = n′p and n j+1 = n′q, we add an edge: n′p → n′q. The topology
alignment number u(i,k) is obtained by counting the number of
edges pointing forward. When k is small, the index o(k) indicates
the local topology preservation; as k grows, o(k) indicates global
topology preservation.

Confidence of Shape Reconstruction
Reconstruction error and topology preservation evaluate an

embedding over training and testing sets. But the semantic
space F may have areas devoid of training or testing samples
(a sample-sparse area). How do we evaluate new shapes recon-
structed in those areas? If samples are evenly distributed then
reconstruction error can adequately indicate correctness. In re-
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(a) Reconstruction error and mean ONC (a method with the best performance
should be on the upper left corner)

(b) Distribution of training and testing samples in semantic space (red:
training samples; blue: testing samples)

(c) Density evaluation for new reconstructed shapes (darker color means
higher density)

(d) Remove shapes with low density evaluation

FIGURE 5: IRREGULAR SEMANTIC SPACE IN THE SUPERFORMULA EXAMPLE.

ality, however, training and testing samples may concentrate in
certain areas of F (e.g., Fig. 5b), making it hard to measure the
reconstruction accuracy in sample-sparse areas.

Figure 4a shows a distribution of training samples in F .
Most training samples concentrate at the top left and we are
confident that a new shape near that region will reconstruct cor-
rectly—provided the embedding has low reconstruction error and
good topology preservation. But what about the reconstructed
shapes far away from the training samples? For example, com-
pare the model’s prediction at A and B in Fig. 4a: we would have
higher confidence in the reconstruction at A, compared to B.

So how do we quantify this “reconstruction certainty”? If
we assume that the learned model can only guarantee accurate re-

construction near training samples, we can use an Epanechnikov
kernel density estimation (KDE) to approximate the probability
density function of shapes in the semantic space:

K(x;h) ∝ 1− x2

h2 (4)

where h is the bandwidth of the kernel. Fig. 4b shows the kernel
density estimate for the training set in Fig. 4a. The KDE outside
the feasible semantic space is not taken into consideration. Based
on the KDE, the probability of correct shape reconstruction at B
is much lower than that at A.

Fig. 5 shows an example where the low reconstruction er-
ror and high topology preservation cannot guarantee the correct-
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ness of the shapes far away from training samples. As shown in
Fig. 5a, although kernel PCA has better performance than PCA
based on the reconstruction error and topology preservation,
some of the new shapes reconstructed by kernel PCA seem obvi-
ously unexpected (compared to the original designs in Fig. 1b),
while shapes reconstructed by PCA are more reasonable. Those
unreasonable shapes reconstructed by kernel PCA lie in a seman-
tic cavity created by training samples (Fig. 5b). After applying
Epanechnikov kernel density estimation (Fig. 5c) and removing
the shapes with low density evaluation, we obtain shapes with
high probability to be correct, as shown in Fig. 5d.

To avoid sample-sparse areas where reconstructed shapes
have low certainty, we would prefer to spread training and test-
ing samples throughout the entire semantic space—even at the
cost of higher overall reconstruction error. Our future work will
address this issue by finding a way to enhance the regularity of
training sample distribution in the projected semantic space.

RESULTS AND DISCUSSION
We compare design embeddings across both synthetic and

real-world examples, breaking our results into four sections:

1. How we constructed the samples we used for our results.
2. How well the embeddings capture known semantic features.
3. How well embeddings capture the known intrinsic dimen-

sionality of the design space.
4. How well embeddings respond to changes in design space

complexity—as expressed by non-linearity.

We expect that 1) as the non-linearity of the design param-
eters increases, embeddings might struggle to correctly capture
any semantic features; 2) PCA should do well when learning the
semantic features in the linear case, but fail to do so as nonlin-
earity increases, since it is only a linear transformation; and 3)
Kernel PCA and Autoencoders with optimized hyperparameters
should improve over PCA in non-linear cases, though they may
transform the topology of the space or create semantic cavities
more so than PCA.

Do Embeddings Capture Semantic Features?
Figures 6a–6c show the superformula shape distribution in

the learned two-dimensional semantic space F for the linear su-
performula case. All the shapes shown in the figures are scaled to
the same height. Thus the aspect ratio will matter instead of the
height and the width and we expect an embedding to capture this
dependence on aspect ratio. By looking at the semantic space
learned by PCA (Fig. 6a) and kernel PCA (Fig. 6b), widths of
superformula patterns change along the horizontal axis, whereas
widths do not vary. In the autoencoder case, the learned seman-
tic feature also captures the aspect ratio along the direction of the
arrow in Fig. 6c. All three embeddings successfully capture the
semantic features of the original a-b space for the linear super-
formula example (Fig. 1a). We expected this because in a linear

design space both linear and non-linear embeddings should do
well.

In the slightly nonlinear case, the original a-b space (Fig. 1b)
demonstrates that convexity changes along with the aspect ratio
(i.e., as the aspect ratio increases, the convexity decreases). Thus
an embedding should capture these two features. PCA (Fig. 7a)
and the autoencoder (Fig. 7c) do this well. We did not expect
PCA to capture these features; the non-linearity may not have
been enough to prevent PCA from capturing all the semantic
features well. For kernel PCA (Fig. 7b), new predicted shapes
with high certainty (darker colored) match shapes shown in the
original a-b space; while shapes with low certainty (lighter col-
ored) do not—despite low reconstruction error and high topology
preservation (Fig. 7d). Compared to PCA and the autoencoder,
kernel PCA predicts unstable new shapes—that is, proposes good
shapes around training and testing samples but bad shapes else-
where in F .

In the highly nonlinear case, more complex features vary
in the original a-b space, such as the number of angles. PCA
(Fig. 8a) and kernel PCA (Fig. 8b) struggle to embed such com-
plex features—both have large reconstruction error and thus can-
not guarantee accurate reconstruction of training samples, let
alone new shapes. For the autoencoder (Fig. 8c), the recon-
structed shapes compare well with the original a-b space.

For the glass example (Fig. 9), the bottom radius and the top
radius generally differentiate the training examples. All three
embeddings fully capture these main semantic features. Kernel
PCA (Fig. 9b), for example, places champagne glasses at the
top right corner of the 2-dimensional semantic space, cocktail
glasses at the bottom right, and beer glasses at the top left.

Intrinsic Dimensionality
The intrinsic dimensionality D is the minimum number of

dimensions required to precisely reconstruct the design space
X . For example, we use parameters a and b as two vari-
ables when constructing superformula shapes. Although X is
a high-dimensional space that contains twenty B-spline con-
trol points, its intrinsic dimensionality is still two (D = 2).
Ideally, an embedding should approximate the mapping f :
(x1,y1,x2,y2, ...) → (a,b) where (xi,yi) is the coordinate of
the ith B-spline control point. Or more generally, an embedding
should capture how designs differ using as few semantic dimen-
sions (d) as possible. For PCA and Kernel PCA, d is the number
of principal components; and for autoencoders, d is the number
of nodes in the deepest hidden layer. As d grows, we should
expect all embeddings to better describe the design manifold, re-
constructing the original design data more precisely.

When the semantic space dimensional reaches the intrinsic
dimensionality (d = D), we would expect reconstruction error to
drop sharply and flatten out. PCA should excel at indicating the
intrinsic dimensionality D when the design space is linear. In
non-linear design spaces, Kernel PCA and autoencoders should
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(a) Semantic space learned by PCA (b) Semantic space learned by Kernel PCA (c) Semantic space learned by Autoencoder

(d) Reconstruction errors and mean ONC indices (e) ONC index

FIGURE 6: THE LINEAR SUPERFORMULA EXAMPLE (SEMANTIC SPACE DIMENSIONALITY = 2).

(a) Semantic space learned by PCA (b) Semantic space learned by Kernel PCA (c) Semantic space learned by Autoencoder

(d) Reconstruction errors and mean ONC indices (e) ONC index

FIGURE 7: THE SLIGHTLY NONLINEAR SUPERFORMULA EXAMPLE (SEMANTIC SPACE DIMENSIONALITY = 2).
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(a) Semantic space learned by PCA (b) Semantic space learned by Kernel PCA (c) Semantic space learned by Autoencoder

(d) Reconstruction errors and mean ONC indices (e) ONC index

FIGURE 8: THE HIGHLY NONLINEAR SUPERFORMULA EXAMPLE (SEMANTIC SPACE DIMENSIONALITY = 2).

(a) Semantic space learned by PCA (b) Semantic space learned by Kernel PCA (c) Semantic space learned by Autoencoder

(d) Reconstruction errors and mean ONC indices (e) ONC index

FIGURE 9: THE GLASS EXAMPLE (SEMANTIC SPACE DIMENSIONALITY = 2).
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(a) Linear superformula (b) Slightly nonlinear superformula (c) Highly nonlinear superformula (d) Glass

FIGURE 10: RECONSTRUCTION ERROR VERSUS SEMANTIC SPACE DIMENSIONALITY.

achieve a drop in reconstruction error near the intrinsic dimen-
sionality compared to PCA, which would require more semantic
dimensions than necessary to achieve similar reconstruction er-
ror. For all superformula examples, we know that d = 2—subject
to some minor fitting noise—while we do not know the intrinsic
dimensionality for the glass example. Figure 10 shows the re-
construction error of testing samples versus the semantic space
dimensionality for the three superformula examples and the glass
example. The reconstruction errors are computed using the mean
reconstruction error of two different subsets of our samples as
training and test set.

Design Space Complexity
The three superformula examples progressively increase the

nonlinearity of the design set. This allows us to test how embed-
dings perform under increasing design space complexity.

As shown in Fig. 10, since PCA is a linear transformation, it
needs higher semantic space dimensionality d to achieve low re-
construction error when the nonlinearity of the superformula in-
creases. If PCA performs well, the design space likely varies lin-
early, and PCA’s reconstruction error should drop sharply from
d = 1 to d = 2; while if the design space varies nonlinearly, PCA
will require more dimensions to reconstruct all the features of
the design (Fig. 10a – 10c). Kernel PCA shows similar regular-
ity with PCA, but can achieve much lower reconstruction error
when d is high enough.

This differs in the real world case. Glasses possess not
only primary features (such as top/bottom radii), but also vari-
ous minor features (i.e., small details, curvature of the bowl and
base, etc.). Therefore, when the semantic space dimensionality
d reaches two, all embeddings can capture the primary features,
resulting in low reconstruction error. As d increases, PCA and
kernel PCA continue to capture minor details, decreasing the re-
construction error.

In all the examples, the autoencoder’s reconstruction error
stabilizes as d increases, and does not outperform kernel PCA
when d is large enough. This may be due to hyperparameter
selection. Compared to kernel PCA, the autoencoder has more

hyperparameters to set and takes more time to train. So optimiz-
ing its hyperparameters is much harder. This may cause kernel
PCA to perform better as semantic space dimensionality goes up.
However, unlike autoencoders, when the semantic space dimen-
sionality goes down to a certain point, kernel PCA can no longer
capture the main features of shapes regardless of its hyperpa-
rameter setting, thus the autoencoder outperforms kernel PCA in
these cases.

Design space complexity also affects new predictions far
away from training samples (i.e., those with low certainty). By
looking at the reconstructed shapes in Fig. 6–9, we can see that
sometimes our trained model can propose reasonable shapes in
areas with low certainty, like in the linear superformula case
(Fig. 6) and the slightly nonlinear superformula case (Fig. 7a and
7c). But sometimes embeddings propose unreasonable shapes, as
in kernel PCA’s slightly nonlinear (Fig. 7b) or highly nonlinear
superformula case (Fig. 8). As the design space complexity in-
creases, embeddings struggle to propose reasonable shapes far
away from their training samples. Future work could explore
methods to segment or model highly non-linear design spaces.

CONCLUSION
We introduced an approach to evaluate two-way mappings

between a design parameter space and semantic space. We eval-
uated PCA, kernel PCA, and autoencoders with respect to recon-
struction error and topology preservation. As expected, we found
that 1) as design space complexity increased, embeddings sac-
rificed reconstruction error and topology preservation—though
non-linear models (kPCA and autoencoders) faired much better
than linear models (PCA); 2) increasing the semantic dimension-
ality helped demarcate the intrinsic dimensionality of the design
space; and 3) autoencoders performed fairly robustly compared
to PCA and kPCA, though future work could explore ways to in-
crease both topology preservation and more even embedding of
training samples throughout the semantic space.

Unexpectedly, we found that non-linear embeddings, par-
ticularly Kernel PCA, created cavities in the semantic space
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that created unpredictable shapes, despite low reconstruction er-
ror and high topology preservation near training samples. This
led us to the main limitation of non-linear design embeddings:
the semantic space obtained by design embeddings may con-
tain sample-sparse areas, where it cannot guarantee correct new
shape reconstruction. For future work, we plan to enhance the
regularity of training sample distribution in the projected seman-
tic space. We also plan to identify and separate possible com-
peting manifolds in highly nonlinear samples so as to possibly
decrease the non-linearity of the design space.

While this paper addressed geometric design spaces, our ap-
proach would extend to any type of design embeddings, includ-
ing those that reduce dimensionality of design text, or even com-
binations of words and geometry. It could apply to both improv-
ing interfaces that help novices explore designs as well as helping
model consumer preferences in high-dimensional design spaces.
Our work’s main implication is that choosing a design embed-
ding carries with it important choices about what you value in
your semantic space: Should it reconstruct designs consistently?
Should it preserve local or global topology? Should the seman-
tic space maintain regularity? Choosing an embedding with the
properties you want is not straightforward; our approach pro-
vides a principled way to compare and contrast embeddings—to
help you navigate those options and identify useful properties
of both the embedding and your design space in general. Ul-
timately, our work illuminates how designs differ from one an-
other by unpacking and studying the inherent complexity of de-
sign spaces; by providing a deeper understanding of what we
design and how we design.
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