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A design space is the space of all potential design candidates. While the design

space can be of any kind, this work focuses on exploring geometric design spaces,

where geometric parameters are used to represent designs and will largely affect a

given design’s functionality or performance (e.g., airfoil, hull, and car body designs).

By exploring the design space, we evaluate different design choices and look for desired

solutions. However, a design space may have unnecessarily high dimensionality and

implicit boundaries, which makes it difficult to explore. Also, if we synthesize new

designs by randomly sampling design variables in the high-dimensional design space,

there is a high chance that the designs are not feasible, as correlation exists between

feasible design variables. This dissertation introduces ways of capturing a compact

representation (which we call a latent space) that describes the variability of designs,

so that we can synthesize designs and explore design options using this compact

representation instead of the original high-dimensional design variables. The main

research question answered by this dissertation is: how does one effectively learn this

compact representation from data and efficiently explore this latent space so that we



can quickly find desired design solutions? The word “quickly” here means to eliminate

or reduce the iterative ideation, prototyping, and evaluation steps in a conventional

design process. This also reduces human intervention, and hence facilitates design

automation.

This work bridges the gap between machine learning and geometric design in

engineering. It contributes new pieces of knowledge within two topics: design space

exploration and design synthesis. Specifically, the main contributions are:

1. A method for measuring the intrinsic complexity of a design space based on

design data manifolds.

2. Machine learning models that incorporate prior knowledge from the domain of

design to improve latent space exploration and design synthesis quality.

3. New design space exploration tools that expand the design space and search for

desired designs in an unbounded space.

4. Geometrical design space benchmarks with controllable complexity for testing

data-driven design space exploration and design synthesis.
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Chapter 1: Introduction

A design space is the space of all potential design candidates defined by design

variables. Through exploring the design space, we can look for desired solutions by

evaluating different design alternatives before realizing them in the real world. While

some of the methods described in this dissertation can be applied to any design

space, the primary focus is on geometric design spaces. Geometric design in general

is a branch of computational geometry and focuses on curve and surface modeling

and representation. Here, by geometric design, we refer to the design of any object’s

geometry. For example, it can be the design of the car body, mechanical parts,

or shape of any object, as opposed to the design of materials, color, or machining

processes. A geometric design can have various representations. For example, we

can represent a two-dimensional design by using spline curves [105, 179] or grid-point

coordinates [40, 49], while a three-dimensional design can be represented by free-form

deformation (FFD) [66] or point clouds [228]. Although different representations lead

to different design spaces, geometric design spaces are generally high-dimensional and

complex, which complicates both human exploration and computational optimization.

This dissertation addresses this by analyzing geometric design spaces and generating

new representations that are more interpretable and compact.
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1.1 Why use Data-Driven Methods to Create Design Representations?

Many traditional design processes go through the cycle of ideation, prototyping,

evaluating, and improving. This iterative process usually requires human interven-

tion, which can be expensive and time-consuming. Eventually, only a few designs are

implemented and tested, leaving limited time for exploring design alternatives. De-

signers can find a design that satisfies all requirements (i.e., feasible to all constraints),

but the true optimal design is hard to uncover since insufficient design alternatives

are explored.

Alternatively, one can represent a class of designs by a consistent parameteriza-

tion, so that a design can be synthesized by setting those parameters and the process

of searching for solutions can be automated by optimization algorithms. For example,

people have parameterized designs using polynomials, splines, or free-form deforma-

tion (FFD) to represent aerodynamic or hydrodynamic designs (e.g., airfoils and

hulls) [66, 105, 122, 163, 179]. Given a parameterization, designs can be optimized

in that parameter space (i.e., the design space) by using methods like the genetic

algorithm [79] or topology optimization [16, 140, 147]. These types of approaches

also have downsides:

1. The dimensionality of the design space is often higher than the minimal dimen-

sions needed to capture design variability, which creates unnecessary computa-

tional cost. For example, if we use B-spline curves to parameterize airfoils, the

design space will be the coordinates of those B-spline control points. However,

we cannot arbitrarily change these coordinates (e.g., because airfoils possess

properties like curvature continuity, etc.). Thus feasible designs lie on a low-

dimensional manifold within that large design space. The dimensionality of

this manifold is the minimal dimensionality that preserves design variability.

2



We call it the intrinsic dimensionality.

2. Designs that can be represented by a certain parameterization are usually lim-

ited. This can be mitigated by adding parameters (e.g., increasing the number

of B-spline control points). However, it is hard to decide on the number of

parameters (i.e., design space dimensionality) manually, as we need to trade-off

between representation capacity and computational cost.

3. The boundaries of the design space are often unknown. It is also tricky to set

these boundaries, because the design space should be large enough to include

the optimal solution, while as small as possible to reduce the computational

cost on exploring infeasible regions.

To address some of these downsides, we can extract useful information from exist-

ing designs and leverage this information to create new designs. Designers have made

many designs based on certain knowledge set. Usually, new designs are created based

on the same knowledge set. So why can’t we make machines learn the knowledge set

from previous designs, and infer new designs based on the learned knowledge set?

Techniques from machine learning have made this possible. Once trained properly,

machine learning models can automatically capture the intrinsic dimensionality, vari-

ability, and boundaries of designs from data, thus ameliorating the above problems.

In this dissertation, I propose data-driven methods to address problems in traditional

design, and facilitate the design process so that it frees the time of designers, pro-

vides inspiration for them, and even allows practitioners to create products without

the help of a design expert.

3



1.2 Research Questions and Contributions of the Dissertation

Data-driven design, especially in the field of engineering, usually requires extra

consideration compared to problems dealt with in common machine learning areas

like computer vision and language processing. Specifically, the following three aspects

make data-driven design difficult:

1. Unlike the bounded input space of images or sentences, the bounds for the

design space are usually unknown, so one has to assume the bounds during tasks

like design optimization. For example, people usually predefine the parameter

ranges of given parametric models when optimizing airfoils or hulls [105, 122,

163]. As mentioned previously, these predefined design space boundaries are

sometimes problematic.

2. Design synthesis differs from synthesis commonly studied in the machine learn-

ing scenario (e.g., image, music, sentence, or video synthesis), as it is subject to

stricter functional (e.g., the lift/drag coefficient of airfoils) or geometrical (e.g.,

surface smoothness) constraints.

3. There are special requirements associated with data-driven design. For example,

we want to regularize the latent space such that designs change consistently

along any direction in the latent space. This property is desirable for design

exploration over the latent space, as it regularizes the mapping from the latent

space to the design space or the performance space.

In response to these difficulties, this dissertation explores the following fundamen-

tal research questions and contributions needed to answer those questions:

RQ 1: How does one measure the complexity of a design space? Contribution:

4



Chapter 3 represents this complexity by the intrinsic dimensionality, non-linearity,

and separability of the design data manifold [40, 49].

RQ 2: How does one find a low-dimensional latent representation that captures de-

sign variability? Contribution: Chapter 3 derives latent spaces by using differ-

ent models and then evaluates each latent space. Chapter 5 further describes a

model that hierarchically captures a regularized latent space of each component

in a design [50].

RQ 3: How does one explore the design space without specifying a fixed boundary?

Contribution: Chapters 6 and 7 describe an adaptive sampling method that

identifies feasible regions and a Bayesian optimization method that searches

for global optimal designs, respectively, without the need for predefined design

space bounds [43, 44]. This also allows the discovery of novel designs outside

the domain of existing designs.

By building data-driven models to find out answers to these questions, we can

solve the three problems in traditional design described earlier. Particularly, the

proposed data-driven design methods will help in three ways:

1. Feasible domain identification. By estimating a function that predicts the fea-

sibility of designs, we can identify the feasible domains of the design space with

respect to implicit constraints.

2. Design space exploration. We can capture a latent space that represents the low-

dimensional manifold encompassing the major variability of designs. Design

space exploration can then be performed on this latent space instead of the

higher-dimensional design space.
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3. Design recommendation. We can generate new designs from the learned model

that captures real-world design variability. These new designs will provide in-

spiration for designers and allow practitioners to create products without the

help of design experts.

1.3 Overview

In this dissertation, I will use design data to solve existing problems in design,

and help facilitate design space exploration and design synthesis. Specifically, each

chapter addresses the following:

Chapter 2: reviews previous work that helps data-driven design space exploration

and synthesis.

Chapter 3: shows how to measure the intrinsic complexity and dimensionality of

a design space, and generate fundamental knowledge about how designs differ

from one another. It deepens our understanding of design complexity in general.

Chapter 4: introduces a deep generative model of aerodynamic designs (specifically

airfoils) that reduces the dimensionality of the optimization problem by learning

from shape variations in an airfoil database, and proposes a two-stage optimiza-

tion method that prioritizes the optimization of major attributes.

Chapter 5: describes a method to synthesize designs with inter-part dependencies.

It decomposes the design space of the whole design into the design space of each

component while keeping the inter-component dependencies satisfied, so that we

can perform design synthesis and design space exploration for each component

separately.

6



Chapter 6: introduces Active Expansion Sampling (AES), a method that identifies

(possibly disconnected) feasible domains over an unbounded input space. It

avoids the need for setting explicit design variable bounds, and can be used for

discovering potentially novel and creative designs.

Chapter 7: proposes a Bayesian optimization approach, Trust Region Bayesian Op-

timization (TRBO), that only needs to specify an initial search space that does

not necessarily include the global optimum, and expands the search space when

necessary.

While the primary focus of this dissertation is on geometric design spaces, some

of the methods described here can be applied to other design spaces. Specifically,

when demonstrating dimensionality reduction techniques in Chapters 3-5, although

we only use geometrical designs as examples since they are easy to visualize, the

proposed techniques are applicable to studying any design spaces that can be reduced

and represented by a lower-dimensional space. The design space exploration methods

described in Chapters 6 and 7 can be used in any design space.

1.4 How to Use This Dissertation

Although this dissertation is organized in a way that each chapter should be read

sequentially, specific audiences may benefit more from certain portions of the work.

Engineering Design Practitioners looking to develop data-driven design

automation applications. Chapters 4 and 5 discuss the technique for learning

generative models from design databases, so that new designs can be automatically

synthesized from those models. Sections 4.5-4.6 and Chapters 6-7 further introduce

7



tools that can be built on those generative models and automatically search for desired

designs.

Machine Learning Researchers looking for new domains of application.

Despite the wide usage of machine learning in areas including social media, robotics,

and medical science, its application in engineering design is currently limited. In

general, the whole dissertation discusses machine learning techniques that address

engineering design problems. Particularly, Chapter 2 reviews how we can use dimen-

sionality reduction and Bayesian approaches to facilitate design synthesis and design

space exploration. Sections 3.4.1 and 5.4.1 provide synthetic datasets that could

serve as benchmarks for design space study. Finally, Section 8.3 brings up some open

questions and future research directions that may be addressed by more advanced

machine learning techniques.

Those who are interested in design of experiments, system design, algo-

rithm hyperparameter optimization, structural optimization, etc. Chap-

ters 6 and 7 present design space exploration tools based on the Bayesian approach.

Specifically, Chapter 6 introduces an adaptive sampling method for feasible domain

identification and Chapter 7 introduces a global optimization method. Different from

conventional methods, they gradually expand the search space while updating the

Bayesian model, so that the operating domain is no longer limited within fixed vari-

able bounds. They are most useful when the variable ranges are hard to specify.

Researchers looking to reproduce the results of this dissertation. The code

and data for reproducing the experimental results are open-source through the GitHub

link in each chapter.
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Chapter 2: Background

This dissertation focuses on the data-driven solution of two tasks: design space

exploration and design synthesis. Both tasks have been dealt with in areas of design,

machine learning, and computer graphics. This chapter reviews some fundamental

concepts and the existing state of the art in data-driven design space exploration and

synthesis.

2.1 Geometric Design Representation

To create a geometric design space, one has to define a consistent representation

that can express a set of designs. Note that in most cases the representation has to

be consistent (e.g., having the same dimensionality1 and one-to-one mapping from a

representation to a design) to form a design space, which allows machine learning or

optimization algorithms to operate on.

Using discrete geometry is a straight-forward way to represent designs. Specifi-

cally, sequences of point coordinates is used for representing 2D shapes that consist

of curves or pen strokes [40, 49, 91]. For 3D models, we use representations such

as point clouds [71, 99, 228], depth maps [203], geometry images [196, 197], voxel

grids [24, 137, 199, 231], and octrees [176, 212, 226]. These discrete representations

1Note that sometimes a design can also be represented as a sequence of variable length (i.e.,
variable dimensionality) [91]. In such cases we may still optimize the design as long as we can get a
consistent latent representation.
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are usually flexible enough to model any possible shape variation. However, it is their

flexibility that makes those representations under-constrained. For example, when

generating 3D models with smooth surfaces, the representation of voxel grids cannot

enforce the smoothness by itself. Another issue is that they often suffer from their

high dimensionality, which is also the source of their representation flexibility.

In contrast, using parameterization of shapes as a representation reduces the di-

mensionality of discrete representations and usually enforces properties like smooth-

ness and watertightness. The spline curve is a common 2D shape parameterization

approach, and is used commonly for aerodynamic shapes [105, 179]. Representation

such as abstract deformation handles [241, 242] and free-form deformation (FFD) [66]

are used for 3D models. Though these representations enforce desirable properties,

they also limit the diversity of shapes so that some minor features may not be rep-

resented. Also, the mapping from a parameterization and a design is sometimes not

one-to-one. For example, different rational Bézier curve representations (i.e., control

points, weights and parameter variables combinations) can result in the same curve.

This may bring difficulties to exploring the design space.

2.2 The Manifold Hypothesis

Though parameterization reduces the design space dimensionality required for

discrete geometry representations, the intrinsic dimensionality is usually much lower.

Thus a large body of work has been focusing on reducing the design space to a low-

dimensional latent space.

The design space is where potential design candidates exist. We can find de-

sired designs by searching the design space using methods such as the genetic algo-

rithm [131]. However, the design space contains mostly invalid solutions, and valid
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Figure 2.1: Valid glass designs (parameterized by Bézier curves) are on a low-dimensional
manifold. Here the high-dimensional design space is shown in 3D for visualization.

designs are usually on a lower-dimensional manifold (Fig. 2.1). Also, based on the

curse of dimensionality [14], the cost of exploring the design space grows exponen-

tially with its dimensionality. It is expensive and unnecessary to directly search a

high-dimensional geometric design space X . Instead, we can capture one or multiple

lower-dimensional manifolds (i.e., the latent space Z) that valid designs lie on. This

is done by learning a mapping f : X → Z. Since the latent space captures major

design variability, we can then search for designs in the latent space.

2.2.1 Learning the Latent Space

Since the high-dimensional design space is hard to visualize or explore and con-

tains mostly invalid solutions, we can use a lower-dimensional latent space to capture

the variability of designs. Previous efforts have been made to achieve the goal of

discovering how designs vary in the latent space. Work in this area is highly related

to dimensionality reduction, manifold learning, and representation learning.

We can model the mapping f : X → Z as a linear mapping, which uses a set of
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optimal directions or basis functions to represent designs such that the variance of

shape geometry is maximized. Such methods include the Karhunen-Loève expansion

(KLE) [51, 66], principal component analysis (PCA) [69], and the active subspaces

approach [214]. These methods usually have closed-form solutions to both the map-

ping f and its reverse mapping g. However, in practice, it is more reasonable to

assume that design variables lie on a non-linear manifold, rather than a hyperplane.

This brings up the need to study non-linear methods. The non-linearity can be

achieved by 1) applying linear reduction techniques locally to construct a non-linear

global manifold [69, 130, 167–169]; 2) using kernel methods with linear reduction tech-

niques [49, 69]; 3) latent variable models like Gaussian process latent variable model

(GPLVM) and generative topographic mapping (GTM) [224]; and 4) neural networks

based approaches such as self-organizing maps [165] and autoencoders [27, 49, 59, 69].

These previous approaches are for capturing a low-dimensional latent space that

represents major variability of designs. They are usually applied for reducing the

complexity of design optimization [165, 224] or creating interactive tools to visualize

and explore the design space [8, 162, 241].

2.2.2 Exploring the Latent Space

When designs are associated with requirements or performance scores, we can

find feasible or optimal designs by relating the latent space to relevant quantities of

interest (QoI).

In applications like design space exploration [64, 128, 237] and reliability analy-

sis [133, 248], people need to find feasible domains within which solutions are valid.

Usually these constraints are implicit and cannot be expressed analytically (e.g.,

aesthetics, functionality, or performance requirements) and require expensive evalu-
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ations (e.g., simulation, experiments, or human evaluation). This problem is studied

in the fields of adaptive sampling and active learning, where we want the mapping

h from the design space X to the evaluation space Y ∈ {−1, 1} (-1 for infeasible

and 1 for feasible designs) to be estimated through as few measurements as possible.

Specifically, we iteratively update the estimated mapping h. Within each iteration

t, a design x(t) is chosen to be evaluated such that its result y(t) ∈ Y is the most

informative for updating the estimation—this property is referred to as informative-

ness within the Active Learning community. This informativeness can be based on

label ambiguity [100, 136, 188], estimated expected error [31, 125, 154, 247], the re-

duction of the version space [215], classifier disagreement [7, 148], or the predictive

variance [26, 86, 111].

Similar approaches have also been developed for design optimization, where the

evaluation space Y ∈ R in most cases. Bayesian optimization (BO) is one type

of method that aims to reduce the number of evaluations. Instead of selecting the

most informative design at each iteration, BO selects designs to evaluate based on

their likelihood of being the optimal design. This likelihood is quantified as probabil-

ity of improvement [127], expected improvement [217], or upper confidence bounds

(UCB) [206].

When using adaptive sampling to identify feasible domains or using Bayesian

optimization to find global optimal designs, we normally need to specify some fixed

design variable bounds. In cases such as algorithm hyperparameter tuning [190, 204,

207] and shape optimization [164], setting the variable bounds are not trivial. It is

hard to guarantee that any fixed bounds will include the entire feasible domain or

the true global optimum. To solve this problem, this dissertation demonstrates new

methods for adaptive sampling or Bayesian optimization that require no fixed design

variable bounds. This also allows the discovery of novel designs outside the domain
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of existing designs.

Due to the curse of dimensionality, the number of evaluations required to precisely

estimate h increases exponentially with the dimensionality of X . Thus instead of

learning the mapping h : X → Y , we can learn a different mapping h′ : Z → Y , given

that we have the mapping from the latent space to the design space, i.e., g : Z → X .

We need g for synthesizing designs to perform the evaluation (i.e., experiments or

simulations) and get the desired results (feasible or optimal designs). This brings up

the need for design synthesis.

2.3 Designs Synthesis

Design synthesis is not only used in feasible domain identification and design

optimization, but also for simplifying the design process by recommending new designs

and visualizing the variability of design candidates. While this dissertation mainly

deals with data-driven design synthesis, there are two other approaches to generating

new designs, namely rule-based approaches and assembly-based approaches.

2.3.1 Rule-Based Approaches

Rule-based approaches generate new shapes or designs via explicit rules or con-

straints. These approaches involves procedural modeling [150, 210] and computational

design synthesis (CDS) [30, 118, 119, 158, 232]. However, such explicit rules are usu-

ally hard-coded based on prior knowledge, and are difficult to specify or generalize to

diverse design objectives.

Instead of requiring rules of shapes themselves, topology optimization [16, 140,

147] specifies a set of rules including a performance objective, constraints, and the

design’s physical interaction with the environment (i.e., loads and/or boundary condi-
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tions), which are usually clear in a specific problem definition. Topology optimization

generates new designs by searching for the solution of an optimization problem de-

fined by those rules. Since normally topology optimization relies on gradient-based

optimization, it cannot be applied on black-box objectives (e.g., aesthetics, customer

preference, or experimental performance).

2.3.2 Assembly-Based Approaches

Assembly-based approaches synthesize new shapes by assembling or reorganizing

parts from an existing shape database, while preserving the desired structures [36,

109, 208, 234, 246]. The shapes are usually parameterized by high-level abstract

representations, such as hand-crafted feature vectors [109] or shape grammars [208].

While these methods generate designs by using parts in the database, they edit shapes

at a high-level and do not control each part’s local geometry.

2.3.3 How Data-Driven Approaches Differ from Other Synthesis Ap-

proaches

In contrast to rule-based or assembly-based design synthesis, data-driven ap-

proaches learn rules, constraints, and shape deformation from data. They eliminate

the need for explicit rules, and often generate designs with more flexibility. More

importantly, we can identify a continuous compact latent space that encodes major

variations of valid designs. This simplifies design space exploration.

As mentioned previously, we embed designs into low-dimensional latent spaces

by learning the mapping f : X → Z. Meanwhile, given any coordinate in a latent

space, one can also synthesize a design if the inverse mapping g : Z → X is also

learned. Usually, dimensionality reduction techniques allow inverse transformations
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from the latent space back to the design space, thus can synthesize new designs from

latent variables [49, 51, 59, 69]. For example, under the PCA model, the latent

variables define a linear combination of principal components to synthesize a new

design [51]; for local manifold based approaches, a new design can be synthesized via

interpolation between neighboring points on the local manifold [130]; and under the

autoencoder model, the trained decoder maps any given point in the latent space to

a new design [27, 59, 197].

Different from models like PCA and autoencoders, a generative model learns the

probability distribution of designs Px. Usually it projects latent variables z draw from

some prior distribution Pz to a design x ∼ Px. Researchers have employed generative

models such as kernel density estimation [209], Boltzmann machines [99], variational

autoencoders (VAEs) [153], and generative adversarial nets (GANs) [137, 231] to

learn the distribution of samples in the design space, and synthesize new designs by

drawing samples from the learned distribution.

Though the aforementioned machine learning models can be directly applied to

design synthesis, in practice there are limitations that hinder their performance. For

example, engineering designs are usually subject to specific geometrical (e.g., surface

smoothness of aerodynamic shapes) considerations that subjects commonly synthe-

sized in the machine learning scenario (e.g., images, music, sentences, or videos) do

not have. These considerations are prior knowledge that we can incorporate into our

model to improve data-driven design synthesis.

To guide data-driven design space exploration and design synthesis, the next chap-

ter starts by understanding important properties of a design space, i.e., intrinsic

dimension, data separability, and non-linearity.
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Chapter 3: Learning the Intrinsic Complexity of Design Spaces

Portions of the work in this chapter were published in the Journal of Mechanical

Design [49] and the ASME International Design Technical Conference [41]

3.1 Introduction

Products differ among many design parameters. For example, a wine glass con-

tour can be designed using coordinates of B-spline control points: with 20 B-spline

control points, a glass would have at least 40 design parameters. However, we cannot

arbitrarily set these parameters because the contour must still look like a wine glass.

Therefore, high-dimensional design parameters actually lie on a lower-dimensional

design manifold (Fig. 3.1) or latent space that encodes major variability of design

attributes, such as roundness or slenderness. A manifold’s intrinsic dimension is the

minimal dimensionality we need to faithfully represent how those high-dimensional

design parameters vary.

Past researchers, both within and beyond design, have proposed many algo-

rithms for mapping high-dimensional spaces to lower-dimensional manifolds and back

again—what we call a design embedding. But how do you ensure the embedding has

captured all the geometric variability among a collection of designs, while not us-

ing more dimensions than necessary? How do you evaluate which embedding best

captures a given design space? What properties should a good design embedding
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Figure 3.1: 3D visualization of high dimensional design space showing that design parame-
ters actually lie on a 2-dimensional manifold.

possess?

This chapter answers those questions by proposing methods to study design em-

beddings. Specifically, our method measures the complexity of a high-dimensional

design space and the quality of an embedding. We demonstrate our approach on syn-

thetic superformula examples [79] with varying complexity and real-world glassware

and airfoil examples.

While this chapter focuses on mathematically understanding design spaces, our

approach ultimately has implications for several important sub-fields of Engineering

Design. In engineering optimization, the number of design variables severely impacts

accuracy and convergence. In consumer preference models, high-dimensional design

spaces complicate capturing human opinion inexpensively or accurately. In design in-

terfaces, designers have difficulty exploring and manipulating high-dimensional design

spaces. Because our approach automatically determines a design space’s complexity

and dimension, these sub-fields can assess 1) their task’s fundamental difficulty, and

2) how to best reduce that difficulty. Mathematically, our work deepens our un-

derstanding of design complexity in general by illuminating how design embeddings

model a design space, how to judge the inherent complexity of a design space, and

18



how to measure the ways designs differ from one another.

Our main contributions are:

1. A method for embedding designs in the fewest dimensions needed to control

shape variations.

2. A minimal set of performance metrics for embeddings, including reconstruc-

tion error, topology preservation, and whether the manifold captures key shape

variations.

3. Manifold benchmarks with controllable complexity (i.e., non-linearity, dimen-

sionality, and separability) for testing design embeddings.

3.2 Related Work

Past research has taken two different approaches to understanding design spaces

and synthesizing new shapes or designs—knowledge-driven methods and data-driven

methods [233]. Knowledge-driven methods generate new shapes or designs via explicit

rules. One representative example is procedural modeling, which creates 3D models

and textures of objects (such as buildings and cities) from sets of rules [150, 210]. An-

other example is Computational Design Synthesis (CDS), which synthesizes designs

(such as gearboxes and bicycle frames) based on topological or parametric rules or

constraints [30, 118, 119, 158, 232]. However, such explicit rules are hard to specify or

generalize to diverse design objectives. Data-driven methods, by contrast, learn the

representation of geometric structure from examples, adjusting the model to match

provided design data. We refer the readers to the survey by Xu et al. [233] for an

overview of data-driven shape processing techniques.

Our work uses a data-driven approach to learn the inherent complexity and the

latent representation of a shape collection, and synthesize shapes by exploring that
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latent representation. Generally, there are three main data-driven approaches: 1)

assembly-based modeling, where parts from an existing shape database are assem-

bled onto a new shapes [35–37, 90, 109]; 2) statistical-based modeling, where a prob-

ability distribution is fitted to shapes in the design space, and plausible shapes are

generated based on that distribution [73, 109, 209]; and 3) shape editing, where a

low-dimensional representation is learned from high-dimensional design parameters,

and designers create shapes by exploring that low-dimensional representation.

This chapter falls into that third category. Many approaches use manifold learning

techniques such as Multi-Dimensional Scaling (MDS) to map the design space to a

low-dimensional embedding space [8]. However such approaches generally construct

only one-way mappings (high to low). Some methods can also directly learn a two-way

mapping between the design space and the embedding space, such as autoencoders,

which uses neural networks to project designs from high to low dimension and back

again [28, 240]. Another way is to associate shapes with their semantic attributes by

crowd-sourcing, and then learn a mapping from the semantic attributes to the shapes,

such that new shapes can be generated by editing these semantic attributes [241].

3.3 How Our Contributions Relate to Prior Work

Our hypothesis is that while shapes are represented in a high-dimensional design

space, they actually vary in a lower-dimensional manifold, or surface within the larger

design space [17, 216]. One would then navigate a shape space by moving across this

manifold—like an ant walking across a surface of a sphere—while still visiting all valid

designs. This raises several questions: How does one find the manifold (if it exists)?

How does one “jump back” to the high-dimensional space (raw geometry) once one

has wandered around on the manifold? How does one choose a “useful” manifold,
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and how do ones evaluate that “usefulness?”

A common issue for previous shape synthesis methods is that they often do not

address the inherent properties (e.g., intrinsic dimension, non-linearity) of the geo-

metric design space before embedding, choosing instead to set parameters (such as

dimensionality) manually. This causes problems during embedding and shape synthe-

sis because this may not adequately capture shape variability or may use unnecessary

dimensions along which designs do not vary. Unlike past work, this chapter directly

investigates the inherent complexity of a design space under the assumption that dif-

ferent parts of that space may differ in complexity. We discover information such as

discontinuities in the design space and the intrinsic dimension of each segment. We

then adjust the embeddings and design manifolds based on that information.

Another issue is that given various embeddings (constructed by MDS, autoen-

coders, etc.), how does one choose the embedding that best enables a smooth and

accurate exploration of the space? Reconstruction error is one common metric for

evaluating embeddings. It measures how accurately the model can reconstruct in-

put data as it embeds data from high dimension to low and back again. However,

sometimes embeddings can excel at reconstruction but ultimately place the data in a

lower-dimensional space with unexpected and unintuitive topological structures, such

as linear filaments in Deep Autoencoders [68]. While these structures may aid accu-

rate reconstruction, they make it difficult for users to explore the embedded space.

In this chapter, we propose evaluation metrics that measure three properties of an

embedding: (1) its reconstruction accuracy, (2) how well it preserves a design space’s

topology, and (3) whether it captures the design space’s principal semantic attributes.

In practice, there is often a trade-off between these metrics, and our approach allows

a designer to visualize and decide among embeddings with respect to that trade-off.
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3.4 Samples and Data

Before we discuss our approach, we need to introduce some concrete benchmarks of

design spaces that we will demonstrate and validate our method over. By design space,

we mean any M -dimensional vector (x ∈ RM) that controls a given design’s form or

function—e.g., its shape, material, power, etc. To create a high-dimensional design

space X , we generate a set of design parameters or shape representations X ∈ X .

For ease of explanation and visualization, this chapter uses designs described by 2D

curved contours; however, the proposed methods extend to non-geometric design

spaces as well. Specifically, we uniformly sample points along the shape contours and

use their coordinates as X where x
(i)
j and y

(i)
j are the x and y coordinates of the jth

point on the contour of the ith sample:

X =


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The sample shapes come from two sources: 1) the superformula [79] as a synthetic

example whose design space complexity we can directly control, and 2) glassware and

airfoil contours as real-world examples.

3.4.1 Synthetic Benchmark

Since this chapter’s goal is to capture a design space’s inherent properties, we first

need a benchmark dataset whose properties we can directly control; this allows us to

measure performance with respect to a known ground truth. Since, to our knowledge,

no such benchmark exists for design embeddings, we created one using a generaliza-

tion of the ellipse—called the superformula (See Fig. 3.2 for examples)—that allows
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Figure 3.2: Examples of superformula shapes.

us to control the following properties: (non-)Linearity, number of separate mani-

folds, intrinsic dimension, and manifold separability/intersection. Two-dimensional

superformula shapes have a multidimensional parameter space in R6 with parame-

ters (a, b,m, n1, n2, n3) [79] in Eqn. (3.1). With a radius (r) and an angle (θ), the

superformula is expressed in polar coordinates as:

r(θ) =

(∣∣∣∣∣cos(mθ
4

)

a

∣∣∣∣∣
n2

+

∣∣∣∣∣sin(mθ
4

)

b

∣∣∣∣∣
n3
)− 1

n1

(3.1)

thus the Cartesian coordinates X are:

(x, y) = (r(θ) cos θ, r(θ) sin θ)

Controlling linearity. By tuning the parameters in Eq. 3.1 we can vary the non-

linearity of X; for example, by changing the aspect ratio s of the shapes, we can

linearly vary X:

(x, y) = (s · r(θ) cos θ, r(θ) sin θ) (3.2)

We can control the linearity of X by tuning the linear switch s in Eqn. (3.2) or the

nonlinear switches {a, b,m, n1, n2, n3} in Eqn. (3.1). Fig. 3.3a and 3.3b are examples

of controlling linearity of the design space. A design space’s linearity is reflected by

the curvature of the manifold—higher non-linearity results in higher curvature.

Controlling the intrinsic dimension. To artificially control the intrinsic dimen-

sion M of the design space, we construct M -dimensional subspaces of the superfor-
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(a) Linear design space (d = 1)
varying s.

(b) Nonlinear space (d = 2)
varying s & n3.

m = 3

m = 5

m = 4

Abnormal!

(c) Design space with multiple
shape categories.

Figure 3.3: 3D visualization of the superformula design space created by a linear mapping
from the high-dimensional design space X to a 3-dimensional space, solely for visualization.
Each point represents a design.
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mula parameter space by varying M parameters choosing from {s, a, b,m, n1, n2, n3},

and keeping other parameters fixed, as shown in Fig. 3.3a (1-D) and 3.3b (2-D).

Controlling the number of shape categories. A collection of designs does not

always consist of just one category of shapes. For example, a collection may contain

not only glassware, but also bottles, which have very different contours to glassware

and likely have different manifold properties. A näıve embedding, which lumps glasses

and bottles together, should perform poorly here, and thus we need our synthetic

benchmark to create similar cases with distinct manifolds. It is possible to have

multiple categories of superformula shapes by discretely changing the value of m

in Eqn. (3.1). Because the parameter m controls the period of the right-hand-side

function in Eqn. (3.1), we can use it to set the superformula to a m-pointed-star, as

shown in Fig. 3.3c. The discrete change of m forms separate clusters or sub-manifolds

in the design space.

Another benefit of this formulation is that we can control the separability of the

sub-manifold, since we can make these clusters intersect one another (e.g., Fig. 3.7b).

We can generate intersecting clusters by setting the ranges of varying parameters n2

and n3, such that all the clusters contain ellipses or circles. Because this superformula

benchmark can generate design manifolds with many different properties, we believe

it should be useful not only for benchmarking and improving future design embedding

techniques, but also for evaluating manifold learning techniques in general.

3.4.2 Real-World Data

Glassware. Glassware is a good real-world example because 1) shape representation

using B-splines smoothly fits the glass contours, and 2) we can interpret the semantic

attributes of glassware—e.g., roundness, slenderness, type of drink, etc. We use 128
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glass images, including wine, beer, champagne, and cocktail glasses. We fit each glass

contour with a B-spline, and build the design space X using the coordinates of points

uniformly sampled across the B-spline curves.

Airfoils. An airfoil is the cross-section shape of a wing or blade (of a propeller,

rotor, or turbine). Like glassware, we can also represent airfoils via 2D contours and

they have discernible semantic attributes that allow us to verify different embeddings.

A good airfoil shape embedding can aid airfoil optimization; for example, the pro-

posed method can provide a continuous space with the fewest number of necessary

dimensions for an airfoil optimization algorithm to optimize over, improving conver-

gence speed and accuracy. Our airfoil samples are from the UIUC Airfoil Coordinates

Database, which provides the Cartesian coordinates for nearly 1,600 airfoils.1 We use

linear interpolation to ensure that each airfoil has the same number of coordinates in

the design space X .

3.5 Methodology

First, we try to achieve good design embeddings by understanding the complexity

or properties of the design space—for example, detecting the number of sub-manifolds

and what their dimension might be. Based on those results, we then apply embeddings

of appropriate complexity and type to the different sub-manifolds. We will review

the details of our methodology. Interested readers can review the full source code for

needed to reproduce all detail in this chapter.2

1http://m-selig.ae.illinois.edu/ads/coord_database.html
2https://github.com/IDEALLab/design_embeddings_jmd_2016
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3.5.1 Pre-processing

Our raw data may come from shapes with various height and width, or have

inconsistent or very high dimensionality. These issues obstruct manifold learning

and embedding. We apply shape correspondence and linear dimension reduction as

pre-processing steps to mitigate these issues.

Shape correspondence. We ensure that the coordinates for all designs correspond

to consistent cardinality and areas in space. This step is important for our techniques

to work well; however, the choice of correspondence technique is not central to the

contributions of the chapter. In this work, we fixed the coordinates of the start and

end points, and uniformly sample a constant number of points on the shape outline.

Specifically,

1. For the superformula example, we set the point whose angle is 0 in the polar

coordinate system as the start point, and the point which has the largest angle

in the polar coordinate system as the end point;

2. For the glass example, we set the start and end point at the top and bottom of

the left contour respectively;

3. For an airfoil, its outline has two curves — the upper and lower curves. We

set the left and right most point as the start and end point of each curve,

respectively.

Then for the superformula and glass examples, we standardized each sample such

that the y coordinates are in [0, 1]; and for the airfoil example, we standardized each

sample such that the x coordinates are in [0, 1].
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Linear dimension reduction. Before performing non-linear dimension reduction,

we first use Principal Component Analysis as a linear mapping (f ′ : X ∈ RD → X ′ ∈

RD′
) to reduce X such that it retains 99.5% of the variance. The original design space

X is normally high dimensional. For example, if 100 points are used to represent the

contour of each glass, we will have a 200-dimensional design space. It is difficult to

learn from such a high dimensional space because of the following reasons: 1) the

standard Euclidean distance metric is no longer a reliable measurement of similarity

in a high dimensional space; 2) the number of samples required grows exponentially

with the dimension; and 3) computing high dimensional data requires more time and

resources. The first two reasons are the consequences of what is called the curse

of dimensionality [15]. Despite their high dimensionality, the design parameters X

are usually highly redundant. For example, in our experiments, by using principal

component analysis (PCA), the 200-dimensional glassware design parameters can be

reduced to 30-dimensional while still retaining at least 99.5% of the variance between

designs. Therefore, our first step is to apply simple linear dimensionality reduction to

map the high-dimensional design space to a lower (but still high) dimensional space:

f ′ : X ∈ RD → X ′ ∈ RD′

where f ′ is a linear mapping and D ≥ D′.

3.5.2 Learning Design Space Properties

If designs do lie on manifolds, we first need to know the number, intrinsic dimen-

sion, and complexity of those manifolds for two reasons. First, knowing the intrinsic

dimension M sets the dimensionality d of the latent space F . Setting d < M makes

it impossible to completely capture all variability of designs; while d > M introduces
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unnecessary dimensions along which designs do not vary—this unnecessarily impedes

exploration or optimization.

Second, separating different categories of designs helps exclude invalid designs. To

illustrate this point, we can first look into the case when there are multiple manifolds

in a design space, as shown in Fig. 3.3c. Suppose we treat these multiple manifolds

as one, and perform embedding and shape synthesis. We have to use a 3-dimensional

latent space to completely capture the variation between the designs. Since there are

no design samples in between two manifolds—what we call a design cavity, we do

not know whether a design from that area is valid. Consequently, in that area we

might synthesize a new shape which looks like a weird hybrid of two designs from two

different manifolds, like the abnormal shape in Fig. 3.3c. In contrast, if we separate

these manifolds and then do embedding and shape synthesis on each manifold/design

category, we can avoid generating invalid new designs.3

For the above reasons, we apply clustering and intrinsic dimension estimation over

the dimensionality-reduced design space X ′ before embedding designs.

Clustering. To separate manifolds, we use a method based on robust multiple man-

ifolds structure learning (RMMSL) [83]. It assumes that within each cluster, samples

should not only be close to each other, but also form a flat and smooth manifold. A

manifold can be flat and smooth if it has small curvature everywhere. The method

thus constructs an affinity matrix which incorporates both pairwise distance and a

curvature measurement, which is computed via principal angles between local tangent

spaces.

RMMSL uses a curved-level measurement R(x) to indicate curvature and flatness:

3An astute reader may notice that designs “off-the-manifold” may be, in some sense, creative or
innovative. We return to that discussion in Sect. 3.6.3.
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R(x) =
∑

xi∈N(x)

‖θ(Ji, J)‖
d(xi, x)

(3.3)

where θ(Ji, J) measures the principal angle between the tangent spaces Ji at xi and

J at x, which indicates the curvature of the manifold; d(xi, x) is the geodesic distance

between xi and x; and N(x) is the spatial neighborhood point set for x.

In general, RMMSL first performs local manifold structure estimation: it estimates

the local tangent space Ji ∈ RD′×di at each sample xi, where i = 1, ..., n and di is

the local intrinsic dimension at xi (the method of estimating di is introduced in

Sect. 5.2.2). Then it learns the global manifold structure by constructing an affinity

matrix W ∈ Rn×n using both a pairwise distance kernel w1(xi, xj) and a curved level

kernel w2(xi, xj):

Wij = w1(xi, xj)w2(xi, xj) (3.4)

where w1(xi, xj) = exp(−‖xi − xj‖2/(σiσj)), w2(xi, xj) = exp(−θ(Ji, Jj)2/(‖xi −

xj‖2σ2
c/σiσj)), σi and σj are local bandwidth [244], and σc is a coefficient to con-

trol the effect of the curved level kernel.

The time complexity for estimating the local tangent spaces is O(ND′(k2max +

D′kmax + D′2)), where kmax is the maximum neighborhood size. The complexity for

computing the affinity matrix using pairwise distances and curved-level measurements

is O(N2D′d2max), where dmax is the maximum local intrinsic dimension. Thus the

overall computational cost for getting the affinity matrix is O(ND′(k2max +D′kmax +

D′2 +Nd2max)).

To compute the curvature measurement, we need the neighboring point set N(x)

for each sample point x. We use the neighborhood contraction and expansion algo-

rithm proposed by Zhang et al. [245]. The basic idea is that the neighborhood size k

selected for each point x should not only reflect the local geometric structure of the
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manifold, but also have enough overlap among nearby neighborhoods to allow local

information propagation.

Specifically, the neighborhood contraction and expansion algorithm first uses k-

NN to get a neighborhood Ni of size kmax for each point xi, and constructs a matrix

Xi− x̄i1T , where Xi = [xi1 , ..., xikmax
] and x̄i =

∑
k≤kmax

xik . Then it contracts Ni by

removing the farthest neighbor until some preset minimal neighborhood size kmin is

reached or until the following inequality holds:√∑
j>di

(σ
(i)
j )2 ≤ η

√∑
j≤di

(σ
(i)
j )2 (3.5)

where σ
(i)
j is the jth singular value of Xi − x̄i1T (σ

(i)
1 ≥ ... ≥ σ

(i)
kmax

), di is the local

intrinsic dimension of the manifold at xi, which we will introduce in the next section.

and the small constant η ∈ (0, 0.5).

Based on [245], forN samples the algorithm has complexityO(N(kmax−kmin)k2max(kmax+

D′)), when sample xi ∈ RD′
.

Normally given the correct number of manifolds C (i.e., group number), RMMSL

has good performances in separating them [83]. However, it requires manually speci-

fying the number C. To automatically detect the group number C, we apply a method

based on self-tuning spectral clustering (STSC) [244]. This method automatically in-

fers C by exploiting the structure of the eigenvectors V of the normalized affinity

matrix A (i.e., the Laplacian matrix) using an iterative algorithm (with T number of

iterations).

For each possible group number C, the STSC algorithm tries to find a rotation

R̂ such that each row in the matrix Z = VCR̂ has a single non-zero entry (VC is the
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first C columns of V ). This is achieved by minimizing a cost function:

L =
n∑
i=1

C∑
j=1

(Z2
ij −M2

i )

where Mi = maxj Zij. Then the best group number C is the one with the lowest cost.

Once we get the optimal Z, the sample xi can be assigned to cluster c if and only if

maxj(Z
2
ij) = Z2

ic.

The eigenvalue decomposition of the Laplacian matrix takes O(N3) time. Given

a group number C, at each iteration of the optimization, the time for computing Z

via Givens rotation [82] is O(C2(C3 + N)). Thus the total time for computing Z

is O(TC3
max(C

3
max + N)), where Cmax is the maximum group number, and T is the

number of iterations. Assigning samples to clusters takes O(NCmax) time. Therefore

the overall computational cost for estimating the optimal group number is O(N3 +

TC3
max(C

3
max +N)). While the scale complexity on Cmax is high, in practice Cmax is

often a small number, so the complexity penalty is manageable.

In sum, we first obtain the nearest neighbors N(xi) for each sample xi, then apply

RMMSL to compute the affinity matrix W . Finally, we use W as the affinity matrix

for STSC to determine the group number C and assign samples to different groups.

Intrinsic dimension estimation. Following the manifold clustering procedure, we

apply intrinsic dimension estimation over each manifold/design category. The esti-

mator is based on the local dimension estimation method mentioned in RMMSL [83].

We first obtain the K nearest neighbors of each sample xi. We set the neighborhood

size K using the adaptive method proposed in [180]. With the neighbors of xi and a

weight matrix S, we construct a local structure matrix:

Ti = (Xi − xi1T )SST (Xi − xi1T )T
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where S is a diagonal matrix and can be set as Sjj = 1/(σ2
n + σ2α(‖xij − xi‖2)), σ2

n

and σ2 indicate the scales of the noise and the error, and α(·) is a monotonically

non-decreasing function with non-negative domain (e.g., a quadratic) [83].

The local intrinsic dimension di is estimated from the eigenvalues of Ti—similar

to dimensionality estimation using PCA. A category’s overall intrinsic dimension is

the mean intrinsic dimension of all points in that category. In practice, point-wise

intrinsic dimension can be noisy (and thus appear to change dimensionality often).

We apply a kernel density smoother to local dimensionality estimates to account

for our assumption that the local dimensionality should not vary drastically within

a neighborhood on a smooth manifold. For example, if the local dimensionality

estimations for xi and its five neighbors are {2, 3, 2, 2, 2, 2}, the second estimation is

likely to be incorrect. After applying KDE, the new estimations will be {2, 2, 2, 2, 2, 2}.

We use the Epanechnikov kernel to limit density estimation to a local neighborhood,

and set the kernel bandwidth adaptively based on the distance between each sample

and its Kth neighbor.

3.5.3 Embedding and Shape Synthesis

We used methods involving PCA, kernel PCA (with a RBF kernel) [183], and

stacked denoising autoencoders (SdA) [221], which all simultaneously learn a mapping

f from the space X ′ to the latent space F (f : X ′ ∈ RD′ → F ∈ Rd) and a reverse

mapping g from the F back to X ′ (g : F ∈ Rd → X ′ ∈ RD′
) where D′ ≥ d.

PCA performs an orthogonal linear transformation on the input data. Kernel PCA

extends PCA, achieving a nonlinear transformation via the kernel trick [182]. The

SdA extends the stacked autoencoder [220], which is an multilayer artificial neural

network that nonlinearly maps X ′ and F using nonlinear activation functions [18].
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(a) Create a convex hull of the
training set in the latent space.

Invalid!

(b) Copy the boundary of the convex
hull to the grid of new designs gener-
ated from the latent space.

(c) Remove designs outside the
boundary.

Figure 3.4: Set boundary of the feasible latent space.

We split any design data into a training set and test set. We further split the

training data via 5-fold cross validation to optimize the hyperparameters using the

sequential model-based algorithm configuration (SMAC) [102]. After optimizing any

hyperparameters, the model trains each example with the entire training set. We test

each model with the test set.

After mapping from design space X ′ to latent space F , we also need to map

back to the original X from F—i.e., given certain latent codes, we want to generate

new shapes. This is achieved by first applying mapping g, and then applying g′

(g′ : X ′ ∈ RD′ → X ∈ RD), which is the inverse mapping of f ′.

To visualize the mapping g′ : F → X , we uniformly sample from F , map those

samples back to X to synthesize their shapes, and then plot them in Fig. 3.4b. Note

that although we only visualize a limited number of shapes generated from the latent

space F , we can generate infinitely many shapes when continuously exploring in F .

Every latent space should have a boundary beyond which designs are not guaran-

teed to be valid. For example, at the top left of Fig. 3.4b, the glass contours on the

two sides intersect. We call these infeasible shapes, i.e., shapes that are unrealistic

or invalid in the real-world. To limit F to only feasible shapes, we take the convex

hull of the training samples in F as shown in Fig. 3.4a, and set its boundary as the
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boundary for the feasible latent space. We sample and synthesize shapes inside the

feasible latent space, as shown in Fig. 3.4c. Because training samples all have feasible

shapes, any designs lying between any two training samples should be valid if the la-

tent space preserves the original design space’s topology (i.e., the space is not highly

distorted). As a result, this method may not explore innovative, unusual designs.

While this chapter’s main focus is understanding the complexity of an existing design

space, we discuss how to find innovative designs in Sect. 3.6.3.

3.5.4 Evaluation

To evaluate embeddings, we consider these questions:

1. Given known latent codes (e.g., roundness and slenderness), can the embedding

precisely restore the original design parameters that created it?

2. Do shapes in the latent space (F) vary similarly compared to the original shapes

in the design space (X )?

3. Does the embedding precisely capture all the attributes that control the varia-

tion of shapes?

To answer these questions, we propose three metrics for comparing embeddings: 1) re-

construction error, 2) geodesic distance inconsistency, and 3) principal attributes.

Reconstruction error. Reconstruction error measures how the actual design pa-

rameters X ′ differ from the design parameters of the input data once we project them

onto the low-dimensional manifold and un-project back into high-dimensional space.

We use the symmetric mean absolute percentage error (SMAPE) [144] to measure

reconstruction error:

ε =
1

mn

m∑
i=1

n∑
j=1

|r(i)j − s
(i)
j |

|r(i)j |+ |s
(i)
j |

(3.6)
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Figure 3.5: Illustration of pairwise distance preservation. Similar designs (A and B) have
similar shape representations in X , thus are closer in X than dissimilar designs (A and C).
We want such relation of pairwise distances to be preserved in F (i.e., dAB < dAC) such
that shapes will vary in the same manner as they do in X .

where m is the sample size, n is the number of design parameters for each sample,

r
(i)
j is the ith reconstructed design parameter for the jth sample, and s

(i)
j is the ith

original design parameter for the jth sample.

Pairwise distance preservation. To answer the second question, we can compare

the pairwise distances of samples in the high-dimensional design space X versus the

low-dimensional latent space F . Generally, as shown in Fig. 3.5, similar designs

(A and B) have similar shape representations (e.g., Cartesian coordinates of shape

outlines) in X , thus are closer in X than dissimilar designs (A and C). We want such

pairwise distances to be preserved in F (i.e., dAB < dAC) such that shapes will vary in

the same manner as they do in X . Since we assume our samples lie on a manifold in

X , we use the pairwise geodesic distances along the manifold as the pairwise distances

to be preserved after the embedding.

Specifically, we construct a nearest neighbor graph G over the samples X ∈ X to

model the manifold structure. G is a weighted graph where the edge weight between

neighbors is their Euclidean distance. The nearest neighbors are selected using the

neighborhood contraction and expansion algorithm mentioned in the neighborhood

selection section. This algorithm adaptively chooses the neighborhood size for each

sample based on its local manifold geometry. The neighborhood size is large where
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the manifold is flat, and small where it is curvy. Thus this method prevents “short-

cuts” across high-curvature manifolds and maintains large enough overlap among

nearby neighborhoods. Then we compute all pairs shortest paths for the graph G,

and construct a geodesic distance matrix DG. We compare DG with the pairwise

Euclidean distance matrix D of the embedded samples F ∈ F using Pearson’s cor-

relation coefficient. The geodesic distance inconsistency (GDI) can be expressed as

GDI = 1− ρ(DG, D)2 (3.7)

where ρ(DG, D) is the Pearson’s correlation coefficient between DG and D. Lower

GDI indicates the embedding better preserves pairwise distances.

Normally, embedding methods like Isomap will have low GDIs because they explic-

itly optimize pairwise distances. However, they cannot simultaneously learn two-way

mappings between the design space and the embedding space. Methods like au-

toencoders are able to learn two-way mappings, but they usually have higher GDIs

because they minimize reconstruction error rather than preserve distances. There is

often a trade-off between reconstruction and distance preservation; embeddings that

explicitly optimize both objectives would be an interesting topic for future research.

Principal attributes. For superformula examples, we know what their correct

latent spaces should look like by looking at their parameter spaces. A parameter

space P (e.g., Fig. 3.6a) for the superformula contains the shapes generated by all

possible combinations of values for all the parameters used to modify the shapes. It is

this space from which we randomly select training and testing samples. For example,

if we fix parameters {a, b,m, n2, n3} and vary {s, n1} in Eqn. (3.1) and Eqn. (3.2),

the superformula parameter space will have two dimensions (i.e., P ∈ R2). Along the

first dimension some shape attribute (e.g., aspect ratio) changes with s, and along
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(a) Shapes in the superformula
parameter space.

(b) Generated shapes in the la-
tent space.

Figure 3.6: An example comparing shapes generated from the latent space F versus the su-
performula parameter space P. If the embedding precisely captures the principal attributes,
shapes from F should look like those from P—with neither extra unexpected shape variation
nor missing diversity.

the second dimension another attribute (e.g., roundness) changes with n1. We call

these attributes the principal attributes. We can also vary these two attributes along

a single dimension by simultaneously varying s and n1 (e.g., let s = αt and n1 = βt,

where α and β are coefficients, and t is a variable). Fig. 3.7a shows an example where

two shape attributes vary along each dimension—the aspect ratio4 changes along one

dimension and roundness along the other, and the number of arms changes over both

dimensions. Because the number of arms is not continuous, the clustering algorithm

should separate shapes with a different number of arms. And within each cluster,

a good embedding should capture the other two attributes—the aspect ratio and

roundness.

A good embedding should precisely capture the right principal attributes, such

that tuning these attributes creates diverse but valid shapes. By comparing the shapes

generated from the latent space F with those from the superformula parameter space

P , we can evaluate whether the embedding precisely captures all the attributes that

control the variation of shapes. That is, shapes generated from F should look similar

to those from P—with neither unexpected shape variation nor missing diversity, as

4All the shapes shown in the figures are scaled to the same height. Thus the aspect ratio will
matter instead of the height or the width.
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(a) Shapes in the superformula
parameter space.

(b) Result of manifold clus-
tering (as in Fig. 3.3, the de-
sign space X is visualized in
three dimensions).

(c) Generated shapes in latent spaces. Since there are three categories, we have three
separated latent spaces.

Figure 3.7: Multiple superformula categories with intersection. Our approach correctly
separates the three sub-manifolds, even though they all connect via a common seam.

shown in Fig. 3.6.

3.6 Results and Discussion

We evaluated our method’s performance at recovering various design space prop-

erties. We also compared how well different embedding approaches captured shape

attributes.

3.6.1 Design Space Properties

We use the superformula examples to test the accuracy of our clustering algorithm

and intrinsic dimension estimator. We conducted experiments with the number of

clusters C set from 1 to 5, intrinsic dimension from 1 to 3, and three levels of linearity

(curvature of the manifold). The dataset used in each experiment has a sample size
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(a) Shapes in the superformula pa-
rameter space.

(b) Result of manifold clus-
tering (as in Fig. 3.3, the
design space X is visualized
in three dimensions).

(c) Generated shapes
in latent spaces.

Figure 3.8: Multiple superformula categories with intersection and different intrinsic dimen-
sions. Our intrinsic dimension estimator automatically detects the appropriate dimension-
ality of the latent space for each design category (c).

of 500. All the experiments correctly separated the superformula shape categories

and estimated the correct intrinsic dimensions (Fig. 3.7). In cases where multiple

manifolds intersect (Fig. 3.7b), it is improper to use metrics like the rand index to

evaluate clustering accuracy, because samples at the intersection can be classified

to any adjacent group. For example, shapes turn into ellipses at the intersection

(Fig. 3.7a), so it does not matter whether they belong to the four- or five-pointed star

group. Figure 3.7c shows that our approach captures this case.

Figure 3.8 demonstrates a case where two manifolds with different intrinsic dimen-

sions intersect: one superformula category with an intrinsic dimension of 1 intersects

with another category with an intrinsic dimension of 2. Our method correctly sepa-

rates the two categories and estimates the intrinsic dimension for each category, as

shown in Fig. 3.8c.
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Figure 3.9: Synthesized glassware shapes in a 3D latent space. The embedding captured
three shape attributes—the rim diameter, the stem diameter, and the curvature.

3.6.2 Principal Attributes

As mentioned above, a good embedding should precisely capture the right prin-

cipal attributes. For superformula examples, we check this by comparing the shapes

generated from the latent space F with those from the superformula parameter space

P . For the example shown in Fig. 3.7, the clustering separated shapes with a different

number of arms, and each cluster’s embedding correctly captured the two principal

attributes—aspect ratio and roundness. In Fig. 3.8’s example, as expected, the em-

bedding captured the aspect ratio and the roundness attributes of the four-pointed

stars, and just the roundness for the five-pointed stars.

Figure 3.9 shows the synthesized glassware in a 3-dimensional latent space. This

embedding captured three attributes—the rim diameter, the stem diameter, and the

curvature. With the variation of these three attributes, we synthesized a collection

of shapes that generally covers all the training samples—wine, beer, champagne, and

cocktail glasses. Similarly, the airfoil embedding shown in Fig. 3.10 also captured

three attributes—the upper and lower surface protrusion, and the trailing edge direc-

tion.

For the airfoil example, the uncovered design manifold allows us to optimize airfoil

41



Upper surface protrusion
Trailing edge direction

L
o
w

e
r 

s
u

rf
a
c
e
 p

ro
tr

u
s
io

n

Figure 3.10: Synthesized airfoil shapes in a 3D latent space. The embedding captured three
shape attributes—the upper and lower surface protrusion, and the trailing edge direction.

A

B

(a) Arrangement of training samples in
the latent space (for simplicity, this is a
2D projection of the 3D latent space).

A

B

(b) Synthesized shapes.

Figure 3.11: Point A has high sample density, and thus higher confidence that synthesized
shapes will look similar to nearby real-world samples. In contrast, point B has low sample
density, and thus lower confidence but higher chance of generating an unusual or creative
shape. Shade darkness correlates with higher local density.

shapes over this continuous low-dimensional space instead of the original geometric

design space, using metamodeling techniques like Bayesian optimization. In our future

work, we will compare the performance of metamodeling techniques with and without

applying our dimensionality reduction method.

3.6.3 Are all regions on the manifold equally valid?

The different shades in Fig. 3.7–3.10 represent for local density of the shape col-

lection (i.e., training samples) distributed in the latent space F . At positions nearby
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the training samples (e.g., point A in Fig. 3.11), we plot the synthesized shape with

a darker color. This means we are more certain of its validity because it lies closer

to real-world training samples. In contrast, in locations where training samples are

sparse (e.g., point B in Fig. 3.11), we plot the synthesized shape with a lighter color.

This means we are less certain of its validity, and our model may create shapes that

diverge from the training samples. In the latent space where the training samples

are absent—what we call a design cavity—new designs might be innovative or they

may be unrealistic. For example, as shown in Fig. 3.9, inside regions where shapes

have light colors, we synthesized glassware that is not similar to any of our training

samples. In this case, the model generated innovative designs rather than unrealistic

ones; however, to our knowledge there is no formal mathematical way of differenti-

ating those two cases automatically. Doing so would be a compelling topic of future

research.

3.6.4 Sample Arrangement in Latent Space

Figure 3.12 shows the comparison between results obtained from different em-

bedding methods. For this superformula example, PCA has a high reconstruction

error because the design space is nonlinear. This results in some abnormal shapes

(i.e., shapes with attributes that do not exist in the parameter space in Fig. 3.12a)

in the latent space created by PCA (Fig. 3.12c). SdA and kernel PCA have similar

reconstruction errors. However, the latent space created by kernel PCA (Fig. 3.12d)

better aligns with the original parameter space than that of SdA (Fig. 3.12e), because

SdA generates abnormal shapes (Fig. 3.12e, top right). Since these abnormal shapes

have light colors, we know that they are inside the design cavity; while in fact if

the embedding preserved the geodesic distances between samples (i.e., low GDI), the
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(a) Shapes in the superformula param-
eter space.

(b) Reconstruction error and geodesic dis-
tance inconsistency.

(c) Embedding and shape syn-
thesis result by PCA.

(d) Embedding and shape syn-
thesis result by kernel PCA.

(e) Embedding and shape syn-
thesis result by a stacked de-
noising autoencoder.

Figure 3.12: Comparison of different embedding methods. The abnormal shapes generated
by PCA and SdA are due to high reconstruction error and high GDI respectively.

sample arrangement should resemble that of PCA or kernel PCA, where there is no

design cavity (Fig. 3.12c and 3.12d). Therefore both high reconstruction errors (e.g.,

PCA in this example) and high GDI (e.g., SdA in this example) can create abnormal

or invalid shapes.

3.7 Summary

We introduced an approach to learn the inherent properties of a design space and

evaluate two-way mappings between a design space and a latent space. By correctly

identifying the design space properties such as the number of design categories and

the intrinsic dimension, one can then create an embedding that precisely captures

the principal attributes of each design category, assuming that the embedding is
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well-chosen based on the reconstruction error and the pairwise distance preservation.

This means the synthesized shapes will have no unexpected shape variation, missing

diversity, or repeated shapes (brought about by unnecessary dimensions). We also

introduced a benchmark for rigorously testing design embeddings that accounted

for non-linear, multiple (potentially intersecting) manifolds of controllable intrinsic

dimension. We encourage others to use this benchmark to improve future design

embeddings.

While this chapter mainly addressed geometric design spaces, our approach would

extend to any type of design space, including those that involve text, materials, or

combinations with geometry (For an example of a combined material and geometry

space). It could be applied to improving interfaces that help novices explore designs,

aiding high-dimensional design optimization, and helping model consumer preferences

in high-dimensional design spaces. Our work’s main implication is that choosing a de-

sign embedding carries with it important choices about what you value in your latent

space: Should it reconstruct designs consistently? Should it preserve the topology of

the design space? What semantic attributes should the latent space capture? Choos-

ing an embedding with the properties you want is not straightforward; our approach

provides a principled way to compare and contrast embeddings—to help navigate

those options and identify useful properties of both the embedding and your design

space in general.

So far this dissertation has shown how to measure the intrinsic complexity of a

design space, which guides data-driven design synthesis process. Purely data-driven

design synthesis methods ignore designs’ functional or geometrical constraints and

characteristics, and thus will have limitations. The next two chapters will look at in-

corporating prior knowledge into data-driven models to improve the quality of design

synthesis.
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Chapter 4: Aerodynamic Design Synthesis, Optimization, and Shape

Exploration

The work in this chapter was published in the AIAA SciTech 2019 Forum [42]

4.1 Introduction

Aerodynamic shape optimization is a necessary step in designing parts like air-

craft wings and (propeller/rotor/turbine) blades. It has been an active research area

for over 60 years [198]. The bottleneck of most global optimization methods for

aerodynamic design is the computational cost of the computational fluid dynam-

ics (CFD) simulations. To combat this, surrogate-based modeling approaches are

used [4, 5, 76, 123, 146] to reduce the number of simulations by balancing explo-

ration and exploitation while sampling the design space. However, the computational

cost of sampling the design space increases exponentially with the dimensionality

of the design space due to the curse of dimensionality [14]. Previous research has

looked into dimensionality reduction (DR) of the original parametric design space

(i.e., the space of designs represented by shape parameters such as B-spline control

points). This permits faster exploration by capturing only those dimensions that

either affect the final design’s performance [19–21, 88, 141] or capture major shape

variability [55, 56, 223, 224, 239]. But these DR models may not accurately capture

the true variation that we observed in real-world airfoils, e.g., those in the UIUC
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airfoils database. A vast amount of research on DR has been conducted in the field

of machine learning, where deep neural networks such as variational autoencoders

(VAEs) [117] and generative adversarial networks (GANs) [85] have successfully rep-

resented data from complex high-dimensional distributions, such as images, by using

low-dimensional latent variables.

In this chapter, we address the problem of reducing the design space dimensionality

for aerodynamic shape optimization. We apply GANs to learn an interpretable low-

dimensional space (i.e., the latent space) that encodes how aerodynamic shapes vary.

To avoid the limitation caused by shape parameterizations (e.g., curve-fitting errors

and the lack of representation flexibility), we learn directly the distribution of points

along the curves instead of curve parameters (such as Bézier control points). However,

näıve application of neural network techniques to airfoil designs does not work well

because the output is noisy and does not conserve important continuity properties

important for aerodynamic shapes. Therefore, we use Bézier-GANs [46] to generate

aerodynamic shapes. The Bézier-GAN model can be used for reducing the design

parameters of any smooth shapes such as aerodynamic or hydrodynamic designs. The

design optimization method demonstrated in this chapter is applicable to cases where

the design space is reducible and represented by a lower-dimensional representation.

The specific scientific contributions of this paper are:

1. A new type of generative model appropriate for smooth geometry (such as

those expressed via splines or Bezier curves) that improves the sample quality

and convergence rate compared to traditional GANs.

2. A study of the comparative optima and convergence rate of several compet-

ing optimization methods—multiple parametric forms including our approach,

Principal Component Analysis, PARSEC, and NURBS representations, along
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with two optimization strategies (Bayesian Optimization and Genetic Algo-

rithms)—and illuminate the performance conditions under which different ap-

proaches improve over others.

3. A two-stage optimization method that prioritizes the optimization of major

shape attributes.

4.2 Background

In this section, we introduce previous work on common algorithms used in aero-

dynamic design optimization (Sec. 4.2.1), parameterization techniques (Sec. 4.2.2),

and methods for reducing design space dimensionality (Sec. 4.2.3).

4.2.1 Optimization Methods

Aerodynamic design is, in large part, an optimization problem. One common

objective is to find design variables that minimize the drag coefficient CD, while

maximizing or constraining the lift coefficient CL [20, 88, 223]. There are primarily

three approaches for solving the optimization problem: evolutionary algorithms (EA),

surrogate-based optimization (SBO), and gradient-based methods.

Evolutionary algorithms (EA) are gradient-free optimization algorithms that mimic

the process of biological evolution through mutation, recombination, and reproduc-

tion of different designs. Genetic algorithms (GA), a type of EA, is widely used in

aerodynamic shape optimization [56, 106, 224]. Work has also been done to augment

GA with the Bees algorithm [211] and adaptive mutation rates [104], resulting in

more accurate optimization and/or faster convergence. Other EA methods applied

in aerodynamic optimization are differential evolution [139] and particle swarm op-

timization [173, 219]. However, due to the large number of function calls needed in
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each generation, EAs can be prohibitively expensive computationally, especially if

every evaluation requires a high-fidelity computational fluid dynamics simulation.

Surrogate-based optimization (SBO) uses an inexpensive surrogate model to ap-

proximate the expensive function of the quantity of interest (QoI) (i.e., the opti-

mization objective). Bayesian optimization (BO) is a commonly used method for

SBO. It consists of two components — a sampling method (e.g., maximum expected

improvement [108] or maximum upper confidence bound [205]) and a surrogate mod-

eling method (e.g., Gaussian process regression, also know as kriging [171]). In

each iteration, the sampling method samples a point in the design space for eval-

uation of the QoI, and then that point and its QoI update the surrogate model.

Compared to methods like genetic algorithms, surrogate-based optimization reduces

the number of expensive CFD evaluations needed in aerodynamic shape optimiza-

tion [20, 55, 92, 141, 224]. However, for a high-dimensional design space, the number

of evaluations will still be inevitably high due to the curse of dimensionality [14, 174].

Note that in these cases, kriging can also be prohibitively expensive at the later stage

when the model is trained on a large number of evaluated samples since its compu-

tational cost scales cubically with the sample size (though practical approximation

methods do exist to reduce this cost).

Gradient-based methods search for the optimal solution based on the gradient

of the objective function. When the objective is based on CFD simulations, auto-

matic differentiation (AD)—a generalization of adjoint methods used by the CFD

community—is usually used to compute the gradients. It provides a relatively fast

and exact method of calculating numerical gradients. The computer records ev-

ery elemental operation used to calculate a QoI (“forward pass”) before reversing

through this “tape” to determine the sensitivity of the QoI with respect to each

parameter. Generally, gradient calculations are exact and have a computational
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cost within an order of magnitude of the forward pass. Because of this, previous

work [65, 112, 145, 184, 185, 213, 225] have used AD for gradient calculations. Com-

bined with optimization algorithms such as SQP [65, 225], steepest descent [184],

and Newton- and quasi-Newton methods [112, 145, 185], AD can drastically acceler-

ate gradient calculations in the optimization process, even in complex or turbulent

models [145, 185, 225].

However, for optimization using state-of-the-art turbulence models such as Large

Eddy Simulation, one cannot use adjoint methods because the chaotic butterfly ex-

ponential divergence of trajectories makes the adjoint ill-posed [129]. In addition, an

AD gradient is only applicable at one point; thus, unlike e.g.analytical derivatives,

where a single equation provides exact derivatives at any point, AD requires a forward

pass before each new gradient calculation, contributing to a large portion of the op-

timization cost. In terms of memory, building the tape of operators can be expensive

compared to, e.g., a finite difference method. Additionally, as a method of gradient

calculation, AD will still maintain the disadvantage inherent in gradient-based algo-

rithms, e.g., converging to local minima. As a workaround solution, Berguin et al. [21]

use solutions to SBO as starting points for AD methods, hoping to find good local

optima.

4.2.2 Shape Parameterization

Parameterization maps a set of parameters to points along a smooth curve or sur-

face via a parametric function. Common parameterization for aerodynamic shapes in-

cludes splines (e.g., B-spline and Bézier curves) [105, 178, 218], free-form deformation

(FFD) [113, 186], class-shape transformations (CST) [126, 152], PARSEC [138, 202],

and Bézier-PARSEC [63]. While this work does not study paramterization, we show
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the optimization performance of two paramterization approaches, namely nonuniform

rational B-splines (NURBS) [134] and PARSEC [138], in comparison to our proposed

method.

Usually during design optimization, parameters are sampled to generate design

candidates [92]. There are two main issues when optimizing these parameters from

conventional parameterization: (1) one has to guess the limits of the parameters to

form a bounding-box within which the optimization operates, and (2) the design space

dimensionality is usually higher than the underlying dimensionality for representing

sufficient shape variability [49] —i.e., to capture sufficient shape variation, manually

designed shape parameterizations require higher dimensions than are strictly neces-

sary.

4.2.3 Design Space Dimensionality Reduction

It is computationally expensive to search for solutions in the design space directly

due to the space’s high dimensionality. Factor screening methods [151, 230] are used

to select the most relevant design variables for a design problem while fixing the

rest as constant during optimization. These methods fail to consider the correlation

between design variables. Thus, researchers have found ways to capture the low-

dimensional subspace that identifies important directions with respect to the change

of response (i.e., QoI or performance measure) [19–21, 88, 141]. This response-based

dimensionality reduction usually has several issues: 1) it requires many simulations

when collecting samples of response gradients; 2) variation in gradients can only

capture non-linearity rather than variability in the response, so extra heuristics are

required to select latent dimensions that capture steep linear response changes; 3) the

learned latent space is not reusable for any different design space exploration or
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optimization task (i.e., when a different response is used); and 4) the linear DR

techniques applied in previous work may fail on responses with a non-linear correlation

between partial derivatives.

The first three issues can be avoided by directly applying DR on design vari-

ables without associating them with the response. Note that by doing this, we are

assuming that if changes in a design are negligible, changes of responses are also

negligible. In the area of aerodynamic design, researchers use linear models such as

proper orthogonal decomposition (POD), also known as principal component anal-

ysis (PCA) [55, 56, 239], and nonlinear models like generative topographic map-

ping [223, 224] to reduce the dimension of design variables. More work on DR has

been done in other fields such as image processing and computer graphics [84, 132],

where DR is used for generating and visualizing data. Deep neural networks such

as VAEs and GANs have been widely applied in these areas to learn the latent rep-

resentation of data. These methods are known for their ability to learn complex

high-dimensional data distributions. Our work extends this class of techniques by

considering the generation of smooth geometries such as those needed in spline-based

representations.

Note that as DR models map latent variables to shapes, we can treat the latent

variables and the mapping as parameters and the parametric function. Thus, in a

broader sense, we will also refer to these methods as parameterization in Sec. 4.6.

4.3 Obtaining Disentangled Latent Representation Using Generative

Adversarial Networks

We use a method based on GANs [85] to train a generative model that synthesizes

aerodynamic shapes from interpretable low-dimensional latent codes. GANs are one
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type of deep neural network architecture which consists of two components: a gen-

erator and a discriminator. The generator takes in random noise from some known

prior distribution Pz. Its objective is to generate samples from the desired distribu-

tion (i.e., data distribution Pdata). The discriminator takes in a sample (either from

the training data or synthesized by the generator) and predicts the probability of the

sample coming from the training data. The generator tries to make the generative

distribution PG look like Pdata to fool the discriminator; the discriminator tries not

to be fooled. GANs achieve this by minimizing the objective:

min
G

max
D

V (D,G) = Ex∼Pdata
[logD(x)] + Ez∼Pz [log(1−D(G(z)))] (4.1)

where D is the discriminator, and G is the generator. Both components improve

via training until the discriminator cannot differentiate between real and fake inputs,

implying that the generative distribution resembles the data distribution. A trained

generator thus can map from the predefined noise distribution to the distribution of

designs. The noise input z is considered as the latent representation in the dimen-

sionality reduction scenario, since z captures the variability of the data.

Standard GANs are not built for learning latent representations; thus, they can-

not be used to reduce the dimensionality of the design space. To compensate for this

weakness, InfoGANs [52] encourage interpretable latent representations by maximiz-

ing the mutual information between some noise variables (called latent codes) and the

generated samples. Thus, InfoGAN’s generator takes both latent codes c and random

noise z as inputs. Unfortunately, it is hard to directly maximize the mutual informa-

tion I(c;G(c, z)), so instead an InfoGAN approximates the solution by maximizing a

lower bound. In practice, this is realized by adding an extra fully connected layer to

the discriminator to predict the latent codes. Please refer to Ref. [52] and Sect. 5.2.3
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for more details about the InfoGAN. We build upon this line of work below, extending

it to spline-based geometry.

4.4 Spline-Based Shape Synthesis

Typical approaches to generative shape models (such as GANs) represent shapes

as a collection of discrete samples (e.g., as pixels or voxels) owing to their original

development in the computer vision community. For example, a näıve way of synthe-

sizing shapes like airfoils would be to generate this discrete representation directly

using the generator, such as generating a fixed number of coordinates sampled along

the airfoils boundary curve (e.g., Fig. 4.2, right). However, in practice, airfoils typ-

ically possess substantial smoothness/continuity and are typically represented using

parametric curve families like splines, Bézier curves, or NURBS surfaces. The näıve

GAN representation of predicting discretized curves from the generator usually (1)

creates noisy curves that have low smoothness and (2) has parametric outputs that

are harder for humans to interpret and use in standard CAD packages compared to

equivalent curve representations (e.g., Bézier curves). This creates problems, partic-

ularly in aerodynamic shape synthesis.

To solve this issue, we modified the InfoGAN’s generator such that it only gener-

ates smooth shapes that conform to Bézier curves. We call this generative adversarial

network a Bézier-GAN [46]. As shown in Fig. 4.1, most of its architecture is adapted

from the InfoGAN. However, before outputting discrete coordinates along the curve,

the generator synthesizes control points P , weights w, and parameter variables t of

rational Bézier curves. The last layer—the Bézier layer—converts this rational Bézier
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curve representation into discrete representation X:

Xj =

∑n
i=0

(
n
i

)
tij(1− tj)n−iPiwi∑n

i=0

(
n
i

)
tij(1− tj)n−iwi

, j = 0, ...,m (4.2)

where n is the Bézier degree, and the number of discrete points to represent the curve

is m + 1. Since variables {Pi}, {wi}, and {tj} are differentiable in Eq. 4.2, we can

train the network using back propagation. Figure 4.2 compares synthesized shapes

with and without using a Bézier layer.
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Figure 4.1: Model architecture of the Bézier-GAN.

Use a Bézier layer Not use a Bézier layer

Figure 4.2: Synthesized airfoils using a generator with and without a Bézier layer.

4.5 Optimization over the Learned Latent Space

4.5.1 The Optimization Problem in the Latent Space

The optimal aerodynamic shape can be solved by x∗ = arg minx f(x), where x

is an aerodynamic shape (expressed in this case by the latent codes and the Bézier

curve parameters) and f(x) is some performance measure defined over x (e.g., lift,
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drag, etc.). Since the function f is usually non-convex, methods such as EA or

SBO are often used for optimization [62, 70, 77, 249]. These methods search for the

global optimum by exploring the design space X . However, since X is usually high-

dimensional, it takes many performance evaluations to find the optimal solution due

to the curse of dimensionality [14]. Since we can modify x by changing the latent code

c, which has a lower dimension than x, finding the optimal shape x∗ is equivalent to

finding an optimal latent code c∗. Thus, we solve the following problem instead:

c∗ = arg min
c

h(c) = arg min
c

f(Ez∼Pz [G(c, z)]) (4.3)

and then use c∗ to synthesize the optimal shape x∗ = Ez∼Pz [G(c∗, z)].

We can then apply SBO to find c∗ instead of x∗. There are two major components

in SBO: an inference model and an acquisition function. In this chapter we use a

SBO method called Efficient Global Optimization (EGO) [108], which uses Gaussian

process (GP) regression [171] as the inference model, and expected improvement

(EI) [108] as the acquisition function:

E[I(c)] = E[max(hmin − h(c), 0)] (4.4)

where hmin is the current best function value. At each step t of EGO we want to find

c(t) that is expected to best improve upon the current optimal solution:

c(t) = arg max
c

E[I(c)] (4.5)

Now with the ingredients of GP regression and EI, the EGO process simply repeats

the following steps:
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1. Estimate the function h by using GP regression;

2. Compute EI using Eq. 4.4 and the learned GP model;

3. Search for the point c(t) that has the highest EI (solving Eq. 4.5);

4. Evaluate the function h at c(t), and add the new (c(t), h(c(t))) pair into the

dataset for learning GP regression.

4.5.2 Unbounded Bayesian Optimization

To find c(t) in Step 3, we can use gradient-based optimization algorithms like

BFGS [25, 74, 81, 192]. However, these methods may get stuck in local optima and

are unstable if operated in an unbounded space (i.e., the solution may go too far

from feasible regions and thus will diverge). Random search is a simple alternative

approach that searches c(t) within fixed variable bounds; however, the optimal solu-

tion may be located outside those bounds. To circumvent these issues, we search for

the solution near c(t−1) (i.e., the point evaluated at step t − 1) without requiring a

boundary. Specifically, we search for c(t) among samples drawn from the distribution

N (c(t−1), σ2), where σ controls the dispersion of the drawn samples (Fig. 4.3). Com-

bined with the EI criteria, each iteration of the search area moves in the direction

which is expected to improve the current optimal solution. This moving search area

eliminates the limitation of variable bounds. A larger σ encourages exploration and

prevents the solution from getting stuck in local optima while a smaller σ encourages

exploitation and refines the current optimal solution. We use a decreasing σ over it-

erations (i.e., in each iteration, multiply σ by a constant γ that is close to but smaller

than 1), so that the algorithm first explores then focuses more on exploitation.
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Figure 4.3: Unbounded sampling in Bayesian optimization.

4.6 Experiment: Airfoil Synthesis and Shape Optimization

In this section, we demonstrate our method via an airfoil optimization task.

Rather than targeting one specific airfoil model (e.g., the NACA 0012 airfoil in

Ref. [88] or the RAE 2822 airfoil in Ref. [224]) and its perturbations, we search for

the optimal design within all the existing major airfoil models. We show that Bézier-

GAN learns realistic shape variations from these airfoil models and that optimizing

in the latent space accelerates convergence.

4.6.1 Dataset and Preprocessing

We use the UIUC airfoil database1 as our training data for the Bézier-GAN.

It provides the geometries of nearly 1,600 real-world airfoil designs, each of which is

represented by discrete coordinates along their upper and lower surfaces. The number

1http://m-selig.ae.illinois.edu/ads/coord_database.html
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of coordinates for each airfoil is inconsistent across the database, so we use B-spline

interpolation to obtain consistent shape representations. Specifically, we interpolate

192 points over each airfoil with the concentration of these points along the B-spline

curve based on the curvature [105]. The preprocessed data are visualized at the top

of Fig. 4.4.

c c c

c1

c2

c1

c2

c1

c2

Figure 4.4: Examples in the airfoil database and synthesized airfoil shapes in three-
dimensional latent spaces (visualized by uniform slices of multiple two-dimensional spaces).

4.6.2 Dimensionality Reduction

We build a Bézier-GAN model based on the architecture in Fig. 4.1. The la-

tent codes are from a three-dimensional uniform distribution, and the input noise

is from a ten-dimensional Gaussian distribution. In the discriminator, we use six

one-dimensional convolutional layers followed by fully connected layers to predict la-

tent codes and the probability of the input data coming from the dataset. For the

generator, we use three one-dimensional deconvolutional layers [243] to predict the

control points {Pi|i = 0, ..., n} and the weights {wi|i = 0, ..., n}, and three fully con-

nected layers followed by a softmax activation to predict discrete differences between
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parameter variables {tj+1 − tj|j = 0, ...,m − 1}. Interested readers can refer to de-

tailed network architectures and hyperparameters in our Tensorflow implementation

available on Github2.

We optimize the Bézier-GAN using an Adam optimizer [116] and train it on an

Nvidia Titan X GPU. The wall-clock training time is about 1 hour, and the inference

takes less than 15 seconds.

Figure 4.4 shows synthesized airfoil shapes by linearly interpolating points in the

latent space. The middle subplot shows that airfoils synthesized by Bézier-GAN

are realistic and capture most variation in the airfoil dataset. We also obtained an

interpretable latent space: the horizontal axis (c1) captured the leading edge angle,

the vertical axis (c2) captured the trailing edge angle, and the third axis (c3) captured

the thickness.

We use PCA as a baseline DR method to compare the synthesis quality. The

latent space is also set to three-dimensional. The results of PCA are shown at the

bottom of Fig. 4.43. Compared to Bézier-GAN, PCA shows the limitations of a linear

DR model by synthesizing unrealistic designs in some regions of the latent space.

4.6.3 Optimization

Our optimization objective is to maximize the lift to drag ratio CL/CD. We

use XFOIL [67] to compute the lift and drag coefficients CL and CD.4 The XFOIL

operation conditions are set as follows: Reynolds number Re = 1.8 × 106, Mach

number Ma = 0.01, and angle of attack α = 0◦.

2https://github.com/IDEALLab/airfoil-opt-gan
3The bounds of the visualized latent space are based on the latent coordinates of the data, i.e.,

the minimum bounding box for data points projected onto the latent space.
4We use XFOIL here to demonstrate our scientific contributions, however, our approach is not

limited to XFOIL. One can apply our techniques to any CFD or performance code including RANS
or LES.
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For Bézier-GAN and PCA, we apply EGO on the three-dimensional latent spaces

and use the trained Bézier-GAN generator or the inverse transformation of PCA to

synthesize the optimal airfoils corresponding to the optimal latent codes.

We also compare these results to optimizing directly in the parametric design

space. Specifically, we use two parameterizations, NURBS and PARSEC, and two

optimization algorithms, EGO and GA, as additional experiments. We use the NACA

0012 airfoil as the initial design. The NURBS parameterization is based on Ref. [224].

The design space is defined as a ±0.1 perturbation of the initial NURBS control point

coordinates or a 20% perturbation of the initial PARSEC parameters. The population

size of the GA is 100, and the chance of mutation (i.e., the probability of mutating an

individual’s parameter) is 0.1. In each generation, we choose 30 best and 10 random

individuals for crossover, and produce 5 children for each pair. We direct interested

readers to our code for more details.

We run each experiment so that the total number of CL/CD evaluations is 1000.

The results of each experiment setting are averaged over 10 runs. Figure 4.5 shows the

best-so-far CL/CD versus the number of evaluations. It shows that the value reached

in 100 XFOIL evaluations by Bézier-GAN+EGO takes other methods at least 500

XFOIL evaluations to reach. Figure 4.6 shows the optimal airfoils for all experi-

ment settings. Runs from the same scenario are plotted on the same subplot. For

PCA+EGO and NURBS+GA, the final optimal solutions are inconsistent compared

to other methods, indicating the optimization converged to different local optima.

The values of maximal CL/CD after 100 and 1000 evaluations are shown in Table 4.1.
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Figure 4.5: Optimization history (averaged over 10 runs).

Figure 4.6: Optimal airfoils (airfoils in the same subplot are under the same experimental
configuration but different runs).

4.6.4 GA Refining

Figure 4.5 shows that when using Bézier-GAN, the optimal CL/CD stops im-

proving after 100 evaluations, whereas the optimal CL/CD improves continuously,

though slowly, when using the NURBS parameterization. This is because the three-

dimensional latent space does not contain as much shape variation as the NURBS

design space. However, while the three-dimensional latent space captures major shape

variations, minor shape variations are captured by the noise space (i.e., the space of

the random input noise of Bézier-GAN). Therefore, we can further search for an im-

provement in that noise space. We achieve this by using the optimal solution of EGO
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Table 4.1: Values of CL/CD for optimal solutions.

# Eval. BézierGAN+EGO PCA+EGO NURBS+EGO NURBS+GA

100 195.41 ± 2.94 149.86± 13.46 122.75± 20.41 64.97± 4.82
1000 200.80 ± 2.12 181.86± 21.87 197.37± 3.22 142.35± 20.38

# Eval. PARSEC+EGO PARSEC+GA

100 26.44± 3.88 24.11± 0.90
1000 27.26± 4.07 53.77± 3.24

after 100 evaluations as the initial design and run GAs in both the latent space and

the noise space. We call this GA refining. Specifically, we allow larger shape varia-

tion on the noise variables while limiting the variation on the latent variables during

mutation. The results are shown in Figs. 4.7 and 4.8. In this way, the optimal CL/CD

keeps improving even after the latent space is exploited.

Figure 4.7: Optimization history for BézierGAN+EGO with and without GA refining.

Figure 4.8: Optimal airfoils for BézierGAN+EGO with and without GA refining.
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4.7 Summary

We use a Bézier-GAN to capture a low-dimensional latent space that encodes

major shape variability of aerodynamic designs. Design optimization can then be

conducted in this latent space to reduce the number of evaluations required to find

the optimal solution. Our results show that our Bézier-GAN method significantly

accelerates convergence and finds optimal designs that are comparable to those found

by other algorithms.

Because the latent space discards minor variability in designs that can potentially

contribute to higher performance, the final optimal solution may be not as good as

directly optimizing in the design space given a sufficient number of evaluations. The

GA refining mitigates this issue by continuing to explore the input noise space of

the GAN after discovering good latent variables. There are other ways to improve

the optimal solution while maintaining fast convergence. For example, the optimal

solution obtained by our method can be used as a good start point for gradient-based

optimization methods (e.g., as in Berguin et al. [21]). For future research, we can

concatenate a trained Bézier-GAN generator and an automatic differentiation solver

to obtain the gradient of a QoI with respect to each latent variable directly. The

low-dimensional gradients can then be applied to solve optimization problems.

Different from previous DR research for aerodynamic shape optimization which

only targets one specific QoI (i.e., response-based DR) or one airfoil model, the learned

latent space in this work is reusable for optimizing any QoI for any airfoil model

included in the UIUC airfoil database.

So far this dissertation has shown how to measure the intrinsic complexity of a

design space to guide data-driven design synthesis and how to constrain the data-

driven model to generate valid aerodynamic shapes. The next chapter will introduce
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a design synthesis model that considers the inner-part dependencies of designs, which

is another example of incorporating prior knowledge into data-driven design synthesis

models.
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Chapter 5: Synthesizing Designs with Inter-Part Dependencies

Portions of the work in this chapter were accepted to the Journal of Mechanical De-

sign [48] and published in the ASME International Design Technical Conference [50]

5.1 Introduction

Representing a high-dimensional design space with a lower-dimensional latent

space makes it easier to explore, visualize, or optimize complex designs. This of-

ten means finding a latent representation, or a manifold, along which valid designs,

such as geometries, lie [44, 49].

While this works well for single parts, designs usually have multiple parts with

inter-part dependencies. For example, the size and position of a conduit, lightening,

or alignment hole in an airframe structure depend on the shape of the airfoil. Here we

assume that design components are synthesized sequentially and do not consider bi-

directional inter-part dependencies, although this kind of dependency exists in some

design tasks (e.g., alternating optimization of Part A and Part B in a design). We

leave this topic for future research. Thus we can describe inter-part dependencies in

a design by using a directed acyclic graph (DAG). This DAG captures whether the

geometry of a part depends on the geometry of its parent part(s). In this case, one may

want to identify first the parent manifold that captures the major variation of parent

shapes, and then the child manifold that captures the major variation of feasible child
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Figure 5.1: Manifolds of parent and child shapes

shapes conditioned on any parent shape (Fig. 5.1). Because, for example, we may

first optimize the airfoil shape on the airfoil manifold (parent) to obtain the optimal

lift and drag; and then given the optimal airfoil, we may optimize the hole’s size and

position on the hole manifold (child) for other considerations like light-weighting, etc.

This chapter addresses the problem of capturing the latent representation for

multi-components designs. However, finding individual part manifolds that both rep-

resent the design space well, while also satisfying part configuration, is non-trivial.

Traditionally, to learn the inter-part dependency, one has to either define explicit

constraints [120, 121] or learn implicit constraints via adaptive sampling [44, 45].

The former uses hard-coded (often application-specific) constraints and hence lacks

flexibility; whereas the latter queries external sources by human annotation, experi-

ment, or simulation, and thus is expensive. In this chapter, we solve these problems

by instead learning these constraints given examples. We assume that we only have

the prior knowledge on inter-part dependencies, but not the specific types of con-

straints (e.g., concentric, alignment, tangent, etc.) that confine the geometry of each

part. We do this by identifying different levels of manifolds, where the higher-level

(parent) manifold imposes implicit constraints on the lower-level (child) manifolds.
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We propose a deep generative model that synthesizes designs in a hierarchical man-

ner according to those inter-part dependencies: it first synthesizes parent parts, and

then synthesizes parts conditioned on those parent parts and so on. At each level,

the model simultaneously captures a parent manifold and an infinite number of child

manifolds which are conditioned on parent parts. This results in latent spaces that can

synthesize and search each part individually as well as their assemblies. Importantly,

our method is fully data-driven and requires no hard-coded rules or querying external

sources, except for providing an example dataset of designs with part correspondence

and known inter-part dependencies. For designs without part correspondence, we

can apply unsupervised co-segmentation [194] as a pre-processing step. This work

facilitates the understanding of complex design spaces where inter-part dependencies

exist and can be used for efficient hierarchical design space exploration.

The chapter’s key contributions are as follows:

1. A novel deep generative model architecture that simultaneously learns a design’s

inter-part dependencies and each part’s geometry variation conditioned on the

corresponding parent part(s). It decouples each part’s latent space so that we

can perform design space exploration in separate low-dimensional latent spaces.

2. New benchmark datasets—both real-world and synthetic—that can be used for

studying different kinds of inter-part dependencies including: type of geometric

constraints, depth of hierarchy, and branching factor of parent/child relation-

ships. This dataset can aid in the future evaluation of generative models of

hierarchical parts.

3. Characterizing the effects of sample size and part dependencies’ complexity

(depth and branching factor) on the synthesis performance of our generative

model.
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4. A new evaluation metric for generative models that measures the consistency

of shape variation in the latent space.

5.2 Related Work

Our work produces generative models that synthesize designs from latent repre-

sentations. There are primarily two streams of related research from the fields of

engineering design and computer graphics—Specifically, design space dimensional-

ity reduction and design synthesis. We also review generative adversarial networks

(GANs) [85], which we use to build our model.

5.2.1 Design Space Dimensionality Reduction

While designs can be parametrized by various techniques [179], the number of de-

sign variables (i.e., the dimensionality of a design space) increases with the geometric

variability of designs. In tasks like design optimization, to find better designs we

usually need a design space with higher variability, i.e., higher dimensionality. This

demand creates the problem of exploring a high-dimensional design space. Based on

the curse of dimensionality [14], the cost of exploring the design space grows exponen-

tially with its dimensionality. Thus, researchers have studied approaches for reducing

the design space dimensionality. Normally, dimensionality reduction methods identify

a lower-dimensional latent space that captures most of the design space’s variability.

This can be grouped into linear and non-linear methods.

Linear dimensionality reduction methods select a set of optimal directions or ba-

sis functions where the variance of shape geometry or certain simulation output is

maximized. Such methods include the Karhunen-Loève expansion (KLE) [51, 66],

principal component analysis (PCA) [69], and the active subspaces approach [214].
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In practice, it is more reasonable to assume that design variables lie on a non-

linear manifold, rather than a hyper-plane. Thus, researchers also apply non-linear

methods to reduce the dimensionality of design spaces. This non-linearity can be

achieved by (1) applying linear reduction techniques locally to construct a non-linear

global manifold [69, 130, 167–169]; (2) using kernel methods with linear reduction

techniques (i.e., using linear methods in a Reproducing Kernel Hilbert Space that

then induces non-linearity in the original design space) [49, 69]; (3) latent variable

models like Gaussian process latent variable model (GPLVM) and generative topo-

graphic mapping (GTM) [224]; and 4) neural networks based approaches such as

self-organizing maps [165] and autoencoders [27, 49, 59, 69].

This work differs from these past approaches in that we aim at identifying two-

level latent spaces with the lower-level encodes inter-part dependencies, rather than

learning only one latent space for the complete design.

5.2.2 Data-Driven Design Synthesis

Design synthesis methods can be divided into two categories: rule-based and data-

driven design synthesis. The former (e.g., grammars-based design synthesis [80, 120,

121]) requires labeling of the reference points or surfaces and defining rule sets, so that

new designs are synthesized according to this hard-coded prior knowledge; while the

latter learns rules/constraints from a database and generates plausible new designs

with similar structure/function to exemplars in the database.

Usually, dimensionality reduction techniques allow inverse transformations from

the latent space back to the design space, thus can synthesize new designs from

latent variables [49, 51, 59, 69]. For example, under the PCA model, the latent

variables define a linear combination of principal components to synthesize a new
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design [51]; for local manifold based approaches, a new design can be synthesized

via interpolation between neighboring points on the local manifold [130]; and under

the autoencoder model, the trained decoder maps any given point in the latent space

to a new design [27, 59]. Researchers have also employed generative models such as

kernel density estimation [209], Boltzmann machines [99], variational autoencoders

(VAEs) [153], and generative adversarial nets (GANs) [137, 231] to learn the distribu-

tion of samples in the design space, and synthesize new designs by drawing samples

from the learned distribution. Discriminative models like deep residual networks [197]

are also used to generate 3D shapes.

These aforementioned models synthesize a design or a shape as a whole. There

are methods that synthesize new shapes by assembling or reorganizing parts from an

existing shape database, while preserving the desired structures [36, 109, 208, 234,

246]. The shapes are usually parametrized by high-level abstract representations,

such as hand-crafted feature vectors [109] or shape grammars [208]. While these

methods edit shapes at a high-level, they do not control the local geometry of each

synthesized component.

Previously the inter-part dependencies of shapes have been modeled by grammar

induction [208], kernel density estimation [73], probabilistic graph models [36, 99, 109],

and recursive autoencoders [137]. Those methods handle part relations and design

synthesis separately. In contrast, our method encodes part relations through the

model architecture, so that it simultaneously learns the inter-part dependencies and

single part geometry variation. The model can also be used for inferring the generative

distribution of each part conditioned on any parent part.
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5.2.3 Generative Adversarial Networks

As introduced in Sect. 4.3, generative adversarial nets [85] model a game between

a generative model (generator) and a discriminative model (discriminator). One

advantage GANs hold over Variational Auto-encoders (VAEs) [117] is that GANs

tend to generate more realistic data [166]. But a disadvantage of the original GAN

formulation is that it cannot learn an interpretable latent representation. Built upon

these “vanilla” GANs, the InfoGAN [52] aims at regularizing the latent representation

of the data space by maximizing a lower bound of the mutual information between

a set of latent codes c and the generated data. The generator is provided with both

z and c. Thus, the generator distribution PG = G(c, z) is conditioned on c. The

mutual information lower bound LI is

LI(G,Q) = Ec∼P (c),x∼G(c,z)[logQ(c|x)] +H(c) (5.1)

where H(c) is the entropy of the latent codes, and Q(c|x) is called the auxiliary

distribution which approximates P (c|x). We direct interested readers to [52] for

the derivation of LI . The InfoGAN objective combines LI with the standard GAN

objective:

min
G,Q

max
D

VInfoGAN(D,G,Q) = V (D,G)− λLI(G,Q) (5.2)

where λ is a weight parameter.

In practice, H(c) is treated as constant if the distribution of c is fixed. The

auxiliary distribution Q is parametrized by a neural network—here we call it the

auxiliary network.

In our design synthesis scenario, the latent codes c can represent any continuous or

discrete factor that controls the geometry of the design, e.g., the upper/lower surface
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z

Figure 5.2: Architectures of the standard GAN and the InfoGAN

protrusion of the airfoil.

Previously there are GAN-based models that generate specific types of data (i.e.,

images and videos) by a two-level hierarchy [159, 227]. For example, a generator first

generates the structure of an image, and then conditioned on that structure, another

generator generates the texture of that image. In the case of design synthesis, it is

intuitive to generate each design component given all its dependencies, which results

in a hierarchical model structure with multiple levels of generators.

5.3 Method

In this section, we introduce our proposed deep neural network architecture and

its training details.

5.3.1 Problem Formulation

We can use a directed acyclic graph to define inter-part dependencies of a design.

We call this graph a part dependency graph. For example, suppose we want to design

an airfoil with two holes inside (top left in Fig. 5.3). We might first design the airfoil

(Part A), and then set the position and diameter of one hole (Part B) based on the

shape of the airfoil, followed by the design of the second hole (Part C) based on both
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the airfoil shape and the first hole. Thus, the dependencies can be expressed by the

graph shown in the bottom left of Fig. 5.3.

This chapter deals with a design synthesis and design space exploration problem,

where we have a database of geometric designs, each of which has multiple parts. We

have no prior knowledge of the specific types of constraints that confine the geometry

of each part, but only inter-part dependencies. We propose a model that learns to

synthesize designs based on those inter-part dependencies. We want to use this model

to (1) correctly synthesize each part that follows both the shape feasibility and the

dependency constraints; and (2) use a low-dimensional latent spaces C to represent the

design spaces X of each part. The ability to learn separate representations of each

part is useful for decomposing a design space exploration problem (e.g., in design

optimization).

Desired latent spaces satisfy the following requirements:

1. Any child latent space should be conditioned on a parent shape (e.g., for the

design in Fig. 5.3, any latent space of the first hole should be conditioned on an

airfoil).

2. Major variability across designs in the database should be captured by those

latent spaces.

3. Designs should changes consistently as we move along any basis of the latent

space. This regularity/consistency/smoothness will improve latent space design

exploration and optimization.

To meet the first requirement we construct a composite generative model—a model

with multiple generators, each of which learns a (conditional) generative distribution

of a part from the design. We ensure the rest of the requirements by adapting In-

foGAN’s architecture and objective, i.e., conditioning the generator on latent codes
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cA

Figure 5.3: An example of part dependency and the corresponding Hierarchical GAN ar-
chitecture. The interaction between generators (GA, GB, and GC) and auxiliary networks
(QA, QB, and QC) is based on the connection of the part dependency graph. This figure is
best viewed in color.

and maximizing a lower bound of the mutual information between the synthesized

designs and their latent representations. This is known to (1) make latent codes tar-

get salient features of the designs, and (2) disentangle the latent representation of the

data space[52]. We introduce the details of our model’s architecture in the following

section.

5.3.2 Model Architecture

To learn separate distributions/representations of each part, we use a generative

adversarial net with multiple generators/auxiliary networks. We call this network the

Hierarchical Generative Adversarial Networks (HGAN). An example of its architec-

ture is shown in Fig. 5.3. We use multiple generators to synthesize different parts

in a design. The interaction between generators/auxiliary networks changes with the

part dependency graph. The latent code cj defines the latent representation of the

j-th part, where j = 1, ..., n, and n is the number of parts. The generator Gj learns

a (conditional) shape distribution P (xj|cj,xPar(j)), where Par(j) denotes the set of
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parent(s) of the j-th part. For the example in Fig. 3, Par(A) = ∅, Par(B) = {A}, and

Par(C) = {A,B}. The output distribution PGj
= Gj(cj, zj, x̂Par(j)) represents the

distribution of the synthesized part x̂j, where x̂Par(j) denotes the synthesized parent

part(s) of xj, and zj is the noise input to Gj.

The auxiliary networkQj predicts the latent code distribution of the corresponding

part, i.e., to estimate the conditional distributions P (cj|xj,xPar(j)). The discrimina-

tor D predicts whether a full design is from the database or generated by generators.

A properly trained D should distinguish designs with unrealistic or mismatched parts.

The objective of HGAN is expressed as

min
{Gj},{Qj}

max
D

VHGAN(D, {Gj}, {Qj}) = V (D, {Gj})− λLI({Gj}, {Qj}) (5.3)

where {Gj} and {Qj} denotes the set of generators and auxiliary networks, respec-

tively. The first term in Eqn. (5.3) denotes the standard GAN objective:

V (D, {Gj}) = E{xj}∼Pdata
[logD({xj})]+E{cj∼P (cj)},{zj∼P (zj)}[log(1−D({x̂j}))] (5.4)

where x̂j = Gj(cj, zj, x̂Par(j)). The second term in Eqn. (5.3) is the lower bound of

the mutual information between the latent codes and the synthesized designs:

LI({Gj}, {Qj}) =
n∑
j=1

Ecj∼P (cj),xj∼Gj(cj ,zj ,x̂Par(j))[logQj(cj|xj, x̂Par(j))] +H(cj) (5.5)

5.4 Experimental Setup

To demonstrate the performance of our model, we built six datasets with differ-

ent ground-truth inter-part dependencies. We train the proposed network on these

datasets, and evaluate the generative performance, constraint satisfaction, and the
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Figure 5.4: Datasets with different inter-part dependencies

latent space property through qualitative and quantitative measures.

5.4.1 Dataset

We created the following datasets, as shown in Fig. 5.4:

1. AH: An 2D airfoil (Part A) with a hole (circle, Part B) inside.

2. AHH: An 2D airfoil (Part A) with two non-intersecting holes (Parts B and C)

inside. The centers of the two holes lie on a horizontal line.

3. SE: A superformula [79] (Part A) with a concentric ellipse (Part B) inside.

4. SEoEi: A superformula (Part A) with two ellipses inside. The second ellipse

(Part C) is also inside the first one (Part B). All three shapes are concentric.

5. SEiEo: A superformula (Part A) with two ellipses inside. The second ellipse

(Part C) is also outside the first one (Part B). All three shapes are concentric.1

6. SCC: A superformula (Part A) with two tangent circles—one (Part B) inside

and the other (Part C) outside.

1Note that the assembly of SEiEo is the same as SEoEi, but since we synthesize its parts in
a different order, the inter-part dependency changes (see Fig. 5.4). We create this dataset for
comparing different inter-part dependencies, rather than simulating practical use case.
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In addition, we control the part dependency graph’s depth and branching factor

by adding more circles/ellipses to SCC/SEoEi. This results in six extra datasets—S,

SC, SCCC, SCCCC, SEEE, and SEEEE. Here the dataset of superformulas (S)

is used as a baseline where no inter-part dependency is presented.

Specifically, the airfoil shapes are from the UIUC airfoil coordinates database2,

which provides the Cartesian coordinates for nearly 1,600 airfoils. Each airfoil is re-

parametrized and represented with 64 Cartesian coordinates, resulting in a 64 × 2

matrix.

Though targeted for real-world applications, the airfoils may not be a perfect

experimental dataset to visualize the latent space, because the ground truth intrinsic

dimension (ID)3 of the airfoil dataset is unknown. Thus, we create another synthetic

dataset using superformulas and ellipses, the IDs of which are controllable. The

superformula is a generalization of the ellipse [79]. We generate superformulas using

the following equations:

n1 = 10s1

n2 = n3 = 10(s1 + s2)

r(θ) = (|cos θ|n2 + |sin θ|n3)
− 1

n1

(x, y) = (r(θ) cos θ, r(θ) sin θ)

(5.6)

where s1, s2 ∈ [0, 1], and (x, y) is a Cartesian coordinate. For each superformula, we

sample 64 evenly spaced θ from 0 to 2π, and get 64 grid-point Cartesian coordinates.

Equations (5.6) show that we can control the deformation of the superformula shape

with s1 and s2. Thus, the ground truth ID of our superformula dataset is two.

2http://m-selig.ae.illinois.edu/ads/coord_database.html
3The intrinsic dimension is the minimum number of variables required to represent the data. It

indicates the degrees of freedom we have to control the shape and position.
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Figure 5.5: Samples drawn from datasets

For further details on how to modify the superformula parameters to adjust the ID,

complexity, and number of manifolds see [49].

The other shapes (e.g., circles and ellipses) are also represented using 64 Cartesian

coordinates. The ground truth ID of ellipses in SE, SEoEi, and SEiEo is two, since we

fix their centers and only change their semi-major axis and semi-minor axis lengths.

The ground truth ID of circles in SCC is also two, since they can change their radii

and move tangentially to the superformulas. The Part B (circle) in AH and AHH

has a ground truth ID of three, as both their centers and radii can change; while the

Part C in AHH has a ground truth ID of two, since the y-coordinate of its center is

fixed. Figure 5.5 shows samples drawn from each dataset.

For each dataset, we run experiments with sample sizes ranging from 500 to 10,000.

5.4.2 Network and Training

We implement our airfoil/superformula generators by adopting the generator ar-

chitecture of the BézierGAN [42, 47]. The circle/ellipse generators first generate

shape parameters (e.g., the center coordinates and the radius for a circle), and then

convert them into grid-point coordinates using corresponding parametric functions.
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For a generator with parent parts as inputs, we use an encoder to convert each parent

part into a feature vector before concatenating all inputs and feeding them into the

generator. Similarly, we use an encoder to convert each generated part into a feature

vector before feeding them into the auxiliary networks and the discriminator. The

use of encoders reduces the model complexity by reducing the input dimension of the

generators, the auxiliary networks, and the discriminator. But one has to carefully

choose the feature vector dimensions to avoid loss of information from dimensionality

reduction.

At training, we sample the latent codes from uniform distribution U(0, 1), and

the noise inputs from normal distribution N (0, 0.25). The hyper-parameter λ in

Eqn. (5.3) was set to 0.1 in all experiments. The network was optimized using

Adam [116] with the momentum terms β1 = 0.5 and β2 = 0.999. The learning

rates were set to 0.0001. The total number of training steps was 100,000. The batch

size was 32. Interested readers who wish to reproduce our exact architectures, hyper-

parameters, and training procedures are directed to our code located on GitHub4.

The training procedure is summarized in Algorithm 1.

We used TensorFlow [1] to build the networks. We trained our networks on an

Nvidia Titan X GPU. For each experiment, the training process took around 2.2

hours for SE and AH, and 3 hours for other examples. The inference took less than

10 seconds.

5.5 Results and Discussion

We evaluated the performance of our trained generative models using both vi-

sual inspection (Figs. 5.6-5.10) and quantitative measures (Fig. 5.11). We analyze

4https://github.com/IDEALLab/hgan_jmd_2019
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Algorithm 1 Train HGAN for designs with n parts

1: . T : number of training steps
2: . m: batch size
3: . X: training set
4: procedure Train(T , m)
5: for t = 1 : T do
6: Sample {x1, ...,xm} from X, where xi = [xi1, ...,x

i
n], i = 1, ...,m

7: for j = 1 : n do
8: Sample {c1j , ..., cmj } from a uniform distribution
9: Sample {z1

j , ...,z
m
j } from a normal distribution

10: end for
11: . Based on Eqn. (5.3-5.5):
12: Train D using {x1, ...,xm}, fixing G1, ..., Gn

13: x̂i := [G1(c
i
1, z

i
1, x̂

i
Par(1)), ..., Gn(cin, z

i
n, x̂

i
Par(n))]

14: Train Q1, ..., Qn and D using {x̂1, ..., x̂m}, fixing G1, ..., Gn

15: Train G1, ..., Gn, fixing Q1, ..., Qn and D
16: end for
17: end procedure

the effect of sample size and problem complexity on those quantitative performance

metrics.

5.5.1 Visual Inspection.

The captured latent spaces for different examples are visualized in Figs. 5.6-5.9.

All these plots are generated using a sample size of 10,000. The results show that each

child latent space adjusts itself according to its parent part, so that the sizes/positions

of child parts match their parent parts. This indicates that the child generator fig-

ures out the implicit constraints encoded in data. The latent spaces capture major

shape variations and show consistent shape change. For example, in Fig. 5.6, the

outer ellipse (middle subplot) has a consistently decreasing width from left to right,

and increasing height from top to bottom. Interestingly, Fig. 5.8 shows that the

circles (middle and right subplots) change in the latent space according to a polar
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Figure 5.6: Latent space visualization of the SEoEi example. Left: synthesized super-
formulas in a 2-D latent space; middle: synthesized outer ellipses in a 2-D latent space
conditioned on a random superformula; right: synthesized inner ellipses in a 2-D latent
space conditioned on a random outer ellipse.

Figure 5.7: Latent space visualization of the SEiEo example. Left: synthesized super-
formulas in a 2-D latent space; middle: synthesized inner ellipses in a 2-D latent space
conditioned on a random superformula; right: synthesized outer ellipses in a 2-D latent
space conditioned on that same superformula and a random outer ellipse.
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Figure 5.8: Latent space visualization of the SCC example. Left: synthesized superformulas
in a 2-D latent space; middle: synthesized inner circles in a 2-D latent space conditioned on
a random superformula; right: synthesized outer circles in a 2-D latent space conditioned on
that same superformula. Interestingly, the HGAN automatically learns a polar-coordinate
representation for the tangent constraint.

Figure 5.9: Latent space visualization of the AHH example. Top: Synthesized airfoils in a
3-D latent space (visualized by multiple slices of 2-D latent spaces); middle: Synthesized
holes in a 3-D latent space conditioned on a random airfoil; Bottom: Synthesized holes in
a 2-D latent space conditioned on that same airfoil and another random hole. Unfeasible
synthesized designs occur when the two holes intersect (indicated by red boxes).
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Figure 5.10: Latent spaces learned without maximizing the mutual information lower bound.
Left: the latent code c failed to capture major shape variation; right: inconsistent shape
variation along latent space bases (LSC=0.562± 0.008).

coordinate system, instead of a Cartesian coordinate system like in other examples.

For example, the inner circle’s radius decreases with the radial coordinate, and its

position moves with the angular coordinate. This behavior is interesting because

we did not explicitly encode this polar-coordinate representation into the HGAN

architecture—rather, the HGAN automatically learns that such a representation is

appropriate for this constraint. Figure 5.10 shows that when we removed the mutual

information lower bound LI in Eqn. (5.3), latent spaces either failed to capture major

shape variation, or became entangled and inconsistent.

In the AHH example (Fig. 5.9), unfeasible synthesized designs occur when the two

holes intersect. The figure shows that while the second hole moves from one side of

the airfoil to the other side, it has to pass through a narrow unfeasible region. This

unfeasible region cuts off the latent space, but the generator ignores this fact and

learns a continuous latent space by interpolating designs inside the unfeasible region.

The small volume of this unfeasible region may cause the discriminator to ignore

it. In other words, the generator is willing to take the minor loss incurred by this

small region of the infeasible design space in order to avoid making the latent space

representation more complicated. To solve this problem, we can perform adaptive

sampling in the latent space to more accurately identify the feasible region(s) [44, 45].
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Figure 5.11: Quantitative measure of synthesized design quality and latent space properties.
LSC A, LSC B, LSC C denote the LSC for the latent spaces of Parts A, B, C, respectively.

5.5.2 Constraint Satisfaction.

We measure the precision of constraint satisfaction by computing the proportion

of feasible designs among all the synthesized designs. We call this metric the Con-

straint Satisfaction Score (CSS). Specifically, different constraints define feasibility in

different examples:

1. AH: Each point on the hole should be inside the airfoil.

2. AHH: (i) Each point on both holes should be inside the airfoil; (ii) the centers

of the two holes should have a vertical distance of less than 0.01 (alignment

constraint);5 and (iii) the distance of the two centers should be larger than the

sum of the two radii (non-intersection constraint).

5All designs are rescaled such that the airfoils and the superformulas have unit widths.
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3. SE: (i) Each point on the ellipse should be inside the superformula; and (ii) The

distance between the origin and the center of the ellipse should not exceed 0.01

(concentric constraint).6

4. SEoEi: (i) Each point on both ellipses should be inside the superformula;

(ii) both the semi-major and semi-minor axis lengths of the first ellipse should

be larger than the second one; and (iii) for both ellipses, the distance between

their centers and the origin should not exceed 0.01 (concentric constraint).

5. SEiEo: Same as the SEoEi example, except that the first and the second ellipses

are swapped.

6. SCC: For each circle with a center Co and a radius r, the difference between r

and the distance from Co to the superformula should be less than 0.03 (tangent

constraint).

The results on CSS in Fig. 5.11 show that the tangent constraint in the example

SCC is the hardest to learn. But the learning performance improves with larger sam-

ple size. The SE example outperforms SEoEi and SEiEo on CSS, which is expected

since the task of learning constraints in SE can be considered as a sub-task in SEoEi

and SEiEo. This also applies to AH and AHH. It is also expected that SEoEi out-

performs SEiEo, since the two are dealing with the same design but the former has

fewer dependencies.

5.5.3 Distance between Data and Generator Distributions.

We measure how well our generator approximates the real data distribution by

computing the kernel maximum mean discrepancy (MMD) [87] between the data and

6For all the examples we assume that the superformula is centered at the origin.
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the generator distribution:

MMD2(Pdata, PG) = Exd,x
′
d∼Pdata;xg ,x′

g∼PG

[
k(xd,x

′
d)− 2k(xd,xg) + k(xg,x

′
g)
]

where k(x,x′) = exp (−‖x− x′‖2/(2σ2)). A lower kernel MMD indicates that the

generator distribution is closer to the data distribution.

The top middle plot in Fig. 5.11 shows the results of MMD. Here the SEoEi and

SEiEo examples have similar MMD values, which suggests that synthesized designs

in both examples have similar perceptual quality, despite the fact that SEiEo requires

more model parameters to learn the additional dependency. The MMD plot provides

insight into how realistic the generated designs can get as the training sample size

changes. In general, MMD first decreases steeply with the sample size, and then

reaches a plateau at some point. This point indicates the smallest sample size required

to reach a “perceptually good” synthesis performance.

5.5.4 Diversity of Generated Designs.

A common problem in GANs’ training is mode collapse, during which the genera-

tor only generates a few types of designs to fool the discriminator instead of properly

learning the complete data distribution. Therefore it is important to measure the

diversity of the synthesized designs. We use Relative Diversity (R-Div) to measure

the relative level of variability captured by the generator.

We define the diversity of N samples X ∈ Rd×N as7

Div(X) =
1

N
trace(cov[X,X])

7Here each sample is represented as a column vector containing all the coordinates of the design.
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Figure 5.12: Mode collapse occurs when the sample size is 500. The diversity is low in these
randomly generated designs.

The R-Div metric can then be expressed as

R-Div =
Div(Xg)

Div(Xdata)

where Xg and Xdata denote the set of synthesized designs and designs from the

dataset, respectively. A R-Div close to 0.0 means that there is little variation within

the synthesized designs, which could be an indicator of mode collapse. A R-Div

around 1.0 indicates that the synthesized designs have a similar level of variability with

the dataset. Note that high diversity does not always indicate good performance, as

there could be unrealistic designs being synthesized, which also contribute to diversity.

Thus, we should view this metric in concert with the kernel MMD to determine how

well the generator performs.

Figure 5.11 shows that synthesized designs tend to have a high divergence of R-Div

when the sample size is small. Particularly, in the AHH example with a sample size

of 500, the low R-Div combined with the high kernel MMD indicates the occurrence

of mode collapse (Fig. 5.12). Increasing the sample size stabilized the R-Div and

eventually bounded it between 0.8 and 1.1.
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5.5.5 Latent Space Consistency.

A desirable latent space has two properties: 1) disentanglement : each latent vari-

able is related to only one factor; and 2) consistency : shapes change consistently

along any basis of the latent space. Note that this consistency is evaluated along

one direction at a time, since scales along different directions may vary. To the best

of our knowledge, existing quantitative measurements for the first property—latent

space disentanglement—are supervised, i.e., the ground-truth independent factors

causing shape deformation have to be provided [39, 95, 114]. The second property

is important for latent space design exploration. When searching for designs along

a direction in the latent space, optimization algorithms and humans usually prefer if

shapes change consistently, such that the objective function over the latent space is

less complicated (i.e., has better Lipschitz continuity) and has fewer local optima.

We propose Latent Space Consistency (LSC) as a quantitative measure of how

consistently shapes change along any basis of the latent space. Since the change

from one shape to another can be measured by their dissimilarity, distances between

samples along a certain direction in the latent space should be consistent with the

dissimilarity between those samples. We use Pearson correlation coefficient to mea-

sure this consistency. Algorithm 2 describes how to compute the LSC. The choice of

the dissimilarity function d is not central to the overall method. In our experiments,

we simply use the Euclidean distance to measure the dissimilarity of designs.

Both the middle plots in Figs. 5.6 and 5.7 show latent spaces with LSCs above

0.9. In contrast, the right plot in Fig. 5.10 provides a visual example of an LSC of

around 0.56. The bottom plots in Fig. 5.11 shows that larger sample size does not

improve LSCs of Part A (at least with sample sizes in the range from 500 to 10,000),

but improves the LSCs of Parts B and C in most cases.
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Algorithm 2 Evaluate Latent Space Consistency

1: procedure LatentConsistency(G, m, n, d)
2: . G: the mapping from a latent space to a design space
3: . m: the number of lines to be evaluated
4: . n: the number of points sampled on each line
5: . d: a dissimilarity function
6: . C: the latent space
7: . X : the design space
8: sum = 0
9: for i = 1 : m do

10: Sample a line L parallel to any basis of C
11: Sample n points {c1, c2, ..., cn} along L
12: {x1,x2, ...,xn} := {G(c1), G(c2), ..., G(cn)}
13: DC := {‖ci − cj‖}, DX := {d(xi,xj)}, where i, j ∈ {1, ..., n}
14: Compute Pearson correlation coefficient:

ρ :=
cov(DC, DX )

σ(DC)σ(DX )

15: sum := sum+ ρ
16: end for
17: Return sum/m
18: end procedure
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Figure 5.13: The latent space learned by a standard InfoGAN. This plot visualizes a 6-
D latent space of the SEoEi example by showing each two dimensions while setting the
latent coordinates of other dimensions to zero. In each dimension, three parts change
simultaneously. This shows that the latent space learned by a standard InfoGAN does not
disentangle each part’s shape variation. In contrast, the results of the HGAN disentangle
and separate each part’s latent space.

5.5.6 Effect of Encoding Inter-Part Dependencies.

To further study the effect of encoding inter-part dependencies in the GAN, we

compared the results of our HGAN with a standard InfoGAN, where there is only one

generator and all parts are synthesized from a single latent space. The latent space

dimension was set to the sum of all latent space dimensions in the HGAN experiments.

Figure 5.13 visualizes the latent space learned by a standard InfoGAN. It shows that

in each latent dimension, three parts change simultaneously, which indicates that the

latent space does not disentangle each part’s shape variation.

We also study the effects of part dependency graph’s depth and branching factor

on the model’s synthesis performance. The examples S, SE, SEE, SEEE, and SEEEE

simulate increasing depths, respectively; while the examples S, SC, SCC, SCCC,

and SCCCC simulate increasing branch factors, respectively. The results are shown

in Fig. 5.14. The InfoGAN model is used as a baseline where we do not encode

inter-part dependencies. As expected for both HGAN and InfoGAN, CSS decreases
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Figure 5.14: Effects of depth (top) and branching factor (bottom) on synthesis performance.
Here we denote the example SEoEi as SEE for simplicity.

with an increased number of parts, since additional parts bring extra constraints.

Theoretically, encoding inter-part dependencies introduces extra constraints to the

model and hence complicates the overall task. However, based on the results, the

HGAN shows no significant performance drop comparing to the InfoGAN, except

for the CSS when increasing the branching factor and the R-Div when increasing

the depth. Note that the MMD values are below 0.05 and do not change notably.

The lower CSS or R-Div indicates that HGAN compromises its synthesis precision

(i.e., the precision of satisfying constraints) or generator distribution’s coverage for

disentangling each part’s latent space. We also included the training history of HGAN

and InfoGAN in the online supplemental material.
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5.6 Limitations and Future Work

One limitation of our approach is that it is difficult to achieve high precision

in satisfying some constraints. This problem exists in all purely data-driven design

methods, where there is no process of incorporating restricted constraints in the

generative model or validating the constraint satisfaction of the outputs. While we can

address this by encoding constraints explicitly in the generative model, this requires

us to know these constraints in advance and create hand-coded rules for all types of

constraints. For example, to generate concentric ellipses, one can simply fix the center

of the second ellipse to have the same coordinate as the first one. However, it may be

difficult to incorporate some constraints in the generative model (e.g., the constraint

of one part being inside another). Also, it is sometimes hard to even know the type of

the exact constraint between parts (e.g., aesthetic preferences when placing handles

on a vase). Thus, here we assume that we have no prior knowledge of the types

of constraints, and inter-part dependencies are the only knowledge we need for our

model. Despite the limitation of purely data-driven design methods, they can be used

in the conceptual design stage for exploring a wide range of design alternatives and

inspiring novel designs. We can also use validation based on simulation, experiment,

or human annotation to exclude infeasible synthesized designs when performing latent

space exploration [44, 89], which could be an interesting avenue for future work.

Another limitation is that all designs must have the same part dependency graph,

which is impractical in some cases. For example, not all tables have four legs, thus

for some designs, their part dependency graphs might miss some nodes. Future study

needs to address this situation.

Sometimes the design data is not partitioned into separate components. One

possible solution to this problem is to apply unsupervised co-segmentation [194] to
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partition designs and establish correspondences between common components in dif-

ferent designs. Then we can use HGAN to learn the latent spaces and generate new

designs.

5.7 Summary

We introduced a GAN-based generative model for synthesizing designs with inter-

part dependencies. It decomposes the synthesis into synthesizing each part con-

ditioned on the corresponding parent part. This also creates a conditioned low-

dimensional latent representation that allows accelerated design exploration. This

model is built for problems where design space exploration over the latent space

has to be staged since the optimal solution of one part depends on the geometry

of another. Such models can accelerate design optimization problems, which we are

exploring in our future work.

An advantage of neural-network-based generative models (e.g., GANs and VAEs),

compared to other dimensionality reduction models (e.g., PCA and GPLVM), is that

one can define or regularize latent distributions. Our model adapts InfoGAN’s mutual

information objective to derive a consistent latent space, where the change of shapes is

consistent along any basis of the latent space. This property is desirable in latent space

design exploration, as the objective function over the latent space is less complicated

and has less local optima.

We also created new benchmark datasets for studying different kinds of inter-part

dependencies including: type of geometric constraints, depth of hierarchy, and branch-

ing factor of parent/child relationships. By using these datasets, we characterized the

effects of sample size and part dependencies’ complexity (depth and branching factor)

on the synthesis performance of our generative model. We also proposed a new eval-
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uation metric for generative models that measures the consistency of shape variation

in the latent space. Compared to a standard InfoGAN, the HGAN disentangles each

part’s latent space at the cost of weakened synthesis precision when the branching of

the part dependency increases.

The concept of decoupling the latent space of a design is important for design space

exploration in general. It allows separate exploration and synthesis of each part, and

helps us understand how different constraints control shape variation. Though we

use GANs to achieve this goal, the idea of encoding inter-part dependencies, learning

conditioned generative distributions, and the latent space analysis is also applicable to

other generative models. Thus this chapter’s techniques lay the foundation for learned

generative models to extend to more realistic engineering systems where inter-part

dependencies are widespread.

So far this dissertation has shown how to measure the intrinsic complexity of a

design space to guide data-driven design synthesis and how to incorporate prior knowl-

edge into data-driven design synthesis models. The compact latent spaces learned by

the proposed models can reduce the cost of design space exploration. But there is

another problem in design space exploration—the bounds of the design space are

hard to specify. Usually one cannot guarantee that the desired designs are inside the

user-specified bounds. Also sometimes the desired design is remarkably different from

existing ones, which makes it unreliable to set bounds based on the boundary of any

design dataset. To address this problem, the next two chapters will introduce design

space exploration methods that gradually expand an input space (i.e., either a design

space or a latent space), so that no fixed bounds are required.
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Chapter 6: Feasible Domain Identification with Active Expansion Sam-

pling

Portions of the work in this chapter were published as journal papers in the Journal

of Mechanical Design [44] and Structural and Multidisciplinary Optimization [43]

6.1 Introduction

In applications like design space exploration [64, 128, 237] and reliability analy-

sis [133, 248], people need to find feasible domains within which solutions are valid.

Sometimes the constraints that define those feasible domains are implicit, i.e., they

cannot be represented analytically. Examples of these constraints are aesthetics,

functionality, or performance requirements, which are usually evaluated by human

assessment, experiments, or time-consuming computer simulations. Thus usually it

is expensive to detect the feasibility of a given input. In such cases, one would like to

use as few samples as possible while still approximating the feasible domain well.

To solve such problems, researchers have used active learning (or adaptive sam-

pling)1 to sequentially select the most informative instances and query their feasibil-

ity, so that the number of queries can be minimized [101, 128, 133, 175, 248]. These

methods require fixed bounds over the input space, and only pick queries inside those

bounds. But what if we do not know how wide to set those bounds? If we set the

1Note that in this chapter the terms “active learning” and “adaptive sampling” are interchange-
able.
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bounds too large, an active learner will require an excessively large budget to explore

the input space; whereas if we set the bounds too small, we cannot guarantee that an

algorithm will recover all the feasible domains [44]. In this case, we need an active

learning method that can gradually expand our knowledge about the input space

until we have either discovered all feasible domains or used up our remaining query

budget.

This chapter proposes a method — which we call Active Expansion Sampling (AES)

— to solve that problem by casting the detection of feasible domains as an unbounded

domain estimation problem. In an unbounded domain estimation problem, given an

expensive function h : X ∈ Rd → {−1, 1} that evaluates any point x in an unbounded

input data space X , we want to find (possibly disconnected) feasible domains in which

h(x) = 1. Specifically, h could be costly computation, time-consuming experiments,

or human evaluation, so that the problem cannot be solved analytically. By un-

bounded, we mean that we do not manually bound the input space. Thus the input

space can be considered as infinite, and theoretically if the query budget allows, our

method can keep expanding the explored area of the input space. To use as few

function evaluations as necessary to identify feasible domains, AES first fully exploits

(up to an accuracy threshold) any feasible domains it knows about and then, budget

permitting, searches outward to discover other feasible domains.

The main contributions of this chapter are:

1. We introduce the AES method for identifying (possibly disconnected) feasible

domains over an unbounded input space.

2. We provide a framework that transfers bounded active learning methods into

methods that can operate over unbounded input space.

3. We introduce a dynamic local pool method that efficiently finds near-optimal
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solutions to the global optimization problem (Eq. 6.9) for selecting queries.

4. We prove a constant theoretical bound for AES’s misclassification error at any

iteration inside the explored region.

6.2 Related Work

Essentially, the unbounded domain estimation problem breaks down into two tasks

explored by past researchers: 1) the active learning task, where we efficiently query

the feasibility of inputs; and 2) the classification task, where we estimate decision

boundaries (i.e., boundaries of feasible domains) that separates the feasible class and

the infeasible class (i.e., feasible regions and infeasible regions). For the first task,

we will review relevant past work on active learning. For the second task, we use the

Gaussian Process as the classifier in this chapter and will introduce basic concepts of

Gaussian Processes.

6.2.1 Feasible Domain Identification

Past work in design and optimization has proposed ways to identify feasible do-

mains or decision boundaries of expensive functions. Generally, those methods were

proposed to reduce the number of simulation runs and improve the accuracy of surro-

gate models in simulation-based design and reliability assessment [13, 133]. Also, the

problem of feasible domain identification is equivalent to estimating the level set or

the threshold boundaries of a function, where the feasible/infeasible region becomes

superlevel/sublevel set [26, 86]. Such methods select samples that are expected to

best improve the surrogate model’s accuracy. A common rule is to sample on the es-

timated decision boundary, but not close to existing sample points. Existing methods

achieve this by (1) explicitly optimizing or constraining the decision function or the
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distance between the new sample and the existing samples [12, 13, 195], or (2) select-

ing points based on the estimated function values and their confidence at candidate

points [26, 53, 54, 86, 133, 235].

6.2.2 Active Learning

Methods for feasible domain identification usually require strategies that sequen-

tially sample points in an input space, such that the sample size is minimized. These

strategies fall under the larger category of active learning.

There are three main scenarios of active learning problems: (1) membership query

synthesis, (2) stream-based selective sampling, and (3) pool-based sampling [187]. In

the membership query model, the learner generates samples de novo for labeling. For

classification tasks, researchers have typically applied membership query models to

learning finite concept classes [6, 9, 103, 115] and halfspaces [3, 38]. In the stream-

based selective sampling model, an algorithm draws each unlabeled sample from an

incoming data distribution, and then decides whether or not to query that label. This

decision can be based on some informativeness measure of the drawn sample [2, 33, 34,

58, 61, 75, 160, 181], or whether the drawn sample is inside a region of uncertainty [57,

60]. In the pool-based sampling model, there is a small pool of labeled samples and

a large (but finite) pool of unlabeled samples, where the learner selects new queries

from the unlabeled pool.

The unbounded domain estimation problem assumes that synthesizing an unla-

beled sample from the input space is not expensive (as in the membership query

scenario), since otherwise we have to use existing samples and the input space will

be bounded. An example that satisfies this assumption is experimental design, where

we can form an experiment by selecting a set of parameters. With this assumption,
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our proposed method approximates the pool-based sampling setting by synthesizing

a pool of unlabeled samples in each iteration.

A pool-based sampling method first trains a classifier using the labeled samples.

Then it ranks the unlabeled samples based on their informativeness indicated by an

acquisition function. A query is then selected from the pool of unlabeled samples ac-

cording to their rankings. After that, we add the selected query into the set of labeled

data and repeat the previous process until our query budget is reached. Many of these

methods use the informativeness criteria that select queries with the maximum label

ambiguity [100, 136, 188], contributing the highest estimated expected classification

error [31, 125, 154, 247], best reducing the version space [215], or where different

classifiers disagree the most [7, 148]. Such methods are usually good at exploitation,

since they keep querying points close to the decision boundary, refining our estimate

of it.

However, when the input space may have multiple regions of interest (i.e., feasible

regions), these methods may not work well if the active learner is not aware of all

the regions of interest initially. Note that while some of the methods mentioned

above also consider representativeness [100, 148, 154, 188, 247], or the diversity of

queries [97, 236], they do not explicitly explore unknown regions and discover other

regions of interests. To address this issue, an active learner also has to allow for

exploration (i.e., to query in unexplored regions where no labeled sample has been

seen yet). A learner must trade-off exploitation and exploration.

To query in an unexplored region, there are methods that (1) take into account

the predictive variance at unlabeled samples when selecting new queries [26, 86, 111],

(2) naturally balance exploitation/exploration by looking a the expected error [143],

or (3) make exploitative and exploratory queries separately using different strategies

[10, 22, 96, 98, 124, 161]. In previous methods, the exploitation-exploration trade-off
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was performed in a bounded input space or a fixed sampling pool. However, in the

unbounded domain estimation problem, there is no fixed sampling pool and we are

usually uncertain about how to set the bounds of the input space for performing

active learning. If the bounds are too small, we might miss feasible domains; while if

the bounds are too large, the active learner has to query more samples than necessary

to achieve the required accuracy.

In this chapter, we introduce a method of using active learning to expand our

knowledge about an unbounded input data space, and discover feasible domains in

that space. A näıve solution would be to progressively expand a bounded input

space, and apply the existing active learning techniques. However, there are two

problems with this näıve solution: (1) it is difficult to explicitly specify when and

how fast we expand the input space; and (2) the area we need to evaluate increases

over time increasing the computational cost. Thus existing active learning techniques

cannot apply directly to the unbounded domain estimation problem. To the best

of our knowledge, [44] is the first to deal with the active learning problem over an

unbounded input space (i.e., the unbounded domain estimation problem). The AES

method proposed in this chapter improves upon that previous work (as illustrated in

Sect. 6.3).

6.2.3 Gaussian Process Classification (GPC)

Gaussian Processes (GP, also called Kriging) are often used as a classifier in active

learning [26, 53, 54, 86, 111, 133]. Compared to other commonly used classifiers such

as Support Vector Machines or Logistic Regression, GP naturally models probabilistic

predictions. This offers us a way to evaluate a sample’s informativeness based on its

predictive probability distribution.
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The Gaussian process uses a kernel (covariance) function k(x,x′) to measure the

similarity between the two points x and x′. It encodes the assumption that “similar

inputs should have similar outputs”. Some commonly used kernels are the Gaussian

kernel and the exponential kernel [110, 124, 142, 143]. In this chapter we use the

Gaussian kernel:

k(x,x′) = exp

(
−‖x− x′‖2

2l2

)
(6.1)

where l is the length scale.

For binary GP classification, we place a GP prior over the latent function f(x),

and then “squash” f(x) through the logistic function to obtain a prior on π(x) =

σ(f(x)) = P (y = 1|x). In the feasible domain identification setting, we can consider

f : X ∈ Rd → R as an estimation of feasibility, thus we can call it estimated feasibility

function. Under the Laplace approximation, given the labeled data (XL,y), the

posterior of the latent function f(x) at any x ∈ XU is a Gaussian distribution:

f(x)|XL,y,x ∼ N (f̄(x), V (x)) with the mean and the variance expressed as

f̄(x) = k(x)TK−1f̂ = k(x)T∇ logP (y|f̂) (6.2)

V (x) = k(x,x)− k(x)T (K +W−1)−1k(x) (6.3)

where W = −∇∇ logP (y|f) is a diagonal matrix with non-negative diagonal ele-

ments; f is the vector of latent function values at XL, i.e., fi = f(x(i)) where x(i) ∈

XL; K is the covariance matrix of the training samples, i.e., Kij = k(x(i),x(j)); k(x) is

the vector of covariances between x and the training samples, i.e., ki(x) = k(x,x(i));

and f̂ = arg maxf P (f |X,y). When using the Gaussian kernel shown in Eq. 6.1,

k(x,x) = 1. We refer interested readers to a detailed description by Rasmussen [172]

about the Laplace approximation for the binary GP classifier.
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The decision boundary corresponds to f̄(x) = 0 or π̄(x) = 0.5. We predict y = −1

when f̄(x) < 0, and y = 1 otherwise.

6.3 Active Expansion Sampling (AES)

Algorithm 3 summarizes our proposed Active Expansion Sampling method. Over-

all, the method consists of the following steps:

1. Select an initial sample x(0) to label.

2. In each subsequent iteration,

(a) check the exploitation/exploration status (Sect. 6.4.4),

(b) generate a pool of candidate samplesXU based on the exploitation/exploration

status and previous queries (Sect. 6.4.2 and 6.4.3),

(c) train a GP classifier using the labeled set XL to evaluate the informative-

ness of candidate samples in XU ,

(d) select a sample from XU based on its informativeness and its distance from

c (Sect. 6.3.1),

(e) label the new sample and put it into XL.

3. Exit when the query budget is reached.

This AES method improves upon our previous domain expansion method [44] in

several ways. For example, the previous method generates a pool XU that expands

with the explored region each iteration. So its pool size and hence the computational

cost increase significantly over time if using a constant sample density. To avoid this

problem, this chapter proposes a dynamic local pool method (Sect. 6.4). Another
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Algorithm 3 The Active Expansion Sampling algorithm

1: Inputs:
Query budget T
Initial point x(0) and its label y0
d-dimensional evaluation function h(·)
Hyperparameters ε and τ

2: Initialize:
XL ← {x(0)}, YL ← {y0}, INIT ← True

3: for t = 1, 2, . . . , T do
4: if INIT is True then
5: if XL consists of only one class (all feasible or all infeasible) then
6: c← x(0)

7: else
8: INIT ← False
9: c← centroid of positive samples in XL

10: end if
11: end if
12: Train the GP classifier using XL

13: Compute δexploit using Eq. 6.18
14: XU ← uniform samples inside the (d− 1)-sphere C(x(t−1), δexploit)
15: Compute f̄(x), V (x), and pε(x) for x ∈ XU using Eq. 6.2, (6.3), and (6.4)
16: if there are both f̄(x) < 0 and f̄(x) > 0 for {x ∈ XU |pε(x) > τ} then .

Exploitation stage
17: Select a new query x(t) from XU based on Eq. 6.9
18: else . Exploration stage
19: Compute δexplore using Eq. 6.17
20: if previous iteration is in exploitation stage then
21: x̂← argmaxx∈XL

‖x− c‖
22: XU ← uniform samples inside the (d− 1)-sphere C(x̂, δexplore)
23: else
24: XU ← uniform samples inside the (d− 1)-sphere C(x(t−1), δexplore)
25: end if
26: Compute f̄(x), V (x), and pε(x) for x ∈ XU using Eq. 6.2, 6.3, and 6.4
27: Select a new query x(t) from XU based on Eq. 6.9
28: end if
29: yt ← h(x(t))
30: XL ← XL ∪ {x(t)}, YL ← YL ∪ {yt}
31: end for
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Figure 6.1: The probability density function of the latent function f(x) [44]. The blue areas
represent the ε-margin probability pε(x).

major difference is that AES provides a verifiable way to distinguish between ex-

ploitation and exploration (Sect. 6.4.4); while the previous method uses a heuristic

based on the labels of last few queries (which is more likely to make mistakes). In this

section and Sect. 6.7, we show comprehensive theoretical analysis and experiments to

prove favorable properties of our new method.

6.3.1 ε-Margin Probability

We train a GP classification model to evaluate the informativeness of candidate

samples based on the ε-margin probability (Fig. 6.1):

pε(x) =


P (f(x) < −ε|x), if ŷ = 1

P (f(x) > ε|x), if ŷ = −1

= P (−ŷf(x) > ε|x)

= P (ŷf(x) < −ε|x)

= Φ

(
−|f̄(x)|+ ε√

V (x)

)
(6.4)
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where ŷ is the estimated label of x, the margin ε > 0, and Φ(·) is the cumulative

distribution function of standard Gaussian distribution N (0, 1). The ε-margin proba-

bility represents the probability of x being misclassified with some degree of certainty

(controlled by the margin ε). Let the misclassification loss be

L(x) =


max{0,−f(x)}, if y = 1

max{0, f(x)}, if y = −1

= max{0,−yf(x)}

(6.5)

where y is the true label of x. L(x) measures the deviation of the estimated feasibility

function value f(x) from 0 when the class prediction is wrong. Then, based on

Eq. 6.4 and 6.5, pε(x) = P (L(x) > ε), which is the probability that the expected

misclassification loss exceeds ε. A high pε(x) indicates that x is very likely to be

misclassified, and requires further evaluation. Thus we use this probability to measure

informativeness.

6.3.2 Exploitation and Exploration

Since our input space is unbounded, näıvely maximizing the ε-margin probability

(informativeness) will always query points infinitely far away from previous queries.2

To avoid this issue, one solution is to query informative samples that are close to

previously labeled samples. This allows the active learner to progressively expand its

knowledge as the queries cover an increasingly large area of the input space. When a

new decision boundary is discovered during expansion, we want a query strategy that

continues querying points on that decision boundary, such that the new feasible region

2A point infinitely far away from previous queries has the f̄(x) close to 0 and the maximum
V (x), thus the highest pε(x).
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Other queriedNew

Figure 6.2: Queries at the exploitation stage (left) and the exploration stage (right). The
gray area is the ground truth of the feasible domain. The solid line is the decision boundary
estimated by the GP classifier, and the dotted line is the isocontour of pε(x). At the
exploitation stage (left), the center c is the previous query, which makes the next query
stay along the decision boundary. At the exploration stage (right), c is the centroid of the
initial positive samples, which keeps the queries centered around the existing (real-world)
samples rather than biasing towards some direction.

can be identified as quickly as possible. Therefore, to enable continuous exploitation

of the decision boundary, we propose the following query strategy

min
x∈XU

V (x)

s.t. pε(x) ≥ τ

(6.6)

where V (x) is the predictive variance at x, and τ is a threshold of the informativeness

measure pε(x).

Theorem 6.1. The solution to Eq. 6.6 will lie at the intersection of the estimated

decision boundary (f̄(x) = 0) and the isocontour of pε(x) = τ (Point A in Fig. 6.2),

if that intersection A exists.

Proof. In the following proof, we denote f̄P = f̄(xP ), and VP = V (xP ). For a

sample xA at the intersection of f̄(x) = 0 and pε(x) = τ , we have f̄A = 0 and

pε(xA) = Φ(−ε/
√
VA) = τ (Point A in Fig. 6.2); and for a sample xB that is any

feasible solution to Eq. 6.6, we have pε(xB) = Φ(−(|f̄B| + ε)/
√
VB) ≥ τ (Point B in
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Fig. 6.2). Thus we get ε/
√
VB ≤ (|f̄B|+ ε)/

√
VB ≤ ε/

√
VA. Therefore, VA ≤ VB. The

equality holds when |f̄B| = 0 and pε(xB) = τ , i.e., xB is also at the intersection of

f̄(x) = 0 and pε(x) = τ . Thus we proved the intersection has the minimal predictive

variance among feasible solutions to Eq. 6.6, and hence it is the optimal solution.

Theorem 6.1 indicates that when applying the query strategy shown in Eq. 6.6, the

active learner will only query points at the estimated decision boundary3 as long as

the estimated decision boundary and the isocontour of pε(x) = τ intersect. The fact

that this intersection exists indicates that there are points on the decision boundary

that are informative to some extent (i.e., with pε(x) ≥ τ). We call this stage the

exploitation stage — at this stage the active learner exploits the decision boundary.

Equation 6.6 ensures that the queries are always on the estimated decision boundary

until the exploitation stage ends (i.e., there are no longer informative points on the

decision boundary).

If the estimated decision boundary and the isocontour of pε(x) = τ do not inter-

sect, then the algorithm has fully exploited any informative points on the estimated

decision boundary (i.e., for all the points on the estimated decision boundary, we have

pε(x) < τ). We call this stage the exploration stage since the active learner starts to

search for another decision boundary (Fig. 6.2). In this stage, we want the new query

to be both informative and close to where we started, since we do not want the new

query to deviate too far from where we start. Therefore, the query strategy at the

exploration stage is

min
x∈XU

‖x− c‖

s.t. pε(x) ≥ τ

(6.7)

3In Sect. 6.3, we assume that the queried point is the exact solution to the query strategy.
However since we approximate the exact solution by using a pool-based sampling setting, the query
may deviate from the exact solution slightly.
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where the objective function is the Euclidean distance between x and a center c. This

objective keeps the new query selected by Eq. 6.7 close to c. In practice, initially

when there are only samples from one class, we set c as the initial point x(0) to

keep new queries close to where we start; once there are both positive and negative

samples, we set c as the centroid of these initial positive samples, since we want to

keep new queries close to the initial feasible region.

Theorem 6.2. Given x∗ as the solution to Eq. 6.7, we have pε(x
∗) = τ , if pε(c) < τ .

Proof. Since pε(c) < τ , c itself is not the solution of Eq. 6.9. Thus ‖x∗ − c‖ > 0.

Then we have pε(x) < τ at any point within a (d−1)-sphere centered at c with radius

‖x∗− c‖, because otherwise the query will be inside the sphere. Thus on that sphere

we have pε(x) ≤ τ . So pε(x
∗) ≤ τ , since x∗ is on that sphere. Because x∗ is a feasible

solution to Eq. 6.9, we also have pε(x
∗) ≥ τ at x∗. Therefore pε(x

∗) = τ .

Theorem 6.2 shows that in each iteration, the optimal query x∗ selected by Eq. 6.7

is on the isocontour of pε(x) = τ .

For both Eq. 6.6 and 6.7, the feasible solutions are in the region of pε(x) ≥

τ . Intuitively this means that we only query samples with at least some level of

informativeness. We call the region where pε(x) ≥ τ the unexplored region, since it

contains informative samples (feasible solutions) that our query strategy cares about;

while we call the rest of the input space (pε(x) ≤ τ) the explored region (Fig. 6.2).

The upper bound of pε(x) is Φ(−ε/ supx V (x)), and it lies infinitely far away from

the labeled samples. In Eq. 6.3, K + W−1 is positive semidefinite, thus k(x)T (K +

W−1)−1k(x) ≥ 0 and V (x) ≤ k(x,x). For a kernel k(·) with k(x,x) = 1 (e.g., the

Gaussian or the exponential kernel), we have V (x) ≤ 1. Thus pε(x) ≤ Φ(−ε). To

ensure that Eq. 6.9 has a feasible solution, we have to set τ ≤ Φ(−ε). Therefore, we
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can set τ = Φ(−ηε), where η ≥ 1.0. Then the constraint in Eq. 6.6 and 6.7 can be

expressed as

Φ

(
−|f̄(x)|+ ε√

V (x)

)
≥ Φ(−ηε)

which can be written as

ηε
√
V (x)− |f̄(x)| ≥ ε (6.8)

The left-hand side of Eq. 6.8 is identical to the acquisition function of the straddle

heuristic when ηε = 1.96 [26]. The straddle heuristic queries the sample with the

largest value of the acquisition function. This acquisition function accounts for the

ambiguity of samples in terms of their confidence intervals [86]:

a(x) = min{−minQ(x),maxQ(x)}

= 1.96
√
V (x)− |f̄(x)|

where Q(x) is the 95% confidence interval of x.

Substituting Eq. 6.8 for the constraint in Eq. 6.6 and 6.7, and combining the

exploitation and exploration stages, our overall query strategy becomes

min
x∈XU

V (x)α‖x− c‖1−α

s.t. ηε
√
V (x)− |f̄(x)| ≥ ε

(6.9)

where the indicator α is 1 at the exploitation stage, and 0 otherwise. Section 6.4.4

introduces how to set α (i.e., when to exploit vs explore).

In general, the unbounded domain estimation problem can be solved using a family
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of query strategies with the following form

min
x∈XU

D(x, XL)

s.t. I(x) ≥ τ

whereD(x, XL) is a function that increases as x moves away from the labeled samples,

and I(x) is the informativeness measure that is used in any bounded active learning

methods. Our query strategies of Eqn 6.6 and 6.7 all have this form. Comparatively,

for bounded active learning methods, the query strategies are usually in the form of

maxx∈XU
I(x).

6.4 Dynamic Local Pool Generation

We cast our problem as pool-based sampling by generating a pool of unlabeled

instances de novo in each iteration. A näıve way to generate this pool is to try to

sample points anywhere near the pε(x) = τ isocontour. However, intuitively, as the

algorithm searches progressively larger volumes of the input space, the pool volume

will likewise expand. This expansion means that the size of the pool will increase

dramatically over time (assuming we want a constant sample density). This increase,

however, makes the computation of Eq. 6.2 and 6.3 expensive during later expansion

stages.

To bypass this problem, we propose a dynamic local pool method that generates

the pool of candidate samples only at a certain location in each iteration, rather

than sampling the entire domain.4 The key insight behind our local pooling method

is that while the optimal solution to Eq. 6.9 can, in principle, occur anywhere on

4Sampling methods like random sampling or Poisson-disc sampling [23] can be used to generate
the pool. We use random sampling here thereby for simplicity. The specific choice of the sampling
method within the local pool is not central to the overall method.
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the pε(x) = τ isocontour, in practice, multiple points on the isocontour are equally

optimal. All we need to do is sample points around any one of those optima. Below,

we derive guarantees for how to sample volumes near one of those optima, thus only

needing to sample a small fraction of the total domain volume.

6.4.1 Scope of an Optimal Query

Theorem 6.3. Let δ be the distance between an optimal query5 and its nearest labeled

sample. We have

δ < βl (6.10)

where β is a coefficient depends on ε, η, and the GP model.

5The optimal query means the exact solution to the AES query strategy shown in Eq. 6.6, 6.7,
or 6.9
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Proof. According to Eq. 6.2, given an optimal query x∗, we have

|f̄(x∗)| = |k(x∗)T∇ log p(y|f̂)|

=

∣∣∣∣∣∣∣∣∣∣
k(x∗)T∇ log


Φ(y1f1)

...

Φ(yt−1ft−1)


∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣
k(x∗)T


y1N (f1)/Φ(y1f1)

...

yt−1N (ft−1)/Φ(yt−1ft−1)


∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣
t−1∑
i=1

k(x∗,x(i))yi
N (fi)

Φ(yifi)

∣∣∣∣∣
≤

t−1∑
i=1

∣∣∣∣k(x∗,x(i))yi
N (fi)

Φ(yifi)

∣∣∣∣
<

t−1∑
i=1

kmsign(yi)yi
N (fi)

Φ(yifi)

= kmsign(y)T


y1N (f1)/Φ(y1f1)

...

yt−1N (ft−1)/Φ(yt−1ft−1)


= kmµ

where

km = max
x(i)∈XL

k(x∗,x(i))

= exp

(
−

minx(i)∈XL
‖x∗ − x(i)‖2

2l2

)

= e−δ
2/(2l2)

(6.11)

and

µ = sign(y)T∇ log p(y|f̂) (6.12)
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Similarly,

V (x∗) = 1− k(x∗)T (K +W−1)−1k(x∗)

> 1− (km1)T (K +W−1)−1(km1)

= 1− k2m1T (K +W−1)−11

= 1− k2mν

(6.13)

where

ν = 1T (K +W−1)−11 (6.14)

Therefore for the optimal query x∗ we have

pε(x
∗) = Φ

(
−|f̄(x∗)|+ ε√

V (x∗)

)
> Φ

(
− kmµ+ ε√

1− k2mν

)

Both Theorem 6.1 and 6.2 state that pε(x
∗) = τ , thus

Φ

(
− kmµ+ ε√

1− k2mν

)
< τ

When τ = Φ(−ηε), we have

kmµ+ ε√
1− k2mν

> ηε (6.15)

Plugging Eq. 6.11 into Eq. 6.15 and solving for the distance δ, we get

δ < βl

where

β =

√
2 log

µ2 + η2ε2ν

ηε
√
µ2 + (η2 − 1)ε2ν − εµ

(6.16)
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Figure 6.3: Dynamic local pools (dashed circles) at the exploitation stage (left) and the
exploration stage (right). During the exploitation stage, the estimated decision boundary
divided the unexplored region into two subregions: unexplored negative R1 = {x|pε(x) >
τ, f̄(x) < 0} and unexplored positive R2 = {x|pε(x) > τ, f̄(x) > 0}; while during the
exploration stage, there will be at most one of R1 and R2 in the unexplored region. This
property can be used to distinguish between the exploitation/exploration stages.

Theorem 6.3 indicates that if we set the pool boundary by extending the current

labeled sample range by βl, then that pool is guaranteed to contain all solutions to

Eq. 6.9; that is, extending the overall pool boundary further will not increase the

chances of sampling near pε(x) = τ , and will only decrease the sample density (given

a fixed pool size) or increase the evaluated samples (given a fixed sample density).

However, if we generate the pool based solely on this principle (i.e., extending the

current labeled sample range by βl), the pool size will still increase over time as

the domain size grows. The next two sections show how, for the exploration and

exploitation stages respectively, we can further reduce the sample boundary to only

a local hyper-sphere.
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6.4.2 Pool for the Exploration Stage

Theorem 6.4. During the exploration stage of Active Expansion Sampling, the dis-

tance between an optimal query and its nearest labeled sample is

δ < δexplore = βl (6.17)

Theorem 6.4 is derived from Eq. 6.10. The nearest labeled sample of the optimal

query could be any border point (a sample lying on the periphery of the labeled set).

There are multiple local optima that are equally useful for expanding the explored

region (Fig. 6.3). Thus we just sample near one of those optima. Specifically, we

approximate the nearest labeled sample as the previous query. With this approxima-

tion, incorporating Theorem 6.4, the optimal query will be inside C(x(t−1), δexplore),

the (d−1)-sphere with a radius of δexplore, centered at the previous query x(t−1). Thus

during the exploration stage, we set the pool boundary to be that sphere (Fig. 6.3).

Sometimes when AES switches from exploitation to exploration, the previous

query may not lie on the periphery of the labeled samples. This causes samples

around the previous query to have low values of pε(x). In this case, there might not

be a feasible solution to Eq. 6.9. Thus, every time AES switches from exploitation to

exploration, we center the pool around the farthest labeled sample from the centroid

of the initial positive samples (i.e., argmaxx∈XL
‖x − c‖). This ensures that AES

generates pool samples near the periphery of the labeled samples.
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6.4.3 Pool for the Exploitation Stage

Theorem 6.5. During the exploitation stage of Active Expansion Sampling, the dis-

tance between an optimal query and its nearest labeled sample is

δ < δexploit = γl (6.18)

where γ is a coefficient depends on ε, η, and the GP model.

Proof. Theorem 6.1 states that the optimal query in the exploitation stage lies at the

intersection of f̄(x) = 0 and pε(x) = τ . By substituting Φ(−ηε) for τ , we have

V (x∗) =
1

η2
(6.19)

According to Eq. 6.13, we have V (x∗) > 1 − k2mν. Combining Eq. 6.11, 6.14, and

6.19, we get

δ < δexploit = γl

where

γ =

√
log

η2ν

η2 − 1
(6.20)

Similar to the exploration stage, based on Theorem 6.5, we define the pool bound-

ary during the exploitation stage as C(x(t−1), δexploit), a (d − 1)-sphere with a radius

of δexploit, centered at the previous query x(t−1) (Fig. 6.3).
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6.4.4 Choosing when to Exploit versus Explore

Since we use different rules to generate the pool at the exploitation and exploration

stage, we need to distinguish between the two stages at the beginning of each iteration.

In the exploitation stage, according to Theorem 6.5, the optimal query lies within the

(d − 1)-sphere C(x(t−1), δexploit) centered at the previous query. While, according to

Theorem 6.1, that same query must lie where the estimated decision boundary and

the isocontour of pε(x) = τ intersect. Thus, the decision boundary and the isocontour

divide the sphere C into four regions (Fig. 6.3):

unexplored negative R1 = {x|pε(x) > τ, f̄(x) < 0};

unexplored positive R2 = {x|pε(x) > τ, f̄(x) > 0};

explored negative R3 = {x|pε(x) < τ, f̄(x) < 0}; and

explored positive R4 = {x|pε(x) < τ, f̄(x) > 0}.

In contrast, during exploration the estimated decision boundary and the pε(x) = τ

isocontour do not intersect — meaning, unlike exploitation, there exist only two of

the four regions (either R1 & R3 or R2 & R4). In particular, within the unexplored

region, f̄(x) will be either all positive or all negative, i.e., R1 and R2 cannot exist

simultaneously (Fig. 6.3).

We use this property to detect exploitation or exploration by generating a pool

(a set of uniformly distributed samples) within the boundary C(x(t−1), δexploit) and

checking if, for samples with pε(x) > τ , samples differ in f̄(x) > 0 and f̄(x) < 0. If

so, AES is in the exploitation stage; otherwise it is in the exploration stage.
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6.5 Theoretical Analysis

In this section, we derive a theoretical accuracy bound for AES with respect to

its hyperparameters. We further discuss the influence of those hyperparameters on

the classification accuracy, the query density, and the exploration speed. The results

of this section guide the selection of proper hyperparameters given an accuracy or

budget requirement.

6.5.1 Accuracy Analysis

It is impossible to discuss the function accuracy across the entire input space,

since the input space is unbounded. However, we can consider ways to bound the

accuracy within bounded explored regions at any time step.

As mentioned in Sect. 6.3.1, pε(x) = P (L(x) > ε), where L(x) is the misclassifi-

cation loss at x defined in Eq. 6.5. Thus within the explored region, we have

P (L(x) ≥ ε) ≤ τ ∀x ∈ {x|pε(x) ≤ τ}

or

P (L(x) ≤ ε) ≥ 1− τ ∀x ∈ {x|pε(x) ≤ τ} (6.21)

This shows that at any location within the explored region of the input space,

the proposed method guarantees an upper bound ε of misclassification loss with a

probability of at least 1 − τ at any given point. Since, in the exploration stage,

the estimated decision boundary lies inside the pε(x) ≤ τ region (as discussed in

Sect. 6.3.2), we have

P (L(x) ≤ ε) ≥ 1− τ ∀x ∈ {x|f̄(x) = 0}
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This means that in the exploration stage, the estimated decision boundary f̄(x) = 0

lies in between the isocontours of f(x) = ±ε with a probability of at least 1 − τ ,

where f is the true latent function.

Note that Eq. 6.21 shows that AES’s accuracy bound within the explored region

is independent of the number of iterations or labeled samples. One advantage of

keeping a constant accuracy bound for AES is that the accuracy in the explored region

meets our requirements6 whenever AES stops. This also means that the estimation

within the explored region is reliable at any iteration (although this is not true if

one includes the unexplored region). In contrast, bounded active learning methods

usually only achieve required accuracy after a certain number of iterations, before

which the estimation may not be reliable. Therefore, AES can be used for real-time

prediction of samples’ feasibility in the explored region.

6.5.2 Query Density

In Gaussian Processes, given a fixed homoscedastic Gaussian or exponential kernel,

we can measure the query density by looking at the predictive variance at queried

points. According to Eq. 6.3, V (x) only depends on k(x), which is affected by the

distances between x and other queries. A smaller variance at a query indicates that

it is closer to other queries, and hence a higher query density; and vise versa.

Theorem 6.6. The predictive variance of an optimal query in the exploitation and

exploration stage is

V (xexploit) =
1

η2
(6.22)

6We can set ε and τ such that the accuracy bound is as required. Details about how to set
hyperparameters are in Sect. 6.5.3.
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and

V (xexplore) =
1

η2

(
1 +
|f̄(xexplore)|

ε

)2

(6.23)

where xexploit and xexplore are optimal queries at the exploitation stage and exploration

stage, respectively.

Proof. According to Eq. 6.19, the predictive variance of an optimal query xexploit in

the exploitation stage is

V (xexploit) =
1

η2

While in the exploration stage, we have pε(xexplore) = τ at the optimal query xexplore

(Theorem 6.2). And by applying Eq. 6.4 and setting τ = Φ(−ηε), we have

V (xexplore) =
1

η2

(
1 +
|f̄(xexplore)|

ε

)2

This theorem indicates that the predictive variances of queries at the exploitation

stage are always smaller than those at the exploration stage (as |f̄(xexplore)| > 0).

Thus the query density at the exploitation stage is always higher than that at the

exploration stage. The property of having a denser set of points along the decision

boundary (queried during the exploitation stage) and a sparser set of points at other

regions (queried during the exploration stage) is desirable because we want to save

our query budget for refining the decision boundary rather than other regions of the

input space.

Equation 6.21 and 6.22 also reflect the trade-off between the accuracy and the

running time. When the query density near the decision boundary is high (small

V (xexploit) in Eq. 6.22), η is large, thus τ in Eq. 6.21 is small, which means our model

will have a higher probability of having a misclassification loss less than ε. However,
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as the query density gets higher, we need more queries to cover a certain region, thus

the running time increases.

6.5.3 Influence of Hyperparameters

There are four hyperparameters that control Active Expansion Sampling — the

initial point x(0), ε and η in the exploitation/exploration stage, and the length scale

l of the GP kernel. The choice of the kernel function and length scale depends

on assumptions regarding the nature and smoothness of the underlying feasibility

function. Such kernel choices have been covered extensively in prior research and

we refer interested readers to [172] for multiple methods of choosing l. Note that

it is difficult to optimize the length scale at each iteration, since the length scale

will eventually be pushed to extremes. In the exploitation stage, for example, once

the length scale is smaller than the previous iteration, the distance between the new

query and its nearest query will also be smaller (due to Eq. 12). Then the maximum

marginal likelihood estimation will result in a smaller length scale, as the estimated

function is steeper. This process will repeat and eventually cause the optimal length

scale to converge to 0. The initial point x(0) can be any point not too far away from

the boundary of feasible regions, since otherwise it will take a large budget to just

search for a sample from the opposite class. Here we focus on the analysis of the

other two hyperparameters — ε and η.

According to Eq. 6.21, ε and τ affect the classification accuracy in a probabilistic

way. When τ = Φ(−ηε), we have P (L(x) ≤ ε) ≥ 1 − Φ(−ηε) in the explored

region. This offers us a guideline for setting ε and η with respect to a given accuracy

requirement.

According to Eq. 6.22 and 6.23, η controls the density of queries in both ex-
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ploitation and exploration stages. Specifically, as we increase η, Vexploit and Vexplore

decreases, increasing the query density and essentially placing labeled points closer

together.

In contrast, ε only controls the distances between queries in the exploration stage7.

Increasing ε decreases Vexplore and hence increases the density of queries in the explo-

ration stage. This density of queries affects (1) how fast we can expand the explored

region, and (2) how likely we are to capture small feasible regions. When η or ε

increases, we expand the explored region slower, making it more likely that we will

discover smaller feasible regions. Likewise, we also slow down the expansion in ex-

ploitation stages, making the classifier more likely to capture a sudden change along

domain boundaries.

Note that when ε = 0, the constraint of pε(x) ≥ τ in Eq. 6.9 is equivalent to f̄(x) =

0, thus theoretically all queries should lie near the estimated decision boundary. In

this case, the Active Expansion Sampling acts like Uncertainty Sampling [135, 136].

In practice, however, AES will be unable to find a feasible solution when ε = 0 since

no candidate sample will be exactly on the decision boundary under the pool-based

sampling setting.

6.6 Using Design Manifolds to Synthesize Novel Designs

It is difficult to directly explore a real-world design space since it is usually high-

dimensional, and most points in that space will be unrealistic or nonfunctional. To

handle real-world design spaces, our proposed method assumes that design vari-

ables original expressed in a high-dimensional design space X usually lie on a lower-

7Technically, due to sampling error introduced when generating the pool, the exploitation stage
will be influenced by ε (since f̄(x∗) is only ≈ 0). But this effect is negligible compared to ε’s influence
on the exploration stage.
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Valid design

Invalid design

Design manifold

Real-world samples

Real-world samples

Design space

Figure 6.4: 3D visualization of high dimensional design space showing that design variables
actually lie on a 2-dimensional manifold [41, 49]. At a point away from the real-world
stemless glass samples, the glass contours are self-intersecting; at another point, the shape
becomes a stem glass.

dimensional design manifold (Fig. 6.4) [17, 41, 49, 216]. We can thus project designs

on that lower-dimensional manifold F by a mapping g : X → F . Then given any

point in that space, we can synthesize new designs by a reverse mapping g′ : F → X .

This reduces the problem of exploring the high-dimensional design space X to ex-

ploring a corresponding embedding space F .

Just like in the original design space, there are boundaries for feasible designs

in the embedded space. The function that evaluates feasible domains can thus be

expressed as h : F → {−1, 1}. Figure 6.4 shows an example of a glassware design

manifold, where the synthesized contours are self-intersecting at a point away from

the real-world samples. We call these invalid designs—designs that are unrealistic

or nonfunctional in the real-world. Since real-world samples are all valid designs,

normally designs lying between any two real-world samples (i.e., inside the convex

hull of all the real-world samples in the embedding space) will also be valid [41, 49].

However, this assumption may not hold for designs that lie on the manifold but

beyond the real-world samples. Since they are on the manifold, they obey similar
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rules of variation and deformation learned from the real-world samples, but because

they are away from the real-world samples, there is no guarantee that those designs

are functional or aesthetically valid.

On a manifold that preserves pairwise distances between samples in the design

space, designs far away from the real-world samples will look different from them [41,

49]. If these designs remain valid, despite being far away from the real-world samples,

then we are discovering innovative designs. The methods presented in this chapter are

one way to achieve this creative exploration, even in high dimensional design spaces.

Note that this method assumes that the dimensionality of the design space can be

reduced. In cases where this assumption does not hold, we have to directly explore

the original high-dimensional design space.

6.7 Experimental Evaluation

We evaluate the performance of AES in capturing feasible domains using both

synthesized and real-world examples. The performance is measured by the F1 score,

which is expressed as

F1 = 2 · precision · recall

precision + recall

where

precision =
true positives

true positives + false positives

and

recall =
true positives

true positives + false negatives

We compare AES with two conventional bounded adaptive sampling methods — the

Neighborhood-Voronoi (NV) algorithm [195] and the straddle heuristic [26]. We also

investigate the effects of noise and dimensionality on AES.
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We use the same pool size (500 candidate samples8) in all the experiments. In

Fig. 6.8-6.11 and 6.14, the F1 scores are averaged over 100 runs. We run all 2-

dimensional experiments on a Dell Precision Tower 5810 with 16 GB RAM, a 3.5

GHz Intel Xeon CPU E5-1620 v3 processor, and a Ubuntu 16.04 operating sys-

tem. We run all higher-dimensional experiments on a Dell Precision Tower 7810

with 32 GB RAM, a 2.4 GHz Intel Xeon CPU E5-2620 v3 processor, and a Red

Hat Enterprise Linux Workstation 7.2 operating system. The Python code needed

to reproduce our AES algorithm, our baseline implementations of NV and Straddle,

and all of our below experiments is available at https://github.com/IDEALLab/

Active-Expansion-Sampling.

6.7.1 Effect of Hyperparameters

We first use two 2-dimensional test functions — the Branin function and Hosaki

function, respectively — as indicator functions to evaluate whether an input is in-

side the feasible domain. Both examples construct an input space with multiple

disconnected feasible regions, which makes the feasible domain identification task

challenging.

The Branin function is

g(x) =

(
x2 −

5.1

4π2
x21 +

5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cosx1 + 10

We define the label y = 1 if x ∈ {x|g(x) ≤ 8,−9 < x1 < 14,−7 < x2 < 17}; and

y = −1 otherwise. The resulting feasible domains resemble three isolated feasible

regions (Fig. 6.5). The initial point x(0) = (3, 3). For the Gaussian process, we use a

8For NV algorithm, its pool size refers to the test samples generated for the Monte Carlo simu-
lation.
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Exploitation stage I Exploration stage I Exploitation stage II

Exploitation stage II Exploration stage II Exploitation stage III

Exploitation stage III Exploration stage III

Figure 6.5: Querying sequence for Active Expansion Sampling (ε = 0.5 and η = 1.3).
The solid lines are estimated decision boundaries, and the dotted lines are the isocontour
pε(x) = τ . The gray areas are actual feasible regions.

90 queries 180 queries 270 queries

(a) Neighborhood-Voronoi algorithm.

90 queries 180 queries 270 queries

(b) Straddle heuristic.

Figure 6.6: Querying sequence for bounded adaptive sampling methods. The dashed lines
are pool boundaries.
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Exploration stage I

Exploitation stage I
Exploitation stage II

Exploration stage II

Exploitation stage III

Exploration stage III

Figure 6.7: F1 score plot for Fig. 6.5. During exploitation stages, the F1 score increases
stochastically as the decision boundary changes; while in the exploration stage, the current
decision boundaries have been exploited and do not change, thus the F1 score also does not
change.

(a) Changing ε (η = 1.3). (b) Changing η (ε = 0.3).

Figure 6.8: AES with different ε and η on the Branin example. The upper plots show their
F1 scores averaged over 100 runs. The lower plots show queried points during one of the
100 runs.
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Figure 6.9: AES and NV (with different input variable bounds) on the Branin example.
The pool boundaries set in the Neighborhood-Voronoi algorithm are shown as dashed lines.

Figure 6.10: F1 scores of AES (ε = 0.3 and η = 1.3), NV, and Straddle (with tight
bounds) on the Branin example within the explored region (i.e., the pε(x) < τ region,
where τ = Φ(−ηε), ε = 0.3, and η = 1.3).

(a) Bernoulli noise. (b) Gaussian noise.

Figure 6.11: AES and NV on the Branin example using noisy labels.
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AES NV Straddle

Figure 6.12: Queried points under uniform label noise (p = 0.2).

Figure 6.13: The 3-dimensional double-sphere example. The gray regions are the feasible
domains. The dashed boxes are the input space bounds for the NV algorithm.

(a) F1 scores. (b) Total running time.

Figure 6.14: AES and NV on high-dimensional double-sphere examples.
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Figure 6.15: AES on the Nowacki beam example.

Gaussian kernel (Eq. 6.1). We set the kernel length scale l = 0.9. To compute the F1

scores, we generate samples along a 100× 100 grid as the test set in the region where

x1 ∈ [−13, 18] and x2 ∈ [−8, 23].

This section mainly describes the Branin example — as both the Branin and

Hosaki examples show similar results — however, we direct interested readers to Sect. 6.8.1,

where we describe the Hosaki example in detail and show its experimental results.

For both examples, we use three levels of ε (0.1, 0.3, 0.5) and η (1.2, 1.3, 1.4) to

demonstrate their effects on AES’s performance.

Figures 6.5 and 6.6 show the sequence of queries selected by AES and the two

bounded adaptive sampling methods, respectively, applied on the Branin example.

For AES, there are three exploitation stages, as there are three disconnected feasible

domains. AES starts by querying samples along the initial estimated decision bound-

ary, and then expands queries outward to discover other feasible regions. In contrast,

the straddle heuristic simultaneously explores the whole bounded input space, and
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Table 6.1: Input space bounds for the NV algorithm and the straddle heuristic (Branin
example).

Tight Loose Insufficient

Branin
x1 ∈ [−9, 14],
x2 ∈ [−7, 17]

x1 ∈ [−14, 19],
x2 ∈ [−12, 22]

x1 ∈ [−4, 9],
x2 ∈ [−2, 12]

refines all three decision boundaries. Fig. 6.7 shows the corresponding F1 scores of the

experiment in Fig. 6.5. During exploitation stages, AES’s F1 score non-monotonically

increases as part of the estimated decision boundary is outside the explored region

(where AES has confidence in the accuracy); while in the exploration stage, the cur-

rent decision boundaries are inside the explored region and remain unchanged, thus

the F1 score stabilizes.

Figures 6.8a and 6.8b demonstrate the effects of hyperparameters ε and η, re-

spectively, on AES’s performance. Increasing ε or η leads to slower expansion of the

explored region and a higher F1 score. This means that using a higher ε or η enables

accuracy improvement but requires a larger query budget. In both examples, the F1

score is more sensitive to η than ε.

6.7.2 Unbounded versus Bounded

We use the NV algorithm and the straddle heuristic as examples of bounded

adaptive sampling methods. Because these two methods do not progressively expand

the region (as in AES), but rather assumes a fixed region, we create a “bounding

box” in the input space, and generate queries inside this box.

When comparing AES with the bounded methods, we use ε = 0.3 and η = 1.3 for

AES. In each experiment, we change the size of the input space bounds to evaluate

the effect of bound size on these methods. Specifically, we simulate the cases where
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we set tight, loose, and insufficient bounds, as shown in Tab. 6.1 and Fig. 6.9. “Tight”

means the bounds cover the entire feasible domain while being no larger than needed

(in practice we use bounds slightly larger than this to ensure the feasible domain

boundary is inside the tight bounds); “loose” means the bounds cover the entire

feasible domain but are larger than the tight bounds; “insufficient” means the variable

bounds do not cover the entire feasible domain.

As shown in Fig. 6.9, the NV algorithm makes fast accuracy improvement at

early stages, and slows down after some iterations. The F1 score of NV is almost

monotonically increasing; while AES’s score fluctuates because it focuses first on

refining the domains it knows about during exploitation (at the expense of accuracy

on domains it has not seen yet). This causes AES to have a lower F1 score early on.

For the NV algorithm, when the input variable bounds are set properly, both AES and

NV achieve similar final F1 scores. However, NV requires more iterations to achieve

similar final accuracy to AES, especially when the bounds are set too large, where NV

exhausts its query budget exploring unknown regions. When the bounds are set too

small to cover certain feasible regions, NV stops improving the F1 score when it begins

to over-sample the space and is unable to reach similar accuracy as AES. Note that

in this case, we purposefully set the bounds such that they cover the vast majority

of the feasible region, leaving only a small feasible area outside of those bounds. Our

explicit purpose here is to demonstrate how sensitive such bounded heuristics can be

when their bounds are misspecified (even by small amounts). The performance of

bounded methods degrades rapidly as their bound sizes decrease further.

Although AES shows slow accuracy improvement over the entire test region,

it keeps a constant accuracy bound within the explored region (as discussed in

Sect. 6.5.1). Fig. 6.10 shows the F1 scores within the pε(x) < τ region, which is

AES’s explored region. Specifically, we set ε = 0.3, η = 1.3, and τ = Φ(−ηε). For the
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Table 6.2: Final F1 scores and running time (Branin example).

F1 score Time (s)

B
ra

n
in

(3
50

q
u
er

ie
s)

AES (ε = 0.3, η = 1.3) 0.90± 0.004 92.34± 0.62
AES (ε = 0.1, η = 1.3) 0.87± 0.008 95.71± 0.37
AES (ε = 0.5, η = 1.3) 0.90± 0.002 89.71± 0.38
AES (ε = 0.3, η = 1.2) 0.87± 0.006 96.73± 0.26
AES (ε = 0.3, η = 1.4) 0.91± 0.002 80.70± 0.33
NV (tight) 0.83± 0.021 64.40± 0.09
NV (loose) 0.75± 0.030 63.68± 0.06
NV (insufficient) 0.41± 0.028 63.83± 0.06
Straddle (tight) 0.82± 0.012 43.72± 0.22
Straddle (loose) 0.71± 0.014 41.72± 0.22
Straddle (insufficient) 0.34± 0.009 54.44± 0.21

NV algorithm, we use the tight input space bounds from the previous experiments.

By just considering the explored region, AES’s F1 scores are quite stable throughout

the sampling sequence; while NV’s F1 scores are low at the beginning, and then in-

crease until stable.9 Since AES’s accuracy inside the explored region is invariant of

the number of iterations, it can be used for real-time prediction of samples’ feasibility

in the explored region.

Table 6.2 shows the final F1 scores and wall-clock running time of AES, NV, and

the straddle heuristic. Note that the confidence interval for NV’s averaged F1 scores

are much larger than AES. This is because during some runs NV fails to discover all

the three feasible regions (Fig. 6.9 for example).

6.7.3 Effect of Noise

Label noise is usually inevitable in active learning tasks. The noise comes from,

for example, simulation/experimental error or human annotators’ mistakes. We test

9This difference is because NV’s explored region covers more area than AES at the beginning.
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the cases where the labels are under (1) uniform noise and (2) Gaussian noise centered

at the decision boundary.

We simulate the first case by randomly flipping the labels. The noisy label is set as

y′ = (−1)λy, where λ ∼ Bernoulli(p), p is the parameter of the Bernoulli distribution

that indicates the noise level, and y is the true label.

The second case is probably more common in practice, since it is usually harder to

decide the labels near the decision boundary. To simulate this case, we add Gaussian

noise to the test functions: g′(x) = g(x) + e, where g(x) is the Branin or Hosaki

function, and e ∼ s · N (0, 1).

In each case, we compare the performance of AES (ε = 0.3, η = 1.3) and NV

(with tight bounds) under two noise levels. As expected, adding noise to the labels

decreases the accuracy of both methods (Fig. 6.11a and 6.11b). However, in both

cases (Bernoulli noise and Gaussian noise), the noise appears to influence NV more

than AES. As shown in Fig. 6.12, when adding noise to the labels, NV has high error

mostly along the input space boundaries, where it cannot query samples outside to

further investigate those apparent feasible regions. In contrast, AES tries to exploit

those rogue points to try to find new feasible regions, realizing after a few new samples

that they are noise.

6.7.4 Effect of Dimensionality

To test the effects of dimensionality on AES’s performance, we apply both AES

and NV on higher-dimensional examples where the feasible domains are inside two (d−

1)-spheres of radius 1 centered at a and b respectively. Here a = 0 and b = (3, 0, ..., 0).

Fig. 6.13 shows the input space of the 3-dimensional double-sphere example. The

initial point x(0) = 0. For the Gaussian process, we use a Gaussian kernel with a

135



length scale of 0.5. We set ε = 0.3 and η = 1.3. To compute the F1 scores, we

randomly generate 10,000 samples uniformly within the region where x1 ∈ [−2, 5]

and xk ∈ [−2, 2], k = 2, ..., d. The input space bounds for the NV algorithm are

x1 ∈ [−1.5, 4.5] and xk ∈ [−1.5, 1.5], k = 2, ..., d. We get the F1 scores and running

time after querying 1,000 points.

As shown in Fig. 6.14, both AES and NV shows an accuracy drop and running

time increase as the problem’s dimensionality increases. This is expected, since based

on the curse of dimensionality [14], the number of queries needed to achieve the same

accuracy increases with the input space dimensionality. The curse of dimensionality is

inevitable in machine learning problems. However, since AES explores the input space

only when necessary (i.e., only after it has seen the entire decision boundary of the

discovered feasible domain), its queries do not need to fill up the large volume of the

high-dimensional space. Therefore, AES’s accuracy drop with problem dimensionality

is not as severe as bounded methods like NV. For particularly high-dimensional design

problems, another complementary approach is to construct explicit lower-dimensional

design manifolds upon which to run AES [44, 49].

6.7.5 Nowacki Beam Example

To test AES’s performance in a real-world scenario, we consider the Nowacki

beam problem [157]. The original Nowacki beam problem is a design optimiza-

tion problem where we minimize the cross-section area A of a cantilever beam of

length l with concentrated load F at its end. The design variables are the beam’s

breadth b and height h. We turn this problem into a feasible domain identification

problem by replacing the objective with a constraint A = bh ≤ 0.0025m2. Other

constraints are (1) the maximum tip deflection δ = Fl3/(3EIY ) ≤ 5mm, (2) the
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maximum bending stress σB = 6Fl/(bh2) ≤ σY , (3) the maximum shear stress

τ = 1.5F/(bh) ≤ σY /2, (4) the ratio h/b ≤ 10, and (5) the failure force of buck-

ling Fcrit = (4/l2)
√

(GIT )(EIZ)/(1− ν2) ≥ fF , where IY = bh3/12, IZ = b3h/12,

IT = IY + IZ , and f is the safety factor. And σY , E, ν, and G are the yield

stress, Young’s modulus, Poisson’s ratio, and shear modulus of the beam’s material,

respectively. We use the settings from [195], where l = 0.5m, F = 5kN, f = 2,

σY = 240MPa, E = 216.62GPa, ν = 0.27, and G = 86.65GPa. As shown in Fig. 6.15,

the feasible domain is a crescent-shaped region. Given only these constraints, it is

unclear what appropriately tight bounds on the design variables should be.

In this experiment, we set the Gaussian kernel’s length scale as 0.005, ε = 0.3

and η = 1.3. The initial point x(0) = (b0, h0) = (0.05, 0.05). The test samples are

generated along a 100× 100 grid in the region where b ∈ [0, 0.02] and h ∈ [0.1, 0.16].

After 242 iterations, the F1 score of AES reaches 0.933 and remains constant.

Note that mostly the estimation error comes from the two sharp ends of the crescent-

shaped feasible region (Fig. 6.15). This is because the kernel’s assumption on function

smoothness (i.e., similar inputs should have similar outputs) causes the GP to have

a bad performance where the labels shift frequently. The similar problem also exists

when using other classifiers like SVM, where a kernel is also used to enforce similar

outputs between similar inputs. This problem can be alleviated by using a smaller

kernel length scale.

6.7.6 Detecting Novel Designs

We use two other real-world design examples to show how our proposed method

discovers novel designs. Similar to the airfoil example, we represent each design

with 100 Cartesian coordinates from their 2D outlines, and use the inverse mapping
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Figure 6.16: Some of the initial designs used in the stemless glassware example.

g : F ∈ R2 → X ∈ R200 generated by PCA to synthesize samples.

Different from previous examples, we use human judgment as the feasibility cri-

terion. Although we can use some rules to determine the feasibility (e.g., whether

the outlines of a design are self-intersecting), a design’s actual feasibility may depend

on more complicated factors (e.g., functionality and aesthetics). Therefore, initially

we start with limited number and styles of real-world designs and do not have labels

(i.e., valid or invalid) for synthesized designs outside the real-world design domain

until human assessment.

In the following two experiments, we select a sample in F , and synthesize a design

x ∈ X , where x consists of the Cartesian coordinates of that design’s outline [49].

Then we use an interface that shows a human oracle the picture of that design, and

then the oracle labels the design valid or invalid based on whether the designed shape

is aesthetically pleasing. This process forms the function h : F → {−1, 1}. The

specific choice of human oracle and interface is not central to the contributions of this

chapter, serving only as an illustrative real-world example. In practice, we need to

take human annotators’ mistakes and disagreements into consideration. For example,

we can model human disagreement by adding a white noise kernel to the Gaussian

process kernel function. The white noise kernel is expressed as k(x,x′) = r if x = x′

and 0 otherwise, where r is the noise level. In the future, we will look into ways

of dealing with the problem of input-dependent noise level (i.e., different degree of

human mistakes and disagreements for different design instances) [177, 193].
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Figure 6.17: The discovered feasible domain and valid designs. The top figure shows the
initial and queried samples and the estimated feasible domain in the embedding space F
The solid dots represent valid designs, while the hollow dots represent invalid ones. Started
with the stemless glasses shown in Fig. 6.16, the proposed method discovered other types
of revolved objects such as vases and bowls.

Figure 6.18: Some of the initial designs used in the bottle example.

Example: stemless glasses as initial samples. In this example, we used only

stemless glasses as initial designs (Fig. 6.16). We set the length scale of the Gaussian

kernel as l = 2.4, and the margin ε = 1.5. As shown in Fig. 6.17, on the given design

manifold, our proposed method discovered a feasible domain with other revolved

objects such as vases and bowls. The new designs increasingly differ as they get

farther away from the initial design samples.

Example: bottles as initial samples. Similar to the previous example, we used

only bottles as initial designs (Fig. 6.18). We set the length scale of the GP classifier

l = 1.3, and the margin ε = 0.7. As shown in Fig. 6.19, our proposed method
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Figure 6.19: The discovered feasible domains and valid designs. The solid dots represent
valid designs, while the hollow dots represent invalid ones. Started with the bottles shown
in Fig. 6.18, the proposed method discovered two feasible domains, between which there
are designs with self-intersecting contours.

discovered two feasible domains. In the left feasible domain, there are designs that

look like bowling balls and flasks; and in the right feasible domain, there are designs

that still look like bottles, but with a larger aspect ratio. Between these two feasible

domains, designs have self-intersecting contours and thus are invalid.

6.8 Additional Experimental Results

6.8.1 Hosaki Example

We use the Hosaki example as an additional 2-dimensional example to demonstrate

the performance of our proposed method. Different from the Branin example, the

Hosaki example has feasible domains of different scales. Its feasible domains resemble

two isolated feasible regions — a large “island” and a small one (Fig. 6.20a). The
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(a) Changing ε (η = 1.3). (b) Changing η (ε = 0.3).

Figure 6.20: AES with different ε and η on the Hosaki example.

Figure 6.21: AES and NV (with different input variable bounds) on the Hosaki example.
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(a) Bernoulli noise. (b) Gaussian noise.

Figure 6.22: AES and NV on the Hosaki example using noisy labels.

Table 6.3: Input space bounds for the NV algorithm and the straddle heuristic (Hosaki
example).

Tight Loose Insufficient

Hosaki
x1 ∈ [0, 6],
x2 ∈ [0, 5]

x1 ∈ [−2.5, 8.5],
x2 ∈ [−3, 8]

x1 ∈ [1, 6],
x2 ∈ [0, 4.5]

Hosaki function is

g(x) =

(
1− 8x1 + 7x21 −

7

3
x31 +

1

4
x41

)
x22e
−x2

We define the label y = 1 if x ∈ {x|g(x) ≤ −1, 0 < x1, x2 < 5}; and y = −1

otherwise.

For AES, we set the initial point x(0) = (3, 3). We use a Gaussian kernel with a

length scale l = 0.4. The test set to compute F1 scores is generated along a 100×100

grid in the region where x1 ∈ [−3, 9] and x2 ∈ [−3.5, 8.5]. For NV and straddle, the

input space bounds are shown in Tab. 6.3.

Table 6.4 shows the final F1 scores and running time of AES, NV, and the straddle

heuristic. Fig. 6.20 shows the F1 scores and queries under different ε and η. Fig. 6.20.

Fig. 6.21 compares the performance of AES and NV with different boundary sizes.
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Table 6.4: Final F1 scores and running time (Hosaki example).

F1 score Time (s)

H
os

ak
i

(2
00

q
u
er

ie
s)

AES (ε = 0.3, η = 1.3) 0.95± 0.003 28.25± 0.25
AES (ε = 0.1, η = 1.3) 0.94± 0.004 30.86± 0.19
AES (ε = 0.5, η = 1.3) 0.95± 0.002 28.32± 0.33
AES (ε = 0.3, η = 1.2) 0.94± 0.003 31.69± 0.45
AES (ε = 0.3, η = 1.4) 0.96± 0.002 26.39± 0.38
NV (tight) 0.95± 0.003 22.58± 0.03
NV (loose) 0.93± 0.004 22.28± 0.03
NV (insufficient) 0.69± 0.010 22.27± 0.03
Straddle (tight) 0.95± 0.002 16.20± 0.19
Straddle (loose) 0.88± 0.005 14.00± 0.14
Straddle (insufficient) 0.69± 0.010 16.92± 0.25

Fig. 6.22 shows the performance of AES and NV under Bernoulli and Gaussian noise.

6.8.2 Results of Straddle Heuristic

In this section, we list experimental results related to the straddle heuristic. Specif-

ically, Fig. 6.23 shows straddle’s F1 scores and queries using different sizes of input

variable bounds, and the comparison with AES. Fig. 6.24 shows the comparison of

AES and straddle under noisy labels.

6.9 Summary

We presented a pool-based sampling method, AES, for identifying (possibly dis-

connected) feasible domains over an unbounded input space. Unlike conventional

methods that sample inside a fixed boundary, AES progressively expands our knowl-

edge of the input space under an accuracy guarantee. We showed that AES uses

successive exploitation and exploration stages to switch between learning the deci-

sion boundary and searching for new feasible domains. To avoid increasing the pool
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(a) Branin example. (b) Hosaki example.

Figure 6.23: AES and straddle (with different input variable bounds).

(a) Branin example under Bernoulli noise. (b) Branin example under Gaussian noise.

(c) Hosaki example under Bernoulli noise. (d) Hosaki example under Gaussian noise.

Figure 6.24: AES and straddle under noisy labels.
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size and hence the computation cost as the explored area grows, we proposed a dy-

namic local pool generation method that samples the pool locally at a certain location

in each iteration. We showed that at any point within the explored region, AES guar-

antees an upper bound ε of misclassification loss with a probability of at least 1− τ ,

regardless of the number of iterations or labeled samples. This means that AES can

be used for real-time prediction of samples’ feasibility inside the explored region. We

also demonstrated that, compared to existing methods, AES can achieve comparable

or higher accuracy without needing to set exact bounds on the input space.

Note that AES cannot be applied to input spaces where synthesizing a useful

sample is difficult. For example, in an image classification task, we cannot directly

synthesize an image by arbitrarily setting its pixels, since most of the synthesized

images may be unrealistic and hence useless. Usually in such cases, we use real-world

samples as the pool and apply bounded active learning methods (since we know the

bounds of real-world samples). Or instead, we first embed the original inputs onto

a lower-dimensional space, such that given the low-dimensional representation, we

can synthesize realistic samples. We can then apply AES on that embedded space.

This approach can be used for discovering novel feasible domains (i.e., finding feasible

inputs that are nonexistent in the real-world). We refer interested readers to a detailed

introduction of this approach by [44].

One limitation of AES is that the accuracy improves slowly at the early stage

compared to bounded active learning methods. This is because AES focuses on

only the explored region (which is small at the beginning), while bounded active

learning methods usually do space-filling at first. In the situation where we want fast

accuracy improvement at the beginning, one possible way of tackling this problem

is by dynamically setting AES’s hyperparameters. Specifically, since the expansion

speed increases as ε or η decreases, we can accelerate AES’s accuracy improvement
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at earlier stages by setting small values of ε and η, so that queries quickly fill up a

larger region. Then to achieve high final accuracy, we can increase ε and η to meet

the accuracy requirement.

So far this dissertation has shown how to measure the intrinsic complexity of a

design space to guide data-driven design synthesis, how to incorporate prior knowledge

into data-driven design synthesis models, and how to identify feasible domains and

discover novel designs when the design space or the latent space bounds are unclear.

The next chapter will introduce a global optimization method that also expands an

input space to allow the discovery of the optimal design being far away from existing

designs.
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Chapter 7: Global Optimization with Trust Region Bayesian Opti-

mization

The work in this chapter has been submitted to the Conference on Neural Information

Processing Systems (NeurIPS).

7.1 Introduction

Bayesian optimization (BO) is a global optimization technique targeted for expen-

sive black-box functions [191]. Particularly, one of its important application in the

machine learning community is automated hyperparameter tuning [201, 204, 207]. In

a standard BO process, the objective function is modeled as a random function with a

prior distribution. This prior updates to form a posterior after new observations (i.e.,

a Gaussian process or GP [172]). The decision about which observation to collect next

is made by globally maximizing an acquisition function based on the posterior. This

step requires fixed variable bounds, which are sometimes not trivial to set. It is hard

to guarantee that any fixed bounds will include the true global optimum.

In this chapter, we modified the standard BO approach so that the fixed vari-

able bounds are not required. When the search space is unbounded, the acquisition

function can have suprema at infinity, where the uncertainty is maximized. Thus

we search only in the region with sufficiently low uncertainty, which we referred to

as the trust region in reference to conceptually similar approaches from trust region
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optimization. This trust region expands as we add more observations. We call this

method Trust Region Bayesian Optimization (TRBO).

The main technical contributions of this chapter are:

1. A trust-region-based acquisition strategy to bound the GP model uncertainty

and expand the search space; and

2. Theoretical results regarding how to adaptively set the threshold of the uncer-

tainty bound to avoid the over-exploration problem that occurs in an expanding

search space.

7.2 Bayesian Optimization

Bayesian Optimization uses a sequential strategy to search for the global opti-

mum of expensive black-box functions. Assuming we have an objective function:

f : Rd → R, and the observation of its output has Gaussian noise: y ∼ N (f(x), σ2
n).

It is expensive to evaluate either the function f or its gradient (assuming we can only

approximate the gradient by the finite difference method when f is a black-box func-

tion and that Automatic Differentiation methods cannot be used). Thus the goal of

BO is to minimize the number of evaluations needed to find the global minimum. BO

treats the objective as a random function that has a prior distribution, and update

this prior to form a posterior distribution over the function after observing data. This

can be done by using a Gaussian process (GP). The posterior distribution can then

be used to form an acquisition criterion that proposes to evaluate f at a promising

point, so that the regret is minimized. The GP posterior can then be updated after

the new observation. This process repeats until the evaluation budget runs out or

a satisfied solution is achieved. We will elaborate on the Gaussian process and the

acquisition function in the following sections.
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7.2.1 Gaussian Process

The Gaussian process (GP) [172] estimates the distribution of the objective func-

tion. A kernel (covariance) function k(x,x′) is used to measure the similarity between

two points x and x′. It encodes the assumption that “similar inputs should have sim-

ilar outputs”. The specific choice of kernel is not central to the core contributions of

the chapter. In this chapter we use the RBF kernel:

k(x,x′) = exp

(
−1

2
(x− x′)>Λ−1(x− x′)

)
(7.1)

where Λ = diag(l21, ..., l
2
d) with li the length scale of the i-th dimension.

Given N observations D = (X,y) = {(xi, yi)|i = 1, ..., N}, the GP posterior f(x)

at any point x is a Gaussian distribution: f(x)|D,x ∼ N (µ(x), σ2(x)) with the mean

and the variance expressed as

µ(x) = k(x)>(K + σ2
nI)−1y (7.2)

σ2(x) = k(x,x)− k(x)>(K + σ2
nI)−1k(x) (7.3)

where k(x) is an N -dimensional vector with the i-th dimension being k(x,xi), and

K is an N ×N covariance matrix with Kij = k(xi,xj).

7.2.2 Acquisition Function

Bayesian optimization picks the next point to evaluate by maximizing an acqui-

sition function, which is computed based on the GP posterior. Common acquisition

functions include the probability of improvement (PI) [127], the expected improve-

ment (EI) [108], the Gaussian Process upper confidence bound (GP-UCB) [205], and
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those based on entropy search [93, 94, 229].

In this chapter, we use EI as our acquisition function. It measures the expected

amount of improvement over the current best solution based on the learned GP model:

EI(x) = E[max{0, f(x)− f ′}]

=

∫ +∞

f ′
(f − f ′)N (f ;µ(x), σ2(x))df

= σ(x)(uΦ(u) + φ(u))

(7.4)

where f ′ is the current best objective function value, u = (µ(x) − f ′)/σ(x), and Φ

and φ are the cumulative density function (CDF) and probability density function

(PDF) of the standard normal distribution, respectively.

7.2.3 Previous Work on Unbounded Bayesian Optimization

Normally Bayesian optimization is performed within fixed variable bounds. But

in cases such as algorithm hyperparameter tuning [190, 204, 207] and shape optimiza-

tion [164], setting the variable bounds are not trivial. It is hard to guarantee that

any fixed bounds will include the true global optimum.

Two types of solutions were proposed to handle this problem: 1) performing BO

in an unbounded space by regularization via non-stationary prior means so that the

acquisition function’s suprema will not be at infinity [170, 190]; and 2) performing

BO in “soft bounds” that are gradually expanded over iterations [155, 156, 190]. The

first solution computes an acquisition function that is biased toward regions near

some user-specified center point, thus insufficient exploitation may occur when the

optimal solution is far from the center. The second solution either expands each

direction equally, which often yields to unnecessarily large search spaces [170, 190];

or expands only to the promising region where the upper confidence bound (UCB) is
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larger than the lower confidence bound (LCB) of the current best solution [155, 156].

But the latter approach has to perform global search twice at each iteration—one for

the maximum LCB to filter out the non-promising region; and one for the maximum

acquisition function value. It expands the bounds of the first search according to a

hard-coded rule, and hence may show a lack of adaptability to different optimization

problems.

The trust region Bayesian optimization is different from the previous methods

in that it adaptively expands the search space based on the uncertainty of the GP

model. It can essentially avoid the aforementioned issues by employing a strategy

that we will introduce in the following section.

7.3 Trust Region Bayesian Optimization

In this section we will introduce the main ingredients of TRBO, namely, its acquisi-

tion strategy (Sect. 7.3.1), global optimization of the acquisition function (Sect. 7.3.2),

the way of adaptively balancing exploration and exploitation (Sect. 7.3.3), and a trick

to improve exploitation when expanding the search space (Sect. 7.3.4).

7.3.1 Acquisition Strategy

Our acquisition strategy can be expressed as the following constrained optimiza-

tion problem:

max
x∈Rd

EI(x)

s.t. σ2(x) ≤ τk0

(7.5)

where τ ∈ (0, 1) is a coefficient controlling the aggressiveness/conservativeness of

exploration, and k0 = σ2(x∞) with x∞ denotes a point infinitely far away from the

observations. Based on Eq. 7.3, we have k0 = σ2(x∞) = k(x,x). When using the
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kernel shown in Eq. 7.1, simply we have k0 = 1. Under this acquisition strategy,

only points with low GP model uncertainty will be picked for evaluation. We also

included the acquisition strategy for the constrained BO setting in the supplementary

material.

To avoid excessive local exploitation, we can modify the equation for EI (Eq. 7.4)

as

EI(x) = E[max{0, f(x)− (f ′ + ε)}] (7.6)

where ε > 0 is the minimum improvement parameter [107, 189, 190].

In many real-world cases, Bayesian optimization needs to deal with constrained

problems of the following two kinds: 1) there are infeasible regions in the input

space (e.g., some experimental configurations are infeasible); and 2) the objective

function f does not have definition in some regions of the input space (e.g., when the

hyperparameters of a neural network are not properly chosen, exploding gradients

may occur, which may lead to NaN weight values and hence the NaN accuracy). This

is especially common when the we have an unbounded or expanding search space.

Therefore, it is worth extending TRBO to make it suitable for constrained problems.

Specifically, we can modify Eq. 7.5 based on Refs. [11] and [78]:

max
x∈Rd

EI(x)Pr(C(x))

s.t. σ2(x) ≤ τk0

Pr(C(x)) ≥ 0.5

(7.7)

where C(x) is an indicator of whether the constraints are satisfied or whether the

objective function has definition.
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Figure 7.1: Feasible domain bounds. In each iteration, we expand the minimum bounding
box of evaluated samples along the i-th axis by ri.

7.3.2 Feasible Domain Bounds

The feasible domain defined by Eq. 7.5 is bounded by the isocontour σ2(x) = τk0.

However, it is easier to search inside a bounding box instead of an irregular isocontour

when solving the global optimization problem in Eq. 7.5. We can show that the

solution to Eq. 7.5 is inside a bounding box, which we call the feasible domain bounds.

In this section, we will derive the feasible domain bounds.

For any point xτ on the isocontour (Fig. 7.1), i.e., σ2(xτ ) = τk0, based on Eq. 7.3

we have k0 − k>τ Akτ = τk0, or

k>τ Akτ = (1− τ)k0 (7.8)

where A = (K + σ2
nI)−1 and kτ = k(xτ ).

Since A is symmetric, we have λmink
>
τ kτ ≤ k>τ Akτ ≤ λmaxk

>
τ kτ , where λmin and

λmax are the smallest and largest eigenvalue of A, respectively. Thus k>τ kτ have the

following bounds for any xτ :

(1− τ)k0/λmax ≤ k>τ kτ ≤ (1− τ)k0/λmin (7.9)
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Suppose xnl is the nearest evaluated point to xτ (Fig. 7.1), the following inequality

holds:

k>τ kτ < Nk2(xnl,xτ ) (7.10)

where N > 1 is the number of evaluated points.

According to Eq. 7.9 and Eq. 7.10, we have

Nk2(xnl,xτ ) > (1− τ)k0/λmax (7.11)

for any xτ . Also, based on Eq. 7.1, we have

k2(xnl,xτ ) = exp

(
−

d∑
i=1

(
δi
li

)2
)

(7.12)

where δ = |xnl − xτ |. Substituting Eq. 7.12 into Eq. 7.11, we get the following

inequality
d∑
i=1

δ2i
Cl2i

< 1 (7.13)

where C = − log((1 − τ)k0/(Nλmax)). Equation 7.13 shows that xτ is inside a d-

dimensional hyperellipsoid that centered at xnl with

ri =
√
Cli = li

√
− log((1− τ)k0/(Nλmax)) (7.14)

corresponding to half the length of the i-th principal axis. Thus by setting the bounds

of the i-th dimension as
[
minj{x(j)i } − ri,maxj{x(j)i }+ ri

]
, we can include the entire

feasible domain of Eq. 7.5. This means that in each iteration, we get the minimum

bounding box of all evaluated samples, and expand the bounding box along the i-th

axis by ri (Fig. 7.1). Then constrained global optimization of the acquisition function

is performed within the new bounds.
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Current-best True optimum
Evaluated points New evaluationGP Posterior True function

FBO-EI TRBOTRBO (τ=0.99)

Figure 7.2: Over-exploration in FBO-EI (left) and TRBO with large τ (middle); By adap-
tively setting τ , TRBO enforces exploitation based on an accuracy criterion (right).

FBO-EI (ybest=4.82) TRBO (ybest=0.01)

True optimum Solution found Evaluations

Figure 7.3: In contrast with TRBO (right), FBO-EI (left) spends too much budget on
randomly exploring the search space (left).

In practice, because Eq. 7.10 is usually quite loose (especially when N is large),

the above derived bounds are usually unnecessarily large, causing large volume of

infeasible domain inside the bounds. In that case, we can replace λmax with λmin in

Eq. 7.11, i.e., substituting the upper bound of k>τ kτ (Eq. 7.9) into Eq. 7.11.

7.3.3 Adaptive Exploration-Exploitation Trade-off

A problem of an expanding search space is that a new evaluation may get too far

away from the region of interest, due to the high uncertainty and hence the high EI

in far-away regions (Fig. 7.2). The informativeness of those high-uncertainty regions,

however, is low because of the sparsity of observed data near them. Thus sampling at
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those regions is like shooting in the dark. This is fine in the fixed-bound BO, because

it will exploit the region of interest eventually after finishing exploring those high-

uncertainty regions. However, with expanding bounds, the high-uncertainty regions

are expanding and BO could continuously sample in those regions and never head

back to exploit the region of interest. As a result, the algorithm will spend too much

budget on randomly exploring the search space but have insufficient exploitation, as

shown in the left plot of Fig. 7.3. We call this over-exploration.

This over-exploration problem can exist in every unbounded Bayesian optimiza-

tion algorithm with an aggressive expansion strategy. Trust region BO can solve this

problem by avoiding exploring in regions where our estimated model is uncertain

(i.e., constraining the GP’s predictive variance σ2(x), see Eq. 7.5). However, one has

to choose a proper coefficient τ to set the uncertainty threshold. In this section, we

derive a way of setting τ adaptively to balance exploration and exploitation as the

search space expands.

The simplest way to avoid over-exploration is to force the algorithm to stop ex-

ploring and start to refine the solution by exploiting near the current best point.

In TRBO, exploration is performed by sampling points along the feasible domain

boundary (i.e., σ2(x) = τk0). Thus, we can avoid over-exploration by decreasing τ so

that the expected improvement on the boundary is lower than that near the current

best solution x′.

The expected improvement on the boundary can be expressed via the predictive

mean µτ :

EIτ (µτ ) = (µτ − f ′)Φ
(
µτ − f ′√
τk0

)
+
√
τk0φ

(
µτ − f ′√
τk0

)
(7.15)
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Also we have

max
σ2(x)=τk0

{EIτ (µτ )} = EIτ

(
max

σ2(x)=τk0
{µτ}

)
= EIτ (µm) (7.16)

since EI monotonically increases with the predictive mean.

The expected improvement near the current best solution x′ is

EI+ = (µ+ − f ′)Φ
(
µ+ − f ′

σ+

)
+ σ+φ

(
µ+ − f ′

σ+

)
(7.17)

where µ+ and σ+ are the predictive mean and standard deviation respectively at a

point x+ near the current best solution. Assuming that the GP mean function µ(x)

is Lipschitz continuous, we have f ′−µ+ = δ, where δ is a small positive real number.

Thus we have u+ = −δ/σ+.

Now we can set EI+ > EIτ (µm) to encourage exploitation. However, we do not

want pure exploitation. Specifically, we want to stop exploitation at x+ whenever the

room for improvement over the current solution f ′ within the neighborhood of x′ is

sufficiently low with a high probability:

Pr(f+ − f ′ ≤ ξ) ≥ 1− κ (7.18)

where f+ ∼ N (µ+, σ
2
+), and ξ ≥ 0 and 0 < κ < 1 are small real numbers. From

Eq. 7.18 we can derive

σ+ ≤
ξ + δ

Φ−1(1− κ)
= σ0

Thus we only need to exploit at x+ when σ+ > σ0. By substituting it into Eq. 7.17,
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we get a lower bound for EI+:

EI+ > −δΦ(−δ/σ0) + σ0φ(−δ/σ0) = EI0 (7.19)

since EI monotonically increases with the predictive variance. We can set this lower

bound EI0 equal to EIτ (µm) to enforce EI+ > EIτ (µm) when σ+ > σ0 (i.e., when

exploitation is necessary). Using Eq. 7.15, we can write EIτ (µm) = EI0 as

(µm − f ′)Φ
(
µm − f ′√

τk0

)
+
√
τk0φ

(
µm − f ′√

τk0

)
= EI0 (7.20)

We can solve for τ by using any root finding algorithm (e.g., Newton’s method).

At the beginning of the optimization process, we do not need to make sure the

room for improvement over f ′ is small within the neighborhood of x′. Rather, we

want to explore other regions that may contain better local optima. Thus we can set

ξ = ξ0 at the beginning, where a larger ξ0 allows more exploration, and then anneal

ξ over iterations until ξ = 0 (e.g., towards the end of a computational budget). As a

result, TRBO’s focus gradually switches from exploration to exploitation.

In practice, we can set µm as the prior mean (0 by default), since it is usually

the case when over-exploration occurs. Thus this adaptive approach can effectively

avoid over-exploration, as shown in Fig. 7.2 and Fig. 7.3. If in reality µm < 0, then

EIτ (µm) < EI0 < EI+, TRBO will exploit near the current best solution even when

it is unnecessary (i.e., σ+ < σ0); while if µm > 0, then EIτ (µm) > EI0, TRBO may

explore when it should exploit.
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7.3.4 Local Search for Better Exploitation

In practice, to perform the global optimization of Eq. 7.5, we can sample initial

candidate solutions within the bounds derived in Sect. 7.3.2, and refine those solu-

tions using a gradient-based optimization method (e.g., L-BFGS-B [29]). If the GP

kernel is fixed, the search space is always expanding, because σ is monotonically non-

increasing as the number of observation increases. Specifically, the space near the

queried point will be added to the search space volume. This results in a volume

increase that is exponential with respect to the search space dimensionality. It will

become harder for the candidate solutions to maintain the coverage of the search space

as the optimization proceeds, especially when the problem has high dimensionality.

Although we keep increasing exploitation by annealing ξ, it does not guarantee that

we will exploit near the current best solution in a large search space. This problem

was not addressed in previous unbounded Bayesian optimization methods [155, 190].

A straightforward way to solve the problem is to increase the density of search al-

gorithms, but this continuously increases the computational cost for each iteration.

Alternatively, we propose local search near the current best solution to allow better

exploitation. Specifically, in each iteration, we generate the same number of candi-

date solutions but divide it for two tasks—global search and local search. Global

search tries to find a promising point in the entire feasible domain in Eq. 7.5; while

local search tries to find a promising point near the current best solution. This avoids

insufficient exploitation but will not increase the computational cost.

The optimization process is summarized in Algorithm 4.
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Algorithm 4 Trust region Bayesian optimization

1: . Given objective function f , initial bounds B, initial evaluation n, and evaluation
budget N

2: procedure Optimize(f,B, n,N)
3: Sample n points {x1, ...,xn} in B using LHS
4: yi ← f(xi), ∀i = 1, ..., n
5: D ← {(x1, y1), ..., (xn, yn)}
6: for t = (n+ 1) : N do
7: Fit the GP model M to D
8: Compute τ based on Eq. 7.20
9: Expand the minimum bounding box of D (Eq. 7.14) as the feasible domain

bounds B′
10: Search for the solution xt to Eq. 7.5 or Eq. 7.7 inside B′
11: yt ← f(xt)
12: D ← D

⋃
{(xt, yt)}

13: end for
14: end procedure

7.4 Experiments

We evaluate the TRBO on both a range of synthetic test functions and an MLP

hyperparameter optimization task. We also demonstrate the effect of dimensionality

on TRBO’s performance and the significance of adaptive exploration-exploitation

trade-off in TRBO.

7.4.1 Experimental Protocol

The evaluation budget was set to 50d, and an initial sample size of 5d was drawn

by using Latin hypercube sampling [108, 149]. For simplicity we used an isotropic

kernel for the GP (i.e., l1 = ... = ld). We normalized the observed function outputs

before fitting a GP regression model. We set ξ0 = 0.1, κ = 0.1, ε = 0.01, and

δ = 0.01. For each test function, we set the initial bounds to be [10%, 30%] of its

original bounds, as was also configured in Ref. [155]. All the initial bounds do not
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Table 7.1: Optimization results for synthetic benchmarks

Method SixHumpCamel Branin Rastrigin Hartmann3

TRBO −1.03± 0.00 0.41± 0.01 0.21± 0.39 −3.74± 0.17
FBO-EI −0.97± 0.05 1.27± 1.49 4.52± 2.29 −1.50± 0.93
FBO-UCB −0.85± 0.09 1.43± 0.61 5.50± 2.60 −2.31± 1.34
EI-Q −0.28± 0.37 2.95± 1.73 8.10± 1.47 −2.43± 0.65
EI-H −0.47± 0.46 1.89± 1.00 7.39± 1.29 −3.41± 0.25

Method Hartmann6 Beale Rosenbrock

TRBO −3.30± 0.04 0.26± 0.29 0.44± 0.40
FBO-EI −3.30± 0.03 0.41± 0.32 7.72± 9.25
FBO-UCB −3.26± 0.04 0.46± 0.37 17.39± 33.04
EI-Q −2.32± 0.23 4.25± 2.83 17.45± 20.12
EI-H −2.82± 0.15 3.87± 3.31 20.63± 19.71

include global optima. We compared TRBO to methods from Ref. [190] (i.e., EI-Q

and EI-H) and Ref. [155] (i.e., FBO-EI and FBO-UCB).

7.4.2 Synthetic Benchmarks

We used seven standard global optimization test functions. As shown in Table 7.1,

TRBO out-performs other methods on most test functions. Note that TRBO’s results

have lower variance compared to other methods, which is an indication of robustness.

Figure 7.4 shows the optimization history on benchmark functions. It shows that

compared to the other two state-of-the-art methods, trust region Bayesian optimiza-

tion (TRBO) converged faster and achieved a better solution in most cases.

We also demonstrated the effects of problem dimensionality on TRBO’s perfor-

mance by using two synthetic benchmarks, as shown in Fig. 7.5. Here we define the

optimality gap e = ysol−yopt, where ysol and yopt are the minimal observation and the

true minimum of the objective function, respectively. We compared TRBO to: 1) the

other two state-of-the-art methods—FBO-EI and EI-H, and 2) the standard BO with

161



B
e
s
t-

S
o
-F

a
r 

O
b
s
e
rv

a
ti

o
n

Figure 7.4: Optimization history for synthetic benchmarks
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Figure 7.5: The effect of problem dimension on optimality gaps.
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(adaptive)

Figure 7.6: The effect of fixed and adaptive τ on optimality gaps. Here FBO-EI is shown
as a baseline.

the original function bounds (which include global optima). We also tested the case

where the observations are corrupted by Gaussian noise with a standard deviation of

0.1. The results show that the optimality gap increases with the problem dimension,

which can be explained by the curse of dimensionality [14]. TRBO demonstrated the

best performance among methods dealing with an unbounded or expanding search

space, and is almost as good as the standard BO on the Rastrigin function. Since the

global optimum of the Rosenbrock function is inside a narrow flat valley, it is trivial to

find the valley but difficult to converge to the global optimum. Thus it requires large

budget for exploitation in that valley (i.e., exploitation-intense). Methods like FBO-

EI, EI-H, and the standard BO may have unnecessarily large search space and hence

waste budget on exploring regions far from the global optimum, rather than exploiting

the valley. Thus compared to TRBO, it is more difficult for these three methods to

find good solutions on the Rosenbrock function, especially when the dimensionality

is high (Fig. 7.5).

To demonstrate the effectiveness of adaptive exploration-exploitation trade-off,

we ran TRBO with both fixed τ and adaptive τ solved from Eq. 7.20. The two

test functions, Rosenbrock and Rastrigin, have different characteristics and hence

prefer different exploration-exploitation trade-offs. Since the Rastrigin function has
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a large number of local optima, the difficulty for optimizing on Rastrigin is to avoid

getting stuck in those local optima. Thus an algorithm with a higher search space

expanding rate (e.g., TRBO with a large τ) is likely to perform better since it will

spend less budget exploiting local optima and more budget expanding towards the

global optimum (i.e., exploration-intense). In contrast, due to the narrow flat valley

in the Rosenbrock function, the difficult part is exploiting near the global optimum

to refine the solution. Thus a lower expanding rate (e.g., TRBO with a small τ) is

likely to be preferred since less budget will be wasted for exploration. The results

shown in Fig. 7.6 are consistent with our expectation: the optimality gap increases

with the value of the fixed τ on the Rosenbrock function, while the opposite behavior

was observed on the Rastrigin function. However, by using an adaptive τ , TRBO

performs better than most other configurations on both test functions. Note that the

behavior of FBO-EI is similar to TRBO with a large τ (without considering the high

performance variance on the Rosenbrock function).

As every objective function weights exploitation and exploration differently, BO

methods with a fixed expansion schedule may succeed for one function, but fail for

another. The TRBO can avoid this by adaptively balancing exploitation-exploration

while expanding the search space.

7.4.3 Constrained Problems

We created two test problems to evaluate the performance of TRBO in dealing

with constrained problems. Specifically, the constrained Rastrigin problem uses the

Rastrigin function as the objective function, and the feasible domain is defined by an

ellipse 0.01x21 + (x2 + 2)2 ≤ 1 (Fig. 7.7). The Nowacki beam problem is a real-world

test problem originally described by Nowacki [157, 195]. The goal is to minimize the
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cross-sectional area of a tip-loaded cantilever beam subject to certain constraints.1

The results of the two problems are shown in Figs. 7.7 and 7.8. For the constrained

Rastrigin problem, TRBO achieved a better solution than the other two methods. For

the Nowacki beam problem, FBO-EI’s solution has the lowest mean value but a very

high variance; while TRBO found a fairly close optimal solution with much lower

variance. The evaluated points by TRBO were dense near optima (either local or

global). This behavior was, however, not obvious for the other two methods. This is

likely because that FBO-EI and EI-H over-trusted the GP posterior even where its

uncertainty was high. This resulted in sampling patterns with too much randomness,

and hence higher variance of optimal solutions.

7.4.4 MLP on MNIST

We use the hyperparameter optimization of a multilayer perceptron (MLP) as a

real-world example to demonstrate the performance of the TRBO. MNIST was used

as the training data. The MLP has 512 hidden units with ReLU activations and was

implemented using TensorFlow [1]. We used Adam [116] as the MLP’s optimizer.

We optimized seven hyperparameters, namely the learning rate, the learning rate

decay, the dropout rate, and the L1 and L2 regularization coefficients for each layer.

We performed the optimization in the log space (base 10) with the initial bounds

of [−5,−4]7. The objective is to maximize the accuracy of the MLP. The observed

accuracy values are usually left-skewed, because usually there are a few very bad

values initially sampled by LHS, after which most observations have high accuracy.

Thus we apply a cube transformation before normalizing the accuracy values. As

1The original problem is a multi-objective optimization problem that minimizes both the cross-
sectional area and the bending stress. Here we only consider the first objective and limit the second
objective (i.e., the bending stress should be smaller than the yield stress of the material) to form an
extra constraint.
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Figure 7.7: Optimization history and evaluated points for the constrained Rastrigin problem
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Figure 7.8: Optimization history and evaluated points for the Nowacki beam problem

Figure 7.9: Optimization history for the hyperparameter tuning of a MLP trained on
MNIST.
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shown in Fig. 7.9, TRBO converged faster and found a better optimal solution than

FBO-EI and EI-H.

7.5 Summary

We proposed a Bayesian optimization method, TRBO, that gradually expands the

search space, so that we can find the global optimum without having to specify the

input space bounds that include it. The proposed method only evaluates samples at

regions with low GP model uncertainty, and expands the search space adaptively to

avoid over-exploration in an expanding search space. This method is useful in cases

where we are not confident about the range of the global optimum. The experimental

results show that our method outperforms the other state-of-the-art methods in most

cases.

In the standard BO, even if the input space bounds are set large enough to cover

the global optimum, too much budget may be spent on needlessly exploring the

large space. This will result in bad solutions when optimizing an exploitation-intense

objective function, as shown by the Rosenbrock example.

So far this dissertation has shown how to measure the intrinsic complexity of a

design space to guide data-driven design synthesis, how to incorporate prior knowl-

edge into data-driven design synthesis models, and how to explore design spaces or

latent spaces when their bounds are unclear. The next chapter will summarize these

contributions, look at their broader implications, and discuss possible future research

directions.
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Chapter 8: Conclusion

Many traditional design processes go through the cycle of ideation, prototyping,

evaluating, and improving. These processes involve human intervention, and can

be expensive and time-consuming. Given a limited budget, only a few designs can

be implemented and tested, and the true optimal design is hard to uncover since

insufficient design alternatives are explored. Currently, topology optimization can be

used to avoid human intervention in the traditional design process and automatically

generate suboptimal designs. However, it does not reveal the underlying properties of

a design space—e.g., what is the least number of factors that are sufficient to control

the shape variation, how does the shape change in the design space, and what is the

global optimal solution to a design problem.

This dissertation addressed some of these related problems in traditional design

processes and emergent generative design approaches by learning a compact represen-

tation from data. The compact representation encodes important properties of the

design space and makes it less expensive to search for desired designs. This chapter

summarizes the main ideas in this dissertation, discusses some broader implications

for the whole body of work, and proposes some potential future research directions.
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8.1 Dissertation Summary

This dissertation first reviewed problems in traditional design processes, includ-

ing repetitive and expensive human intervention. Parametric design synthesis and

design space exploration use consistent parameterization and automated algorithms

to avoid human intervention, but still, the high-dimensional design space is difficult

to understand and search for solutions. To solve these problems, this dissertation

introduced data-driven methods that learn the low-dimensional compact representa-

tion of designs from data, and presented efficient approaches to explore this compact

space.

To understand those data-driven methods, Chapter 2 reviewed some fundamental

concepts and the existing state of the art in data-driven design space exploration and

synthesis. It first introduced existing design representations and their issues. Then

it reviewed the manifold hypothesis and how to learn and explore latent spaces on

those manifolds. That chapter also discussed current approaches for synthesizing new

designs, namely rule-based, assembly-based, and data-driven approaches.

The dissertation continued by showing how to measure the intrinsic complexity

and dimensionality of a design space. The method introduced in Chapter 3 first

captures the inherent properties of a design space and then chooses the appropri-

ate design embedding based on the captured properties. It successfully identified

multiple sub-manifolds and their intrinsic dimensions. By generating fundamental

knowledge about the inherent complexity of a design space and how designs differ

from one another, this approach allows us to improve design optimization, consumer

preference learning, geometric modeling, and other design applications that rely on

navigating complex design spaces. Ultimately, this deepens our understanding of

design complexity in general.
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The learned properties of the design space can guide data-driven design synthesis.

However, purely data-driven methods ignore designs’ functional or geometrical con-

straints and characteristics, and thus will have limitations. Chapters 4 and 5 looked

at incorporating prior knowledge into data-driven models to improve synthesis qual-

ity. Specifically, Chapter 4 introduced a deep generative model that can synthesize

aerodynamic shapes by incorporating smoothness constraints. It also demonstrated

that the generative model both (1) learns realistic and compact airfoil shape repre-

sentations and (2) empirically accelerates optimization convergence by over an order

of magnitude. Chapter 5 presented a generative model for synthesizing designs with

multiple parts. The method decomposes the problem of synthesizing/optimizing the

whole design into synthesizing/optimizing each part separately but keeping the inter-

part dependencies satisfied. This technique of capturing dependencies among parts

lay the foundation for learned generative models to extend to more realistic engineer-

ing systems where such relationships are widespread.

The latent spaces constructed by those above-mentioned models reduce the cost

for design space exploration. But sometimes the desired design is remarkably different

from existing ones (i.e., outside the region of existing designs in the latent space),

which makes it difficult to specify latent space bounds for exploration. Chapters 6

and 7 introduced design space exploration methods that gradually expand a design

space or a latent space, so that no fixed bounds are required. Specifically, Chap-

ter 6 introduced a method, Active Expansion Sampling (AES), that identifies feasible

domains when the design space/latent space bounds are unclear. The method both

learns the domain boundary of feasible designs, while also expanding our knowledge

of the design space/latent space as available budget increases. That chapter also

showed how coupling design manifolds with AES allows us to actively expand high-

dimensional design spaces without incurring this exponential penalty, and it enables
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the discovery of designs that have different appearance and functionality from its

initial design set. Chapter 7 presented a global optimization method, Trust Region

Bayesian Optimization (TRBO), that can be used in a similar scenario, i.e., it only

needs to specify an initial search space that does not necessarily include the global

optimum, and will expand the search space when necessary. TRBO avoids the over-

exploration problem that often occurs in unbounded Bayesian optimization. Results

show that it out-performs the current state-of-the-art methods.

8.2 Broader Implications

This dissertation brought together some important aspects for understanding de-

sign spaces. It started by looking at the complexity of the design space—the intrinsic

dimensionality, the data separability, and the non-linearity. It also showed that we

can understand the shape variation in a design space by visualizing a low-dimensional

latent space that encodes major shape changes. The dissertation then introduced a

way of decomposing a space of assemblies (i.e., designs with multiple components)

into hierarchical latent spaces. This not only suits some practical needs (e.g., hier-

archical design synthesis/optimization), but also converts a composite design space

into subspaces that are more comprehensible by human beings. Through these tech-

niques, we can see clearly what factors change or constrain our designs, so that we

can explore alternative solutions within appropriate limits. The techniques of under-

standing the design space can be extended to any engineering systems where design

space exploration is needed and data on previous designs are sufficient. This allows

us to explore the design space more efficiently compared to conventional exploration

techniques and mitigates the curse of dimensionality.

The unbounded design space exploration methods introduced in Chapters 6 and 7
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(i.e., AES and TRBO) essentially eliminate the need for performing adaptive sampling

or Bayesian optimization within a fixed bounding box. While this dissertation mainly

demonstrated their application in expanding the design space, they can be applied

in any circumstances where the variable bounds are unclear. For example, they are

useful in deciding the parameters of any engineering systems or algorithms where

those parameter bounds are hard to specify, such that any conventional methods

that work within fixed bounds would possibly miss either part of the feasible domain

(when performing feasible domain identification) or the true global optimum (when

performing global optimization) as they may be outside the specified bounds.

8.3 Limitations and Future Research Directions

The main idea of this dissertation is to learn a compact representation of the

design space from data, so that it enables efficient design synthesis and design space

exploration. However, unlike learning from art or literature (e.g., images, videos, or

articles), engineering design usually has strict geometry, functionality, or performance

requirements. Violating those requirements may result in invalid designs. This makes

purely data-driven models unreliable in practice. Chapters 4 and 6 have demonstrated

the combination of a data-driven model with aerodynamic simulation or human an-

notation, which are used to evaluate or justify synthesized designs. Chapter 4 and

5 also used geometric constraints or inter-part dependencies as prior knowledge to

define the data-driven model, so that synthesized designs automatically satisfy those

prior beliefs. It is also interesting to incorporate physics into the model so that the

synthesized designs will have desired functionality or performance [32, 238]. In the

future, we can consider a broader range of prior knowledge regarding the geometry,

physical, and mathematical properties of designs.
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Designs generated from purely data-driven models will not look much different

from existing ones, as these models only learn from past examples. This (poten-

tially) limits the creation of innovative designs. The unbounded design space explo-

ration described in Chapters 6 and 7 mitigated this problem by extending the design

manifold. But still, new designs will (by construction) be restricted to the learned

manifold. In contrast, techniques like topology optimization, though having its own

disadvantages, can generate innovative designs by considering primarily physics-based

objectives and constraints. Thus it is interesting to combine machine learning with

physics-based solvers to learn a compact solution space for design optimization prob-

lems with physics objectives/constraints.

Most design examples used in this work have relatively simple geometries. They

are good for demonstrating the concepts and effectiveness of our proposed methods.

However, we acknowledge that there are more complex real-world designs and the

scalability of our model on data complexity needs to be further investigated in the

future. It is also useful to develop techniques for reducing the computational cost for

complex designs.

Different from the datasets of images or text that are widely used in the machine

learning community, the public access of huge engineering design dataset is unrealistic,

which impedes the development of effective data-driven design models. One promising

future research avenue would then be improving the sample efficiency of those models.

Machine learning researchers have already applied few-shot learning to tasks such as

classification, regression, and reinforcement learning [72, 200, 222], where the model

can learn from only a few examples. Realizing few-shot learning for engineering design

tasks will be extremely useful considering the limited design data.

On the other hand, as humans create more and more designs, in the future we are

able to maintain a diverse range of design datasets. By leveraging such resource of
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existing designs, we can extract useful knowledge for creating new designs and even-

tually eliminate or reduce the cost of human intervention in the design process. This

work has brought us one step closer to the goal where designers can use automated

algorithms to efficiently search for any desired solutions, so that it frees the time

of designers, provides inspiration for them, and even allows practitioners to create

products while minimizing required expert input. This, in turn, will help augment

the design datasets and further improve the quality of generated designs.
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Appendix A: Publications

A.1 Journal

1. Chen W, Fuge M. Synthesizing Designs with Inter-Part Dependencies using

Hierarchical Generative Adversarial Networks. ASME. J. Mech. Des. 2019;():1-

15. doi:10.1115/1.4044076. (Accepted)

Code: https://github.com/IDEALLab/hgan_jmd_2019

2. Chen W, Fuge M. Active expansion sampling for learning feasible domains

in an unbounded input space. Structural and Multidisciplinary Optimization.

2018;57(3):925-945. doi:10.1007/s00158-017-1894-y.

Code: https://github.com/IDEALLab/Active-Expansion-Sampling

3. Chen W, Fuge M. Beyond the Known: Detecting Novel Feasible Domains over

an Unbounded Design Space. ASME. J. Mech. Des. 2017;139(11):111405-

111405-10. doi:10.1115/1.4037306.

Code: https://github.com/IDEALLab/domain_expansion_jmd_2017

4. Chen W, Fuge M, Chazan J. Design Manifolds Capture the Intrinsic Complex-

ity and Dimension of Design Spaces. ASME. J. Mech. Des. 2017;139(5):051102-

051102-10. doi:10.1115/1.4036134.

Code: https://github.com/IDEALLab/design_embeddings_jmd_2016
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A.2 Peer-Reviewed Conference

1. Chen W, Fuge M. Expanding Search Space for Global Optimization with Trust

Region Bayesian Optimization. Advances in Neural Information Processing

Systems. 2019. (under review)

2. Chen W, Chiu K, Fuge M. Aerodynamic Design Optimization and Shape Ex-

ploration using Generative Adversarial Networks. AIAA Scitech 2019 Forum.

doi:10.2514/6.2019-2351. (Invited talk)

Code: https://github.com/IDEALLab/airfoil-opt-gan

3. Chen W, Jeyaseelan A, Fuge M. Synthesizing Designs With Inter-Part Depen-

dencies Using Hierarchical Generative Adversarial Networks. ASME. Interna-

tional Design Engineering Technical Conferences and Computers and Informa-

tion in Engineering Conference, Volume 2A: 44th Design Automation Confer-

ence:V02AT03A007. doi:10.1115/DETC2018-85339.

Code: https://github.com/IDEALLab/hgan_idetc2018

4. Chen W, Chazan J, Fuge M. How Designs Differ: Non-Linear Embeddings

Illuminate Intrinsic Design Complexity. ASME. International Design Engi-

neering Technical Conferences and Computers and Information in Engineering

Conference, Volume 2A: 42nd Design Automation Conference:V02AT03A014.

doi:10.1115/DETC2016-60112.

Code: https://github.com/IDEALLab/design_embeddings_idetc_2016
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Koltun. Metropolis procedural modeling. ACM Transactions on Graphics
(TOG), 30(2):11, 2011.

[211] Emad Tandis and Ehsanolah Assareh. Inverse design of airfoils via an intelligent
hybrid optimization technique. Engineering with Computers, 33(3):361–374, Jul
2017.

[212] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. Octree generating
networks: Efficient convolutional architectures for high-resolution 3d outputs.
In Proc. of the IEEE International Conf. on Computer Vision (ICCV), vol-
ume 2, page 8, 2017.

196



[213] Yonatan A. Tesfahunegn, Slawomir Koziel, Leifur Leifsson, and Adrian
Bekasiewicz. Surrogate-based airfoil design with space mapping and adjoint
sensitivity. Procedia Computer Science, 51:795 – 804, 2015. International Con-
ference On Computational Science, ICCS 2015.

[214] Marco Tezzele, Filippo Salmoiraghi, Andrea Mola, and Gianluigi Rozza. Di-
mension reduction in heterogeneous parametric spaces with application to naval
engineering shape design problems. arXiv preprint arXiv:1709.03298, 2017.

[215] Simon Tong and Daphne Koller. Support vector machine active learning
with applications to text classification. Journal of machine learning research,
2(Nov):45–66, 2001.

[216] LJP Van der Maaten, EO Postma, and HJ Van den Herik. Dimensionality
reduction: A comparative review. Technical Report TiCC TR 2009-005, 2009.

[217] Emmanuel Vazquez and Julien Bect. Convergence properties of the expected
improvement algorithm with fixed mean and covariance functions. Journal of
Statistical Planning and inference, 140(11):3088–3095, 2010.

[218] P Venkataraman. A new procedure for airfoil definition. In 13th Applied Aero-
dynamics Conference, page 1875, 1995.

[219] Gerhard Venter and Jaroslaw Sobieszczanski-Sobieski. Particle swarm optimiza-
tion. AIAA journal, 41(8):1583–1589, 2003.

[220] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
Extracting and composing robust features with denoising autoencoders. In
Proceedings of the 25th international conference on Machine learning, pages
1096–1103. ACM, 2008.

[221] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-
Antoine Manzagol. Stacked denoising autoencoders: Learning useful represen-
tations in a deep network with a local denoising criterion. Journal of Machine
Learning Research, 11(Dec):3371–3408, 2010.

[222] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al.
Matching networks for one shot learning. In Advances in neural information
processing systems, pages 3630–3638, 2016.

[223] Asha Viswanath, AIJ Forrester, and AJ Keane. Constrained design optimiza-
tion using generative topographic mapping. AIAA journal, 52(5):1010–1023,
2014.

[224] Asha Viswanath, AI J. Forrester, and AJ Keane. Dimension reduction for
aerodynamic design optimization. AIAA journal, 49(6):1256–1266, 2011.

197



[225] Kun Wang, Shengjiao Yu, and Tiegang Liu. Airfoil optimization based on iso-
geometric discontinuous galerkin. In Proceedings of the 2018 2Nd International
Conference on Algorithms, Computing and Systems, ICACS ’18, pages 227–231,
New York, NY, USA, 2018. ACM.

[226] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. O-
cnn: Octree-based convolutional neural networks for 3d shape analysis. ACM
Transactions on Graphics (TOG), 36(4):72, 2017.

[227] Xiaolong Wang and Abhinav Gupta. Generative image modeling using style and
structure adversarial networks. In European Conference on Computer Vision,
pages 318–335. Springer, 2016.

[228] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein,
and Justin M Solomon. Dynamic graph cnn for learning on point clouds. arXiv
preprint arXiv:1801.07829, 2018.

[229] Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient bayesian
optimization. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 3627–3635. JMLR. org, 2017.

[230] William J Welch, Robert J Buck, Jerome Sacks, Henry P Wynn, Toby J
Mitchell, and Max D Morris. Screening, predicting, and computer experiments.
Technometrics, 34(1):15–25, 1992.

[231] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenen-
baum. Learning a probabilistic latent space of object shapes via 3d generative-
adversarial modeling. In Advances in Neural Information Processing Systems,
pages 82–90, 2016.

[232] David F Wyatt, David C Wynn, Jerome P Jarrett, and P John Clarkson.
Supporting product architecture design using computational design synthesis
with network structure constraints. Research in Engineering Design, 23(1):17–
52, 2012.

[233] Kai Xu, Vladimir G Kim, Qixing Huang, Niloy Mitra, and Evangelos Kaloger-
akis. Data-driven shape analysis and processing. In SIGGRAPH ASIA 2016
Courses, page 4. ACM, 2016.

[234] Kai Xu, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen. Fit and diverse:
set evolution for inspiring 3d shape galleries. ACM Transactions on Graphics
(TOG), 31(4):57, 2012.

[235] Xufeng Yang, Yongshou Liu, Yi Gao, Yishang Zhang, and Zongzhan Gao. An
active learning kriging model for hybrid reliability analysis with both ran-
dom and interval variables. Structural and Multidisciplinary Optimization,
51(5):1003–1016, 2015.

198



[236] Yi Yang, Zhigang Ma, Feiping Nie, Xiaojun Chang, and Alexander G Haupt-
mann. Multi-class active learning by uncertainty sampling with diversity max-
imization. International Journal of Computer Vision, 113(2):113–127, 2015.

[237] Bernard Yannou, Faysal Moreno, Henri J Thevenot, and Timothy W Simp-
son. Faster generation of feasible design points. In ASME 2005 International
Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, pages 355–363. American Society of Mechanical Engi-
neers, 2005.

[238] Houpu Yao, Yi Ren, and Yongming Liu. Fea-net: A deep convolutional neural
network with physicsprior for efficient data driven pde learning. In AIAA Scitech
2019 Forum, page 0680, 2019.

[239] QIU Yasong, BAI Junqiang, LIU Nan, and WANG Chen. Global aerodynamic
design optimization based on data dimensionality reduction. Chinese Journal
of Aeronautics, 31(4):643–659, 2018.

[240] Mehmet Ersin Yumer, Paul Asente, Radomir Mech, and Levent Burak Kara.
Procedural modeling using autoencoder networks. In Proceedings of the 28th
Annual ACM Symposium on User Interface Software &#38; Technology, UIST
’15, pages 109–118, New York, NY, USA, 2015. ACM.

[241] Mehmet Ersin Yumer, Siddhartha Chaudhuri, Jessica K. Hodgins, and Lev-
ent Burak Kara. Semantic shape editing using deformation handles. ACM
Trans. Graph., 34(4):86:1–86:12, July 2015.

[242] Mehmet Ersin Yumer and Levent Burak Kara. Co-constrained handles for defor-
mation in shape collections. ACM Transactions on Graphics (TOG), 33(6):187,
2014.

[243] Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus. De-
convolutional networks. In Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, pages 2528–2535. IEEE, 2010.

[244] Lihi Zelnik-Manor and Pietro Perona. Self-tuning spectral clustering. In NIPS,
volume 17, page 16, 2004.

[245] Zhenyue Zhang, Jing Wang, and Hongyuan Zha. Adaptive manifold learning.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(2):253–
265, 2012.

[246] Youyi Zheng, Daniel Cohen-Or, and Niloy J. Mitra. Smart variations: Func-
tional substructures for part compatibility. Computer Graphics Forum (Euro-
graphics), 32(2pt2):195–204, 2013.

199



[247] Xiaojin Zhu, John Lafferty, and Zoubin Ghahramani. Combining active learn-
ing and semi-supervised learning using gaussian fields and harmonic functions.
In ICML 2003 workshop on the continuum from labeled to unlabeled data in
machine learning and data mining, volume 3, 2003.

[248] Xiaotian Zhuang and Rong Pan. A sequential sampling strategy to improve
reliability-based design optimization with implicit constraint functions. Journal
of Mechanical Design, 134(2):021002, 2012.

[249] Lavi R Zuhal, Cahya Amalinadhi, Yohanes B Dwianto, Pramudita S Palar, and
Koji Shimoyama. Benchmarking multi-objective bayesian global optimization
strategies for aerodynamic design. In 2018 AIAA/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, page 0914, 2018.

200


