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ABSTRACT

To solve a design problem, sometimes it is necessary to identify the feasible design space. For design spaces

with implicit constraints, sampling methods are usually used. These methods typically bound the design space;

that is, limit the range of design variables. But bounds that are too small will fail to cover all possible designs;

while bounds that are too large will waste sampling budget. This paper tries to solve the problem of efficiently

discovering (possibly disconnected) feasible domains in an unbounded design space. We propose a data-driven

adaptive sampling technique—ε-margin sampling, which both learns the domain boundary of feasible designs,

while also expanding our knowledge of the design space as available budget increases. This technique is data-

efficient, in that it makes principled probabilistic trade-offs between refining existing domain boundaries versus

expanding the design space.

We demonstrate that this method can better identify feasible domains on standard test functions compared to

both random and active sampling (via uncertainty sampling). However, a fundamental problem when applying

adaptive sampling to real world designs is that designs often have high dimensionality and thus require (in the

worst case) exponentially more samples per dimension. We show how coupling Design Manifolds with ε-margin
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sampling allows us to actively expand high-dimensional design spaces without incurring this exponential penalty.

We demonstrate this on real-world examples of glassware and bottle design, where our method discovers designs

that have different appearance and functionality from its initial design set.

1 Introduction

Identifying the feasible design space is important in design research. For example, design space exploration visualizes a

design space and tries to generate feasible designs [1, 2, 3]. Also, reliability-based design optimization (RBDO) requires an

accurate boundary of feasible regions in the space [4,5]. The feasible design space is often defined by constraints. Constraints

expressed via simple mathematical functions are explicit constraints; while constraints such as aesthetics, functionality, or

performance requirements are often implicit constraints. The latter are usually evaluated by human assessment, experiments,

or computer simulation.

For implicit constraints, researchers often use sampling methods to identify feasible regions [3, 4, 5, 6, 7]. However,

current sampling methods use bounded input spaces —they require a predefined bounding box (i.e., the bound for each

design variable). For implicit constraints, however, we typically do not know the size of those bounds. For example,

consider car body styling design. Even if we have an intuitive sense of how “compact” a car customers are willing to buy,

we may not know how to translate those compactness constraints to actual bounds on the design variables; a customer’s

preference drives an unseen, implicit constraint. If the bounds on the design variables are too small, we might miss feasible

designs; while if the bounds are too large, sampling methods will use more (possibly expensive) samples that necessary to

identify feasible regions. In such cases we need to sample and expand a possibly unbounded design space—to go beyond

known bounds and explore larger design domains (as budget allows).

Note that the feasible domains are possibly disconnected. For example, in a RBDO problem, a probabilistic constraint

is defined as P[g(xxx)> 0]≤ Pf , where Pf determines the reliability level and g(xxx)≤ 0 indicates that the design variables xxx are

feasible. The feasible design space identified by g(xxx)≤ 0 shrinks as the reliability level increases (i.e., Pf decreases). When

the feasible design space is concave and keeps shrinking, it will eventually become disconnected [6]. Thus given initial

designs in only one feasible region, we are also interested in discovering other feasible regions.

In this paper, we address these problems by proposing an adaptive sampling method that picks designs (to simulate, to

show to human, or otherwise validate) such that the algorithm both sufficiently refines the boundaries for feasible designs

that we know about, while also expanding the design space to discover new feasible designs (possibly in a disconnected

feasible domain) that we may not know about. Compared to past work, this paper differs in that 1) the sampling process

is applied on an unbounded design space and discovers multiple disconnected feasible domains; 2) given an increasingly

larger budget, our method will handle unbounded design spaces without sacrificing the quality of the boundaries for known

feasible designs; and 3) it works for high dimensional real world design spaces by exploiting and expanding along low-

dimensional Design Manifolds [8, 9]. This second item, addressed in detail by Sec. 5, is key for applying active domain

expansion to practical, real-world designs because active sampling methods in general have an exponential increase in cost

as the dimension increases [10].
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This active expansion is useful not only for defining boundaries of design spaces, but also for helping discover potentially

novel and creative designs. Beyond design, our proposed active learning query strategy—ε-margin sampling—also applies to

any domain expansion problem, i.e., finding (possibly disconnected) domain boundaries or level sets in an unbounded input

data space given an expensive function that evaluates which points are feasible. This expensive function could be costly

computation, time-consuming experiments, or human evaluation. The main contributions of this paper are:

1. An active learning query strategy—ε-margin sampling—that balances exploitation and exploration.

2. A method of finding (possibly multiple disconnected) feasible design spaces with implicit constraints (i.e., constraints

that cannot be expressed by simple mathematical functions) in an unbounded parameter space.

3. An approach for identifying the feasible design space by exploring low-dimensional embedded design manifolds, rather

than in the original high-dimensional space.

4. Demonstrating that domain expansion on real-world design spaces can discover useful and novel designs given a small

set of known real-world designs.

2 Background and Related Work

Fundamentally, and without loss of generality, our task in this paper is to detect the boundary (h(xxx) = 0) of an expensive

function h : X ∈Rd →{−1,1}, where xxx are design variables, d is the (potentially large) dimensionality of the space, and the

output is the validity or feasibility of a given design (with the output y = 1 indicates a valid design, and y =−1 otherwise).

This task has three main questions: 1) how do we probabilistically model level set or classification boundaries; 2) how do

we sample new points (queries) such that we refine that boundary efficiently; and 3) how do we tackle boundaries in high

dimensional spaces? For each question, we will review past work most closely related this paper’s approach: 1) Gaussian

Process Classification, 2) Active Learning, and 3) exploration of high dimensional design spaces.

2.1 Gaussian Process Classification

Since we are separating valid designs from invalid ones, we are dealing with a binary classification problem (the label y∈

{−1,1}with y= 1 indicating valid designs). Unlike other non-linear classification methods such as Support Vector Machines

or Neural Networks, Gaussian Processes naturally model probabilistic predictions and can calculate the informativeness of a

sample via its posterior probability distribution.

For binary GP classification, we place a GP prior over the latent function f (xxx) ∈ R, and then “squash” f (xxx) through the

logistic function σ(·) to approximate the probability of y = 1 at xxx: π(xxx) = P(y = 1|X ,yyy,xxx) = σ( f (xxx)) where X and yyy are the

training data and labels [11]. The distribution of the latent variable f∗ for a new sample xxx∗ is

P( f∗|X ,yyy,xxx∗) =
∫

P( f∗|X ,xxx∗, fff )P( fff |X ,yyy)d fff (1)
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where P( fff |X ,yyy) = P(yyy| fff )P( fff |X)/P(yyy|X) is the posterior over the latent variables. Then the probability of y∗ = 1 at xxx∗ is

π̄∗ = P(y∗ = 1|X ,yyy,xxx∗) =
∫

σ( f∗)P( f∗|X ,yyy,xxx∗)d f∗ (2)

The integrals in Eqn. (1) and (2) are analytically intractable. Thus we need either analytic approximations of the

integral such as Laplace approximation [12] and expectation propagation methods [13], or Monte Carlo sampling based

solutions [14]. In this paper we use Laplace approximation.

The posterior of the latent variable f∗ under the Laplace approximation is a Gaussian distribution: f∗|X ,yyy,xxx∗∼N ( f̄∗,V∗)

with the mean and the variance expressed as

f̄∗ = kkkT
∗K−1 f̂ff = kkkT

∗∇ logP(yyy| f̂ff ) (3)

V∗ = k(xxx∗,xxx∗)− kkk∗T (K +W−1)−1kkk∗ (4)

where W = −∇∇ logP(yyy| fff ) is a diagonal matrix with non-negative diagonal elements, K is the covariance matrix of the

training samples, kkk∗ is the vector of covariances between xxx∗ and the training samples, k(xxx∗,xxx∗) is the prior variance at xxx∗,

f̂ff = argmax fff P( fff |X ,yyy). The decision boundary corresponds to f̄∗ = 0 or π̄∗ = 0.5. We predict y∗ = −1 when f̄∗ < 0, and

y∗ = 1 otherwise. Williams and Rasmussen [11] further detail the Laplace approximation for the binary GP classifier.

For example, in car body styling design f (xxx) may represent the Gaussian process classifier’s belief customer satisfaction

with a car body design represented by xxx (roof length, wheelbase, etc.). This belief is stochastic and has a Gaussian distribu-

tion: f (xxx) ∼ N ( f̄ ,V ). Specifically, f̄ = 0 represents the boundary of acceptable car designs (the feasible design domain);

one of our goals is to best refine our estimate of f̄∗ over time. In contrast, V represents how uncertain we are about a car’s

acceptability; another, competing goal is to explore designs about which we are uncertain.

The covariance K, kkk∗, and k(xxx∗,xxx∗) are specified by a kernel function. In this paper we use the Gaussian kernel:

k(xxx,xxx′) = exp
(
−‖x

xx− xxx′‖2

2l2

)
(5)

where l is the length scale. In our context, the kernel function k(xxx,xxx′) measures the similarity between the two designs xxx and

xxx′. The kernel encodes the assumption on f that “similar inputs xxx should have similar outputs f (xxx)” (i.e., similar designs

should have similar feasibility). The specific choice of kernel is not central to the paper’s contributions. In practice, one may

use any positive semi-definite kernel.
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2.2 Sequential Sampling and Active Learning

Sequential sampling methods are one means to identify feasible designs with implicit constraints. The typical procedures

works as follows: 1) select initial samples via methods like Latin hypercube sampling; 2) learn a surrogate model (e.g.,

Gaussian Process regression model) for the implicit constraint using those samples; 3) compute a score using the learned

model for any set of design variables xxx; 4) select a new sample based on those scores; and 5) repeat steps 2-4. This technique,

although applied in design research [3, 4, 5, 7], is also heavily researched in an area called Active Learning.

Active learning is a semi-supervised machine learning approach that interactively queries labels for data. In our case,

the labels are the validity of designs. There are three main scenarios of active learning: membership query synthesis, stream-

based selective sampling, and pool-based sampling [15]. Here we apply pool-based sampling (where queries are selected

from a large pool of unlabeled data XU ). In each iteration, pool-based sampling uses the labeled samples from all the previous

iterations to train a classifier, updates the measure of informativeness based on the classifier’s prediction, and picks the most

informative sample to next query and label. The pool is often generated via random sampling in the input space using a

fixed-size pool, though we show later in the paper (Sec. 4.1) that intelligently modifying this pool can improve performance.

To achieve higher accuracy with fewer queried labels, active learning algorithms follow various query strategies. Ran-

dom sampling is the simplest, where a learner randomly picks queries from the set of unlabeled samples XU . Uncertainty

sampling is the most commonly used strategy in which a learner queries an instance whose label is the least certain under

the current model (i.e., is least certain about the label). For a probabilistic binary classification model, this approach is

straightforward [16, 17]:

xxx∗ = argmax
xxx∈XU

1−Pθ(ŷ|xxx) (6)

where the estimated label ŷ = argmaxy Pθ(y|xxx) is the most probable label (in our case, valid/invalid) at xxx under the model

θ. Initially, the model θ is trained with a seed set of labeled samples XL0 = {xxx(1),xxx(2), ...,xxx(n0)}. Uncertainty sampling will

query an instance closest to the decision boundary (e.g., Point 1 or 3 in Fig. 2).

Query strategies like uncertainty sampling exploit the most informative sample for prediction by refining the decision

boundary. But in cases where there are multiple disconnected feasible domains, exploring areas away from the current

decision boundary is necessary to discover other decision boundaries. Therefore, we have to trade off exploiting the decision

boundary with exploring unknown regions.

Past research studied balancing exploitation and exploration in active learning. One common way is to query based on

the sample’s output distribution obtained by a probabilistic model (e.g., a Gaussian process). To determine the informative-

ness of unlabeled data, such approaches use the model’s predictive mean and variance to either model the uncertainty of

unlabeled data [18, 19, 20, 21, 22, 23] or estimate the expected model change affected by unlabeled data [24, 25]. Instead

of using a probabilistic model, others use deterministic models (e.g., support vector machines) and combine the classifica-

tion results with some geometric rules for selecting queries [26, 7, 27, 28]. Another body of work models active learning

MD-17-1152 W. Chen, M. Fuge 5



as a multi-armed bandit problem, automatically selecting queries to balance exploitation and exploration via a performance

estimate [29, 30].

In previous work, exploitation and exploration trade-off occured on a bounded domains or within fixed sampling pools.

However, there are cases where we can synthesize samples at any point in the input data space and we are uncertain about

the bounds of that space. For example, we may not know the parameter bounds for a design, but by specifying any set

of parameters, we can generate a design instance (either feasible or infeasible). In this paper, we introduce a method of

using active learning to expand the initial sample region, and learn the feasible or infeasible regions in an unbounded design

space. A naı̈ve solution would progressively expand a bounded input space, and apply the existing active learning techniques.

However, a input space expansion rule and a query strategy should ensure that the selected samples are optimal given the

query strategy regardless of the imposed space boundary (i.e., the imposed boundary should not interfere with the query

strategy’s decision). Thus designing such a method is not trivial.

2.3 Design Space Exploration and Design Synthesis

To identify feasible design regions or find novel designs, one needs to explore the design space. However, one problem

with exploring design spaces is that they are usually high-dimensional. This creates two issues: 1) the active learner must

query more exponentially more samples due to the curse of dimensionality [31] while most designs in that design space are

often unrealistic or nonfunctional; and 2) Gaussian processes perform poorly over a high-dimensional space. Past research

has tackled these problems by using a low-dimensional representation of a design space, such that one can explore that low-

dimensional space and synthesis designs. One way to get this low-dimensional representation is to use manifold learning such

as Multi-Dimensional Scaling (MDS) to map the design space to a low-dimensional embedding space, and reconstruct the

original shapes or synthesize new shapes based on how shapes vary [32]. Instead of learning a one-way mapping via methods

like MDS, one can also directly learn a two-way mapping between the design space and a low-dimensional space by using

methods like principal component analysis (PCA) or autoencoders [33, 34, 8, 9]. Another way is to associate designs with

a few semantic attributes (e.g., compactness/luxuriousness of a car) by crowd-sourcing, and then learn how those attributes

map to the design variables, such that new designs can be synthesized by editing these semantic attributes [35].

3 ε-Margin Sampling

ε-margin sampling queries samples based on the probability of xxx being labeled as −ŷ with some degree of certainty (ε):

pε =


P( f <−ε|xxx), if ŷ = 1

P( f > ε|xxx), if ŷ =−1

= P(ŷ f <−ε|xxx)

(7)
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Fig. 1: The probability density function of the latent function f . The shaded areas represent the probability of a sample being
labeled as the opposite label with some degree of certainty (controlled by the margin ε). When the predicted label ŷ = 1, the
probability is P( f <−ε); and when ŷ =−1, the probability is P( f > ε).

Fig. 2: The value of pε under different ε. On the left plot, the gray area is the ground truth of the feasible domain; the thicker
line is the decision boundary obtained by the GP classifier; the thinner lines are isocontours of V ; and the circle points are
training samples. When ε = 0, pε = 0.5 for all the points on the decision boundary, thus in this case ε-margin sampling
is equivalent to uncertainty sampling. As ε increases, ε-margin sampling starts to take the variance into consideration, i.e.,
given two points (e.g., Points 1 and 3) on the decision boundary it will pick the one with a higher variance. Whereas for
points having the same variance (e.g., Points 2 and 3), it always prefers the one on the decision boundary.

where ŷ is the estimated label of xxx (Fig. 1). The intuition is that the sample which has the highest probability of having an

opposite label is the most informative. We can express pε using the cumulative distribution function of a standard Gaussian

distribution:

pε = P(ŷ f <−ε|xxx) = Φ

(
−| f̄ |+ ε√

V

)
(8)
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where Φ(·) is the cumulative distribution function of standard Gaussian distribution N (0,1). The ε-margin sampling picks

a sample that has the largest pε:

xxx∗ = argmax
xxx∈XU

Φ

(
−| f̄ |+ ε√

V

)
(9)

Since Φ(·) is a monotonically increasing function, pε decreases with (| f̄ |+ ε)/
√

V . Thus finding the maximum of pε is

equivalent to finding the minimum of (| f̄ |+ ε)/
√

V . Figure 2 shows the value of pε under different ε. When ε = 0, Eqn. (7)

becomes

p0 =


P( f < 0|xxx), if ŷ = 1

P( f > 0|xxx), if ŷ =−1

=


1−P( f > 0|xxx), if ŷ = 1

1−P( f < 0|xxx), if ŷ =−1

= 1−P(ŷ|xxx)

Thus, for ε= 0, ε-margin sampling is equivalent to uncertainty sampling (Eqn. (6)). As ε increases, the value of (| f̄ |+ε)/
√

V

is affected less by | f̄ | and more by V . Thus ε-margin sampling will take the variance into consideration, i.e., given two points

(e.g., Points 1 and 3) on the decision boundary it will pick the one with a higher variance. For points with the same variance

(e.g., Points 2 and 3), it always prefers one closer to the decision boundary.

When an active learning algorithm queries a point on the decision boundary, it is refining the boundary (exploitation);

while when the algorithm queries a point with a high variance, it is exploring unknown areas (exploration).Therefore, in-

creasing the margin ε > 0 trades off exploitation for exploration.

4 Domain Expansion with Active learning

This paper focuses on the active learning in an unbounded space. To do so, we introduce a method that progressively

expands the currently known region and discovers new feasible domains. In a domain expansion problem, given an expensive

function h : X ∈ Rd →{−1,1} that evaluates each point xxx in an unbounded input data space X , we want to find the feasible

domain {xxx ∈ X |h(xxx) = 1}. The domain boundaries may be disconnected, in which case there are multiple feasible domains

separated by regions of infeasible space. Our domain expansion problem differs from other active learning problems in that

we have to sample from an unbounded space. Obviously, we cannot discover all the feasible domains because the input space

is infinitely large. Thus our proposed method progressively expands our knowledge of that space and its feasible domains by

first refining domains that we know about and then, budget permitting, searching outward to discover other domains.
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Fig. 3: The flexible pool boundary. In each active learning iteration, we set the pool boundary by expanding the bounding
box of the current labeled samples by a constant α.

We can also express the domain expansion problem as h′ : X ∈ Rd → R, in which case the problem relates to level set

estimation [21], where we want to find the superlevel set {xxx ∈ X |h′(xxx) > τ} or the sublevel set {xxx ∈ X |h′(xxx) ≤ τ} in an

unbounded space X given the function h′ and a threshold τ.

Our proposed active learning method first generates a bounded sampling pool nearby training samples. Second, it uses

ε-margin sampling to select and label a sample from that pool. Lastly, it progressively expands the sampling pool. These

steps repeat until the sampling budget is exhausted. Interested readers can review the full source code to fully reproduce the

below steps.1

4.1 Expand the Pool

A pool of unlabeled samples XU can be generated by randomly sampling points in the parameter space. Although we

assume an unbounded parameter space, obviously we cannot generate the pool from an unbounded space. Thus we define

a flexible pool boundary that expands progressively as we explore the parameter space. Specifically, we set the range of the

j-th dimension of the parameter space as [minxxx(i)∈XL
x(i)j −α, maxxxx(i)∈XL

x(i)j +α], where XL is the set of labeled samples,

x(i)j is the j-th component of the i-th sample xxx(i), and α is the expansion rate that controls how much the pool boundary

expands based on the current bounding box of labeled samples (Fig. 3). The next section discusses how to set α such that

the sampling pool is optimal for the query strategy, regardless of the imposed pool boundary (i.e., the pool boundary should

not bias with the query strategy’s decision).

4.2 Query Strategy

ε-margin sampling performs both exploitation and exploration by balancing proximity to the decision boundary and

the size of the variance. However, this creates a problem with an expanding domain; nı̈ave querying will attempt to pick

points infinitely far away from current training samples. Therefore, we add another criteria—the Euclidean distance between

the new sample xxx∗ and some center ccc—that keeps the active learner from querying points too distant from current training

1https://github.com/IDEALLab/domain_expansion_jmd_2017
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Exploitation stage Exploration stage

Fig. 4: Queries at the exploitation stage (left) and the exploration stage (right). The gray area is the ground truth of the
feasible domain. The solid line is the decision boundary obtained by the GP classifier; and the dashed line is the isocontour
of pε. At the exploitation stage, the center ccc is the last queried positive sample, which makes the next query stay along the
decision boundary. At the exploration stage, ccc is the centroid of the initial positive samples, which keeps the queries centered
around the existing (real-world) samples rather than biasing towards some direction.

samples. This criteria can be expressed as

min
xxx∈XU

‖xxx− ccc‖2

s.t. pε = Φ

(
−| f̄ |+ ε√

V

)
≥ t

(10)

where t ∈ (0,0.5) is a threshold that determines the expansion speed. Since Φ(−(| f̄ |+ ε)/
√

V ) reaches its upper bound

when f̄ = 0 and V =Vmax (which corresponds to the prior of the GP or the posterior far away from the training samples), we

have t ≤ Φ(−ε/Vmax), where Vmax is the maximum predictive variance. In Eqn. (4), K +W−1 is positive semidefinite, thus

kkk∗T (K+W−1)−1kkk∗ ≥ 0 and V ≤ k(xxx∗,xxx∗) = 1 if we use a Gaussian kernel. Thus t ≤Φ(−ε). We can set t = ηΦ(−ε), where

η is a coefficient slightly smaller than 1.0. In practice, we set η = 0.8.

The expansion rate α should be large enough such that the pool boundary will not interfere with the query strategy—as

if each query was chosen from an infinite space by the query strategy. However, as α increases, we have to evaluate a

larger population of samples at each iteration (assuming a fixed sample pool density), which means the computational cost

increases. We can set α based on the Gaussian kernel’s length scale l. The length scale l controls the range of the training

samples’ effects on the posterior mean and variance, and hence pε. In general, when a point has a distance of l away from

the training samples, it will not be affected by those training samples. Then for that point we will have pε = Φ(−ε). In our

case, if we set α = l then all the samples outside the pool boundary will have pε = Φ(−ε). And if the threshold t = ηΦ(−ε)

where η < 1, it is guaranteed that the inequality in Eqn. (10) will have a feasible set inside the pool boundary. Thus the

optimal solution of Eqn. (10) will be inside the pool boundary regardless of its existence. Therefore the pool boundary does

not interfere with the query strategy’s decision.
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4.3 Relocate Center

When a learnr discovers a boundary that it has not completely exploited, the learner should first exploit that boundary,

after which it should find other unknown boundaries by expanding domain. Thus the domain expansion process consists of

two stages: 1) exploitation, where a learner queries along the decision boundary; and 2) exploration, where a learner queries

away from current decision boundaries (Fig. 4). These two stages may oscillate if there are many disconnected feasible

regions. For each stage, we use the following heuristics to set the center ccc:

1. If both positive and negative samples occur within the last M queries, set ccc = xxx+, where xxx+ is the most recent positive

sample.

2. Otherwise, set ccc as the centroid of the initial positive samples: ccc = ∑
n0
i=1 xxx(i)(yi +1)/∑

n0
i=1 (yi +1), where n0 is the

number of initial labeled samples.

When both positive and negative samples appear within the latest queries, there is at least one unexploited decision

boundary (i.e., the exploitation stage), and the active learner should query along that boundary.

Theorem 1. Under ε-Margin Sampling, a new query xxx∗ will lie at the intersection of the decision boundary and the iso-

contour of Φ(−(| f̄ |+ ε)/
√

V ) = t (Point A in Fig. 4), if there are feasible solutions to Eqn (10) on the decision boundary,

and the center ccc ∈ XL is close to xxx∗.

Proof. For Point A we have f̄A = 0 and Φ(−(| f̄A|+ ε)/
√

VA) = t. Suppose there is another unlabeled sample xxxB (Point B in

Fig. 4) with | f̄B|> 0 and Φ(−(| f̄B|+ε)/
√

VB) = t. In that case, we have VB >VA. Based on Eqn. (4), the predictive variance

V∗ solely depends on kkk∗ given the training samples (i.e., fixed positive semidefinite matrix K +W−1, and k(xxx∗,xxx∗) = 1).

Suppose the sample xxx∗ is very close to ccc and ccc ∈ XL, such that kkk∗ is mainly affected by the covariance between xxx∗ and ccc,

and hence the distance ‖xxx∗− ccc‖. Then V∗ will increase with ‖xxx∗− ccc‖. Therefore we have ‖xxxB− ccc‖ > ‖xxxA− ccc‖. Thus the

active learner prefers xxxA to xxxB due to the objective function in Eqn (10). For the same reason, the active learner prefers xxxA to

a sample xxxC (Point C in Fig. 4) with f̄C = 0 and Φ(−(| f̄C|+ ε)/
√

VC) > t. Thus the active learner will query a point at the

intersection of the decision boundary and the isocontour of pε = t.

In practice, we set the center to be the last positive sample because this forces new queries to stay close to positive

samples (which we are interested in). When the latest queries contain only a single class of samples, it indicates that the

active learner is no longer querying samples on the decision boundary since Φ(−(| f̄ |+ ε)/
√

V ) < t (Fig. 4). The active

learner starts to explore and look for other decision boundaries. The second rule ensures that the exploration is centered

around the existing (real-world) samples rather than biasing towards some direction.

4.4 Hyperparameters for ε-Margin Sampling

The ε-margin sampling method uses two hyper-parameters—the margin ε and the length scale l.

The margin ε controls the query strategy’s emphasis on exploration. When ε = 0, the proposed method is equivalent

to uncertainty sampling, which only samples points on the decision boundary ( f̄ = 0), i.e., exploitation. As ε increases, the
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Valid design

Invalid design

Design manifold

Real-world samples

Real-world samples

Design space

Fig. 5: 3D visualization of high dimensional design space showing that design variables actually lie on a 2-dimensional
manifold [8, 9]. At a point away from the real-world stemless glass samples, the glass contours are self-intersecting; at
another point, the shape becomes a stem glass.

algorithm prefers to sample points with higher variance V , i.e., exploration (as illustrated in Fig. 2). Thus, as ε increases, the

learner prioritizes expanding the domain faster versus refining the boundary accuracy.

The length scale l controls the influence that a point has on a Gaussian process. When l is larger, the function pε =

Φ(−(| f̄ |+ ε)/
√

V ) is smoother and increases slower, thus the next query will be farther away from the previous queries.

This means the distances between queried points increase. The upside of this is that the domain expands faster, while the

downside is that we may overshoot small feasible domains (see Sec. 6.1.2).

In general, we recommend ε < 1, because when ε� f̄ ∈ [0,1], the the algorithm neglects the effect of f̄ in pε =

Φ(−(| f̄ |+ ε)/
√

V ) and will bias queries awau from the decision boundary during exploitation. If we find that the domain

expansion is too slow, we can increase l; or if we are concerned about missing small feasible domains, we can decrease l. In

practice, we have found an initial guess of ε = 0.7 and l = 1.0 worked well in our below experiments, with adjustments to ε.

Intuitively, ε and l together control the desired accuracy of the decision boundary, though this precise relationship is a topic

for future work.

5 Using Design Manifolds to Synthesize Novel Designs

It is difficult to directly explore a real-world design space since it is usually high-dimensional, and most points in

that space will be unrealistic or nonfunctional. To handle real-world design spaces, our proposed method assumes that

design variables original expressed in a high-dimensional design space X usually lie on a lower-dimensional design manifold

(Fig. 5) [8, 9, 36, 37]. We can thus project designs on that lower-dimensional manifold F by a mapping g : X → F . Then

given any point in that space, we can synthesize new designs by a reverse mapping g′ : F → X . This reduces the problem of

exploring the high-dimensional design space X to exploring a corresponding embedding space F .

Just like in the original design space, there are boundaries for feasible designs in the embedded space. The function
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that evaluates feasible domains can thus be expressed as h : F → {−1,1}. Figure 5 shows an example of a glassware

design manifold, where the synthesized contours are self-intersecting at a point away from the real-world samples. We call

these invalid designs—designs that are unrealistic or nonfunctional in the real-world. Since real-world samples are all valid

designs, normally designs lying between any two real-world samples (i.e., inside the convex hull of all the real-world samples

in the embedding space) will also be valid [8,9]. However, this assumption may not hold for designs that lie on the manifold

but beyond the real-world samples. Since they are on the manifold, they obey similar rules of variation and deformation

learned from the real-world samples, but because they are away from the real-world samples, there is no guarantee that those

designs are functional or aesthetically valid.

On a manifold that preserves pairwise distances between samples in the design space, designs far away from the real-

world samples will look different from them [8,9]. If these designs remain valid, despite being far away from the real-world

samples, then we are discovering innovative designs. The methods presented in this paper are one way to achieve this

creative exploration, even in high dimensional design spaces. Note that this method assumes that the dimensionality of

the design space can be reduced. In cases where this assumption does not hold, we have to directly explore the original

high-dimensional design space.

6 Experimental Evaluation and Discussion

We conducted experiments on benchmark functions and real-world design examples to demonstrate how well our pro-

posed method identifies feasible domains and discovers novel designs. To generate the pool for each experiment, we synthe-

sized 400 samples per a 1×1 area from a uniform distribution inside the initial pool boundary. We benchmark the ε-margin

sampling with random sampling and uncertainty sampling, as well as characterize some of the properties of our method

(such as the role of the kernel length scale l and the role of the margin ε).

6.1 Feasible Domain Identification

For the benchmark function examples, we can manually define feasible domains as the ground truth. We compare

each query strategy’s exploitation and exploration behavior and compute the classification’s F1 score. The F1 score is

a measure of accuracy usually used in binary classification. It is expressed as F1 = 2 · precision·recall
precision+recall where precision =

true positives
true positives+false positives and recall = true positives

true positives+false negatives .

6.1.1 Synthetic Example: Branin Function

Since we may expect disconnected feasible domains in a parameter space, we created a 2-dimensional test case where

feasible domains form separate “islands”. Specifically, we use the Branin function as an indicator of whether a sample is

inside the feasible domain. The Branin function is g(xxx) =
(

x2− 5.1
4π2 x2

1 +
5
π

x1−6
)2

+10
(
1− 1

8π

)
cosx1 +10. We define the

label y = 1 if g(xxx) < 8 and −5 < x1 < 12,−5 < x2 < 20, and y = −1 otherwise. The resulting feasible domains resemble

three isolated “islands” (Fig. 6).

The initial samples are randomly generated inside the region where x1 ∈ [1.0,2.0] and x2 ∈ [3.0,4.0]. For the Gaussian
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Fig. 6: Domain expansion process for the Branin example. The points are queried samples before the current iteration; and
the stars are current queries. The solid lines are decision boundaries obtained by the GP classifier; and the dashed lines are
the pool boundaries.

Exploration stages

-margin

Fig. 7: F1 scores for the Branin example. For ε-margin sampling, during exploration stages, the exploited decision boundaries
do not change, so does the F1 score; while during rest of the time (exploitation stages), the F1 score shows a fluctuant increase
as the decision boundary changes.

process, we used a Gaussian kernel (Eqn. (5)). We set the kernel length scale l = 1.0, and the margin ε = 0.7.

As shown in Fig. 6, the algorithm oscillates between exploitation and the exploration stages (i.e., exploit → explore

→ exploit→ . . .). It exploits whenever it discovers a new decision boundary via exploration, and keep exploiting until the

uncertainty about the boundary becomes small (as determined by ε). This behavior allows the learner to exploit a discovered

decision boundary as quickly as possible.

To measure our method’s performance, we randomly generated 10 test samples per a 1× 1 area, and computed the

test F1 scores for domain expansion using ε-margin sampling, uncertainty sampling, and random sampling. For uncertainty
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(a) Random sampling. (b) Uncertainty sampling.

Fig. 8: Queried samples for random sampling and uncertainty sampling within 210 iterations. The solid lines are decision
boundaries obtained by the GP classifier; and the dashed lines are the pool boundaries.

(a) Length scale l = 0.5. (b) Length scale l = 1.0.

Fig. 9: Queried samples by ε-margin sampling with different GP kernel length scales. A large length scale accelerates
exploration but may miss small feasible domains.

Finished exploiting

the large "island"

Finished exploiting

the small "island"

Fig. 10: F1 scores for the Hosaki example. With a larger length scale, the F1 score increases faster, but may stop increasing
because it cannot discover small feasible domains.

sampling and random sampling, we used the same pool expansion rule as mentioned in Sec. 4.1. As shown in Fig. 7, the

F1 scores of ε-margin sampling fluctuated during the exploitation stage (due to the changing decision boundary), and then

stabilized during the exploration stage. For ε-margin sampling, the F1 score is around 0.85; whereas for random sampling

and uncertainty sampling, the F1 scores are less than 0.5 at the last iteration. The problem with random sampling is that it

has no strategy for balancing exploitation and exploration, thus a large portion of its query budget is wasted on unimportant

samples (Fig. 8a). The problem with uncertainty sampling is that it only focuses on the current decision boundary and does

not explore other regions (Fig. 8b).

6.1.2 Synthetic Example: Hosaki Function

What if the feasible domains are different in length scale (i.e., one large island and one small island)? To test such a

case, we use the Hosaki function: g(xxx) =
(
1−8x1 +7x2

1−
7
3 x3

1 +
1
4 x4

1
)

x2
2e−x2 . We define the label y = 1 if g(xxx) < −1 and
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Fig. 11: F1 scores for the two-sphere example.

0 < x1,x2 < 5, and y =−1 otherwise. The resulting feasible domains consists of two isolated “islands”—one large and one

small (Fig. 9). In this experiment, the initial samples are randomly generated inside the region where x1 ∈ [4.0,5.0] and

x2 ∈ [2.0,3.0]. We set the margin ε = 0.7.

When the length scale of the Gaussian kernel is l = 0.5, the active learner successfully detected two feasible domains

(Fig. 9a). However, when l is increased to 1.0, the active learner expands the domain more aggressively, missing the small

“island” and less accurately learns the the large island’s decision boundary (Fig. 10). Intuitively, the length scale implicitly

encodes our belief about the minimum size of possible islands. When this choice over-estimates the actual length scale,

exploration may be too aggressive. If the length scale is too small, the exploration will become too conservative and take

longer to discover new areas. Fruitful areas for future research include adaptive ways of choosing l or even considering

non-stationary kernel spaces that could model different length scales in different portions of the space.

6.1.3 Synthetic Example: Two Sphere Feasible Domains

To test how the proposed domain expansion method performs in higher-dimensional input spaces, we build a test exam-

ple with two spherical feasible domains. Specifically, the label y = 1 if and only if min{‖xxx−aaa‖,‖xxx−bbb‖} ≤ 1, which creates

two sphere feasible domains of radius 1 centered at aaa and bbb respectively. To test over a 3-dimensional input space, we set

aaa = (0,0,0) and bbb = (3,0,0). The initial samples are generated within the region where x1,x2,x3 ∈ [0,1].

We computed the F1 scores under ε-margin sampling, uncertainty sampling, and random sampling (Fig. 11). The latter

two sampling methods still perform poorly in this case. For ε-margin sampling, we have to set a lower margin (ε = 0.5)

and a smaller length scale (l = 0.5) to achieve a reasonable classification accuracy, compared with the 2-dimensional input

space (e.g., the Branin example), because the number of samples needed to learn an accurate model grows exponentially

with the dimensionality (the curse of dimensionality [31]). By using a lower l, we increase the overall sample density; and

by reducing ε, we increase samples along the decision boundary (the surfaces of the spheres).

As the dimensionality increases, the design space becomes impossible to sample or explore (with bounded variance)

using less than exponential sample size as dimension increases for any method [10]. Thus, all sampling methods will suffer

from high computational cost. However, if a high dimensional design space has points or solutions that actually vary on

a low-dimensional (possibly non-linear) subspace (a design manifold) within that high dimensional space (i.e., it has low
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Fig. 12: F1 scores for the airfoil example.

nitial sample region

Fig. 13: The estimated feasible domains and corresponding valid airfoil designs. The top left figure shows the initial and
queried samples and the estimated feasible domains in the embedding space F . The solid dots represent valid designs, while
the hollow dots represent invalid ones. The bottom figure shows the airfoil designs in the estimated feasible domain.

intrinsic dimension), we can sample or explore only the low-dimensional subspace, and hence reduce the computational cost.

We demonstrate this approach next.

6.1.4 Example: Airfoil

When the feasible solutions of a high-dimensional design problem only lie on a low-dimensional subspace, it is almost

impossible to identify that feasible solution by exploring the original high-dimensional space because the feasible domain

only occupies a very small slice of that original space. In this case, we can explore only the subspace on which design

solutions vary. This example uses airfoil shapes to demonstrate the approach of performing feasible domain identification in

a subspace. An airfoil is the cross-section shape of a wing or blade (of a propeller, rotor, or turbine).

Specifically, we represent an airfoil with 100 Cartesian coordinates from its 2D outline. Our airfoil samples are from

the UIUC Airfoil Coordinates Database, which provides the Cartesian coordinates for nearly 1,600 airfoils.2 We use PCA

to learn a two-way mapping between the original design space X ∈ R200 and the subspace (embedding space) F ∈ R2.

Thus given any point in F , we can get its corresponding representation in X , and synthesize an airfoil design. More details

on this embedding can be found in [8]. By incorporating this design embedding, we reduce the problem of exploring the

high-dimensional design space X to exploring a corresponding low-dimensional space F .

2http://m-selig.ae.illinois.edu/ads/coord_database.html
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Fig. 14: Some of the initial designs used in the stemless glassware example.

To define a feasible domain, we set two simple constraints just for the purpose of demonstrating of our proposed method:

(1) the upper and lower curves should not intersect; and (2) the aspect ratio is lower than 0.4. Theses geometric constraints

allow easy feasibility checks, and enable us to visually verify the results of our method. To get the ground-truth label

(feasibility) of samples for computing F1 scores, we generate test samples from F , get their high-dimensional representations

in X and then check if the two constraints are satisfied using those high-dimensional representations.

We set the length scale of the Gaussian kernel as l = 0.2, and the margin ε = 0.7. The F1 scores have similar character-

istics to previous examples (Fig. 12). The ε-margin sampling method achieves an F1 score above 0.9, which is much higher

than the other two methods. As shown in Fig. 13, started with a few initial samples in a smaller region in F , we uncovered

two larger feasible regions which are very close to the ground-truth feasible domains.

6.2 Novelty Discovery

We use two other real-world design examples to show how our proposed method discovers novel designs. Similar to

the airfoil example, we represent each design with 100 Cartesian coordinates from their 2D outlines, and use the inverse

mapping g : F ∈ R2→ X ∈ R200 generated by PCA to synthesize samples.

Different from previous examples, we use human judgment as the feasibility criterion. Although we can use some rules

to determine the feasibility (e.g., whether the outlines of a design are self-intersecting), a design’s actual feasibility may

depend on more complicated factors (e.g., functionality and aesthetics). Therefore, initially we start with limited number

and styles of real-world designs and do not have labels (i.e., valid or invalid) for synthesized designs outside the real-world

design domain until human assessment.

In the following two experiments, we select a sample in F , and synthesize a design xxx ∈ X , where xxx consists of the

Cartesian coordinates of that design’s outline [8]. Then we use an interface that shows a human oracle the picture of that

design, and then the oracle labels the design valid or invalid based on whether the designed shape is aesthetically pleasing.

This process forms the function h : F → {−1,1}. The specific choice of human oracle and interface is not central to the

contributions of this paper, serving only as an illustrative real-world example. In practice, we need to take human annotators’

mistakes and disagreements into consideration. For example, we can model human disagreement by adding a white noise

kernel to the Gaussian process kernel function. The white noise kernel is expressed as k(xxx,xxx′) = r if xxx = xxx′ and 0 otherwise,

where r is the noise level. In the future, we will look into ways of dealing with the problem of input-dependent noise level

(i.e., different degree of human mistakes and disagreements for different design instances) [38, 39].
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Fig. 15: The discovered feasible domain and valid designs. The top figure shows the initial and queried samples and the
estimated feasible domain in the embedding space F The solid dots represent valid designs, while the hollow dots represent
invalid ones. Started with the stemless glasses shown in Fig. 14, the proposed method discovered other types of revolved
objects such as vases and bowls.

Fig. 16: Some of the initial designs used in the bottle example.

6.2.1 Example: Stemless Glasses as Initial Samples.

In this example, we used only stemless glasses as initial designs (Fig. 14). We set the length scale of the Gaussian kernel

as l = 2.4, and the margin ε = 1.5. As shown in Fig. 15, on the given design manifold, our proposed method discovered a

feasible domain with other revolved objects such as vases and bowls. The new designs increasingly differ as they get farther

away from the initial design samples.

6.2.2 Example: Bottles as Initial Samples.

Similar to the previous example, we used only bottles as initial designs (Fig. 16). We set the length scale of the GP

classifier l = 1.3, and the margin ε = 0.7. As shown in Fig. 17, our proposed method discovered two feasible domains. In

the left feasible domain, there are designs that look like bowling balls and flasks; and in the right feasible domain, there

are designs that still looks like bottles, but with a larger aspect ratio. Between these two feasible domains, designs have

self-intersecting contours and thus are invalid.
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Fig. 17: The discovered feasible domains and valid designs. The solid dots represent valid designs, while the hollow dots
represent invalid ones. Started with the bottles shown in Fig. 16, the proposed method discovered two feasible domains,
between which there are designs with self-intersecting contours.

7 Conclusion

We proposed an active learning approach to solve the problem of identifying (possibly disconnected) feasible domains

in an unbounded design space. This method can be used for identifying the feasible design space with implicit constraints.

The method arranges exploitation and exploration stages in a way where it rapidly exploits a discovered decision boundary.

One limitation of this method is that we have to tune two hyper-parameters: we set the length scale l according to how

precisely one wishes to recover the exact boundary versus the domain expansion speed; and we set the margin ε based on

our (problem specific) emphasis on exploitation versus exploration. In the future, we will seek ways to adaptively select l

and ε given the query budget and the expected minimum accuracy.

By incorporating the concept of a design manifold, we applied the proposed method to real-world design problems

for learning feasible design domains and discovering novel designs. The method discovered designs that have different

appearance and functionality from the initial designs. The resulting novel designs depends on the given design manifold.

Since PCA is a linear embedding, there is less shape variation among the synthesized designs on the manifold obtained by

PCA. If the manifold were instead obtained by using non-linear embeddings, such as Kernel PCA, there is more allowable

shape variation, but this may come at the cost of finding fewer valid designs (on account of the difficult in fitting such non-

linear subspaces). Thus there is a trade-off between the chance of discovering novel designs and the risk of querying invalid

designs. A clear limitation of using a lower-dimensional embedding to resolve the exponential cost of high-dimensional

design space exploration is that the Design Manifold may not initially capture important sub-spaces. Part of our future work

to resolve this problem includes probabilistic models of not just the domain, but also of the manifold itself with the goal of

uncovering both the “right” manifold and design domain via active expansion.
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List of Figures

Fig. 1: The probability density function of the latent function f . The shaded areas represent the probability of a sample being

labeled as the opposite label with some degree of certainty (controlled by the margin ε). When the predicted label ŷ = 1, the

probability is P( f <−ε); and when ŷ =−1, the probability is P( f > ε).

Fig. 2: The value of pε under different ε. On the left plot, the gray area is the ground truth of the feasible domain; the thicker

line is the decision boundary obtained by the GP classifier; the thinner lines are isocontours of V ; and the circle points are

training samples. When ε = 0, pε = 0.5 for all the points on the decision boundary, thus in this case ε-margin sampling

is equivalent to uncertainty sampling. As ε increases, ε-margin sampling starts to take the variance into consideration, i.e.,

given two points (e.g., Points 1 and 3) on the decision boundary it will pick the one with a higher variance. Whereas for

points having the same variance (e.g., Points 2 and 3), it always prefers the one on the decision boundary.

Fig. 3: The flexible pool boundary. In each active learning iteration, we set the pool boundary by expanding the bounding

box of the current labeled samples by a constant α.

Fig. 4: Queries at the exploitation stage (left) and the exploration stage (right). The gray area is the ground truth of the

feasible domain. The solid line is the decision boundary obtained by the GP classifier; and the dashed line is the isocontour

of pε. At the exploitation stage, the center ccc is the last queried positive sample, which makes the next query stay along the

decision boundary. At the exploration stage, ccc is the centroid of the initial positive samples, which keeps the queries centered

around the existing (real-world) samples rather than biasing towards some direction.

Fig. 5: 3D visualization of high dimensional design space showing that design variables actually lie on a 2-dimensional

manifold [8, 9]. At a point away from the real-world stemless glass samples, the glass contours are self-intersecting; at

another point, the shape becomes a stem glass.

Fig. 6: Domain expansion process for the Branin example. The points are queried samples before the current iteration; and

the stars are current queries. The solid lines are decision boundaries obtained by the GP classifier; and the dashed lines are

the pool boundaries.

Fig. 7: F1 scores for the Branin example. For ε-margin sampling, during exploration stages, the exploited decision boundaries

do not change, so does the F1 score; while during rest of the time (exploitation stages), the F1 score shows a fluctuant increase

as the decision boundary changes.

Fig. 8: Queried samples for random sampling and uncertainty sampling within 210 iterations. The solid lines are decision

boundaries obtained by the GP classifier; and the dashed lines are the pool boundaries.

Fig. 9: Queried samples by ε-margin sampling with different GP kernel length scales. A large length scale accelerates

exploration but may miss small feasible domains.

Fig. 10: F1 scores for the Hosaki example. With a larger length scale, the F1 score increases faster, but may stop increasing

because it cannot discover small feasible domains.

Fig. 11: F1 scores for the two-sphere example.

Fig. 12: F1 scores for the airfoil example.

Fig. 13: The estimated feasible domains and corresponding valid airfoil designs. The top left figure shows the initial and
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queried samples and the estimated feasible domains in the embedding space F . The solid dots represent valid designs, while

the hollow dots represent invalid ones. The bottom figure shows the airfoil designs in the estimated feasible domain.

Fig. 14: Some of the initial designs used in the stemless glassware example.

Fig. 15: The discovered feasible domain and valid designs. The top figure shows the initial and queried samples and the

estimated feasible domain in the embedding space F The solid dots represent valid designs, while the hollow dots represent

invalid ones. Started with the stemless glasses shown in Fig. 14, the proposed method discovered other types of revolved

objects such as vases and bowls.

Fig. 16: Some of the initial designs used in the bottle example.

Fig. 17: The discovered feasible domains and valid designs. The solid dots represent valid designs, while the hollow dots

represent invalid ones. Started with the bottles shown in Fig. 16, the proposed method discovered two feasible domains,

between which there are designs with self-intersecting contours.
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