
Proceedings of the ASME 2018 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2018
August 26-29, 2018, Quebec City, Quebec, Canada

DETC2018-85339

SYNTHESIZING DESIGNS WITH INTER-PART DEPENDENCIES USING
HIERARCHICAL GENERATIVE ADVERSARIAL NETWORKS

Wei Chen∗
Dept. of Mechanical Engineering

University of Maryland
College Park, Maryland 20742
Email: wchen459@umd.edu

Ashwin Jeyaseelan
Dept. of Computer Science

University of Maryland
College Park, Maryland 20742
Email: ashwinjey@gmail.com

Mark Fuge
Dept. of Mechanical Engineering

University of Maryland
College Park, Maryland 20742

Email: fuge@umd.edu

ABSTRACT
Real-world designs usually consist of parts with hierarchi-

cal dependencies, i.e., the geometry of one component (a child
shape) is dependent on another (a parent shape). We propose a
method for synthesizing this type of design. It decomposes the
problem of synthesizing the whole design into synthesizing each
component separately but keeping the inter-component depen-
dencies satisfied. This method constructs a two-level generative
adversarial network to train two generative models for parent
and child shapes, respectively. We then use the trained gener-
ative models to synthesize or explore parent and child shapes
separately via a parent latent representation and infinite child
latent representations, each conditioned on a parent shape. We
evaluate and discuss the disentanglement and consistency of la-
tent representations obtained by this method. We show that
shapes change consistently along any direction in the latent
space. This property is desirable for design exploration over the
latent space.

INTRODUCTION
Representing a high-dimensional design space with a lower-

dimensional latent space makes it easier to explore, visualize, or
optimize complex designs. This often means finding a latent rep-
resentation, or a manifold, along which valid design geometries
morph [1, 2].

While this works well for single parts, designs usually have

∗Address all correspondence to this author.

hierarchical structures. For example, the size and position of a
(conduit, lightening, or alignment) hole in an airfoil depend on
the shape of the airfoil, thus there is a hierarchical relationship
between the airfoil and the hole in it. Here the airfoil is called the
parent shape, and the hole is called the child shape. In this case,
one may want to identify first the parent manifold that captures
major variation of parent shapes, and then the child manifold that
captures major variation of feasible child shapes conditioned on
any parent shape (Fig. 1). Because, for example, we may first op-
timize the airfoil shape on the airfoil manifold (parent) to obtain
the optimal lift and drag; and then given the optimal airfoil, we
may optimize the hole’s size and position on the hole manifold
(child) for other consideration.

However, finding individual part manifolds that both repre-
sent the design space well, while also satisfying part configura-
tion, is non-trivial. To learn the inter-part dependency, one can
define explicit constraints [3, 4] or learn implicit constraints via
adaptive sampling [2,5]. The former uses hard-coded constraints
and hence lacks flexibility; whereas the latter queries external
sources by human annotation, experiment, or simulation, thus
is expensive. In this paper, we solve the problem by identify-
ing different levels of manifolds, where the higher-level mani-
fold imposes implicit constraints on the lower-level manifolds.
Our main contribution is a deep generative model that synthe-
sizes designs in a hierarchical manner: it first synthesizes the
parent shape, and then the child shape conditioned on its par-
ent. The model simultaneously captures a parent manifold and
infinite child manifolds which are conditioned on parent shapes.

1 Copyright c© 2018 by ASME

Figure 1: MANIFOLDS OF PARENT AND CHILD SHAPES.

This results in two latent spaces allowing synthesis and searching
of parent and child shapes. Our method is fully data-driven and
requires no hard-coded rules, querying external sources, or com-
plex preprocessing [6], except for specifying parent and child
shapes in the dataset.

RELATED WORK
Our work produces generative models that synthesize de-

signs from latent representations. There are primarily two
streams of related research—design space dimensionality reduc-
tion and design synthesis—from the fields of engineering design
and computer graphics. We also review generative adversarial
nets (GAN) [7], which we use to build our model.

Design Space Dimensionality Reduction
While designs can be parametrized by various tech-

niques [8], the number of design variables (i.e., the dimension-
ality of a design space) increases with the geometric variability
of designs. In tasks like design optimization, to find better de-
signs we usually need a design space with higher variability, i.e.,
higher dimensionality. This demand brings up the problem of
exploring a high-dimensional design space. Based on the curse
of dimensionality [9], the cost of exploring the design space
grows exponentially with its dimensionality. Thus researchers
have studied approaches of reducing the design space dimen-
sionality. Normally, dimensionality reduction methods identify a
lower-dimensional latent space that captures most of the design
space’s variability. This can be grouped into linear and non-linear
methods.

Linear dimensionality reduction methods select a set of opti-
mal directions or basis functions where the variance of shape ge-
ometry or certain simulation output is maximized. Such methods
includes the Karhunen-Loève expansion (KLE) [10, 11], princi-
pal component analysis (PCA) [12], and the active subspaces ap-
proach [13].

In practice, it is more reasonable to assume that design vari-
ables lie on a non-linear manifold, rather than a hyperplane. Thus
researchers also apply non-linear methods to reduce the dimen-
sionality of design spaces. This non-linearity can be achieved
by 1) applying linear reduction techniques locally to construct
a non-linear global manifold [14, 15, 16, 17, 12]; 2) using ker-
nel methods with linear reduction techniques [1, 12]; 3) la-
tent variable models like Gaussian process latent variable model
(GPLVM) and generative topographic mapping (GTM) [18]; and
4) neural networks based approaches such as self-organizing
maps [19] and autoencoders [20, 1, 12, 21].

This work differs from these approaches in that we aim
at identifying two-level latent spaces with the lower-level en-
codes inter-part dependencies, rather than learning only one la-
tent space for the complete design.

Data-Driven Design Synthesis
Design synthesis methods can be divided into two cate-

gories: rule-based and data-driven design synthesis. The former
(e.g., grammars-based design synthesis [22, 4, 3]) requires label-
ing of the reference points or surfaces and defining rule sets, so
that new designs are synthesized according to this hard-coded
prior knowledge; while the latter learns rules/constraints from a
database and generates plausible new designs with similar struc-
ture/function to exemplars in the database.

Usually dimensionality reduction techniques allow inverse
transformations from the latent space back to the design space,
thus can synthesize new designs from latent variables [11, 1, 12,
21]. For example, under the PCA model, the latent variables de-
fine a linear combination of principal components to synthesize
a new design [11]; for local manifold based approaches, a new
design can be synthesized via interpolation between neighbor-
ing points on the local manifold [17]; and under the autoencoder
model, the trained decoder maps any given point in the latent
space to a new design [20, 21].

Methods for synthesizing 3D models are frequently stud-
ied by the field of computer graphics. Generally, researchers
have employed generative models such as kernel density esti-
mation [23], Boltzmann machines [24], variational autoencoders
(VAEs) [25], and generative adversarial nets (GANs) [26, 27] to
learn the distribution of samples in the design space, and synthe-
size new designs by drawing samples from the learned distribu-
tion. Discriminative models like deep residual networks [28] are
also used to generate 3D shapes.

There are also methods that synthesize new shapes by as-

2 Copyright c© 2018 by ASME

sembling or reorganizing parts from an existing shape database,
while preserving the desired structures [29, 6, 30, 31, 32]. The
shapes are usually parameterized by high-level abstract represen-
tations, such as hand-crafted feature vectors [6] or shape gram-
mars [30]. While these methods edit shapes at a high-level, they
do not control the local geometry of each synthesized compo-
nent.

Previously the inter-part dependencies of shapes have been
modeled by grammar induction [30], kernel density estima-
tion [33], probabilistic graph models [29,6,24], and recursive au-
toencoders [27]. Those methods handle part relations and design
synthesis separately. In contrast, our method encodes part rela-
tions through the model architecture, so that it simultaneously
learns the inter-part dependencies and single part geometry vari-
ation. The model can also be used for inferring the generative
distribution of child shapes conditioned on any parent shape.

Generative Adversarial Networks
Generative adversarial nets [7] model a game between a gen-

erative model (generator) and a discriminative model (discrimi-
nator). The generative model maps an arbitrary noise distribution
to the data distribution (i.e., the distribution of designs in our
scenario), thus can generate new data; while the discriminative
model tries to perform classification, i.e., to distinguish between
real and generated data (Fig. 2). The generator G and the dis-
criminator D are usually built with deep neural networks. As D
improves its classification ability, G also improves its ability to
generate data that fools D. Thus the objective of GAN is

min
G

max
D

V (D,G) =Exxx∼Pdata [logD(xxx)]+

Ezzz∼Pzzz [log(1−D(G(zzz)))]
(1)

where xxx is sampled from the data distribution Pdata, zzz is sampled
from the noise distribution Pzzz, and G(zzz) is the generator distri-
bution. A trained generator thus can map from the predefined
noise distribution to the distribution of designs. The noise input
zzz is considered as the latent representation in the dimensionality
reduction scenario, since zzz captures the variability of the data.

One advantage GANs hold over Variational Auto-encoders
(VAEs) [34] is that GANs tend to generate more realistic
data [35]. But a disadvantage of vanilla GANs is that it can-
not learn an interpretable latent representation. Built upon the
vanilla GANs, the InfoGAN [36] aims at regularizing the latent
representation of the data space by maximizing a lower bound
of the mutual information between a set of latent codes ccc and
the generated data. The generator is provided with both zzz and ccc.
Thus the generator distribution PG = G(zzz,ccc) is conditioned on ccc.
The mutual information lower bound LI is

LI(G,Q) = Exxx∼PG [Eccc′∼P(ccc|xxx)[logQ(ccc′|xxx)]]+H(ccc) (2)

z

Figure 2: ARCHITECTURES OF GAN AND INFOGAN.

where H(ccc) is the entropy of the latent codes, and Q is the auxil-
iary distribution for approximating P(ccc|xxx). We direct interested
readers to [36] for the derivation of LI . The InfoGAN objective
combines LI with the standard GAN objective:

min
G,Q

max
D

VIn f oGAN(D,G,Q) =V (D,G)−λLI(G,Q) (3)

where λ is a weight parameter.
In practice, H(ccc) is treated as constant if the distribution of ccc

is fixed. The auxiliary distribution Q is simply approximated by
sharing all the convolutional layers with D and adding an extra
fully connected layer to D to predict the conditional distribution
Q(ccc|xxx). Thus as shown in Fig. 2, InfoGAN’s generator is condi-
tioned on ccc, and the discriminator tries to predict both the source
of the data and the latent codes ccc 1.

In our design synthesis scenario, the latent codes ccc can rep-
resent any continuous or discrete factor that controls the geome-
try of the design, e.g., the upper/lower surface protrusion of the
airfoil.

METHOD
In this section we introduce our proposed deep neural net-

work architecture and its training details.

Problem Formulation
This paper deals with a design synthesis problem, where we

have a database of geometric designs with hierarchical struc-
tures. A parent shape is denoted as xxxp ∈ Xp, where Xp is the
design space for the parent shapes. Similarly, a child shape is
denoted as xxxc ∈ Xc, where Xc is the design space for the child
shapes. We want to 1) learn the distributions of the parent shapes

1Here we use the discriminator D to denote both Q and D, since they share
neural network parameters.

3 Copyright c© 2018 by ASME

zp

cp

Figure 3: ARCHITECTURE OF THE HIERARCHICAL GAN.

and the child shapes (given any parent shape) separately from
the database; 2) use two low-dimensional latent spaces Cp and
Cc to represent the design spaces Xp and Xc, respectively. The
ability to learn separate distributions or representations of par-
ent and child shapes is useful for decomposing a design space
exploration problem (e.g., design optimization).

Desired latent spaces satisfy the following requirements:

1. Any child latent space is conditioned on a parent shape.
2. Major variability of designs in the database is captured by

those latent spaces.
3. Each dimension of a latent space corresponds to a semantic

feature of designs.
4. The design changes consistently as it moves along any di-

rection of the latent space.

The last two requirements benefit design space exploration as it
is easier to search for desired designs in a latent space with these
properties.

To meet the first requirement we construct a two-level gen-
erative model—the first level generates parent shapes from Cp,
and the second level generates child shapes from Cc, conditioned
on the output of the first level. We ensure the rest of the re-
quirements by adapting InfoGAN’s architecture and objective,
i.e., conditioning the generator on latent codes and maximizing a
lower bound of the mutual information between the synthesized
designs and their latent representations. This is known to 1) make
latent codes target salient features of the designs, and 2) disentan-
gle the latent representation of the data space [36]. We introduce
the details of our model’s architecture in the following section.

Model Architecture
To learn separate distributions/representations of parent and

child shapes, we use a generative adversarial net with two gener-
ators—a parent generator Gp and a child generator Gc. We call
this network the Hierarchical Generative Adversarial Networks
(HGAN). Its architecture is shown in Fig. 3. Instead of using
only noise as input to the generators, we add latent codes cccp and
cccc as extra inputs. These latent codes define latent representa-
tions of designs. With this architecture, Gp learns the conditional

parent shape distribution Pp = P(xxxp|cccp), and Gc learns the con-
ditional child shape distribution Pc = P(xxxc|xxxp,cccc), where zzzp and
zzzc are random noise input of Gp and Gc, respectively. The output
distributions PGp = Gp(cccp,zzzp) and PGc = Gc(cccc,zzzc, x̂xxp) represent
synthesized parent and child shape distributions.

The discriminator D performs two tasks: 1) to classify
whether the input complete design [xxxp,xxxc] is from the database or
generated by generators; and 2) to predict the latent codes of the
parent and child shapes, i.e., to estimate the conditional distri-
butions P(cccp|xxxp) and P(cccc|xxxp,xxxc). A properly trained D should
distinguish designs with unrealistic or mismatched parent/child
shapes, and accurately predict the latent codes used to synthesize
designs.

The objective of HGAN is expressed as

min
Gp,Gc,Qp,Qc

max
D

VHGAN(D,Gp,Gc,Qp,Qc)

=V (D,Gp,Gc)−λLI(Gp,Gc,Qp,Qc)
(4)

where the first term denotes the standard GAN objective:

V (D,Gp,Gc) = Exxxp,xxxc∼Pdata [logD(xxxp,xxxc)]+

Ezzz∼Pzzz [log(1−D(Gp(zzzp,cccp),Gc(zzzc,cccc,Gp(zzzp,cccp))))]
(5)

and the second term is the lower bound of the mutual information
between the latent codes and the synthesized designs:

LI(Gp,Gc,Qp,Qc) = Exxxp∼PGp
[Eccc′p∼P(cccp|xxxp)[logQp(ccc′p|xxxp)]]

+Exxxp∼PGp ,xxxc∼PGc
[Eccc′c∼P(cccc|xxxp,xxxc)[logQc(ccc′c|xxxp,xxxc)]]

+H(cccp)+H(cccc)

(6)

In practice, similar to the InfoGAN architecture [36], Qp and
Qc share all the convolutional layers with D, and output param-
eters for Qp(cccp|xxxp) and Qc(cccc|xxxp,xxxc) through a fully connected
layer.

In the field of image processing, GANs with similar struc-
ture have been proposed. To the best of our knowledge, the most
similar model is the Style and Structure Generative Adversar-
ial Network (S2-GAN) [37]. It also uses a two-level architec-
ture—the Structure-GAN learns the surface normal map of an
image, and the Style-GAN is conditioned on this surface normal
map and generates a natural image. The S2-GAN has two dis-
criminators. The first is trained to evaluate surface normal maps,
and the second is to evaluate natural images. In comparison, our
HGAN uses just one discriminator to evaluate the complete de-
sign. We compared HGAN with this S2-GAN based architecture
(we call it Naı̈ve GAN in the rest of the paper because the S2-
GAN’s cost function is built for image synthesis and is not what
we need) in the next section.

4 Copyright c© 2018 by ASME

EXPERIMENTS
We train HGAN on two datasets, and evaluate the trained

generative models through quantitative measures.

Experimental Setup
Dataset. We denote the two datasets as A+H (airfoils

with holes) and S+E (superformulas [38] with ellipses). Both
datasets have over 90,000 samples. Examples of the two datasets
are shown in Fig. 4.

The airfoil shapes are from the UIUC airfoil coordinates
database2, which provides the Cartesian coordinates for nearly
1,600 airfoils. Each airfoil is represented with 100 Cartesian co-
ordinates, resulting in a 100× 2 matrix. We use these airfoils
as parent shapes. For each airfoil we add a hole (e.g., a conduit
hole) as its child shape. We add the holes by generating circles
with random centers and sizes, and ruling out the ones not inside
the airfoils. Each hole is also represented with 100 Cartesian co-
ordinates. Hence each sample in this A+H dataset is a 200× 2
matrix.

Though targeted for real-world applications, the airfoils may
not be a perfect experimental dataset to visualize the latent
space, because the ground truth intrinsic dimension3 of the airfoil
dataset is unknown. Thus we create another dataset using super-
formulas and ellipses, the intrinsic dimensions of which are con-
trollable. The superformula is a generalization of the ellipse [38].
We generate superformulas as parent shapes using the following
equations:

n1 = 10s1

n2 = n3 = 10(s1 + s2)

r(θ) = (|cosθ|n2 + |sinθ|n3)
− 1

n1

(x,y) = (r(θ)cosθ,r(θ)sinθ)

(7)

where s1,s2 ∈ [0,1], and (x,y) is a Cartesian coordinate. For
each superformula, we sample 100 evenly spaced θ from 0 to
2π, and get 100 grid-point Cartesian coordinates. Equations (7)
show that we can control the deformation of the superformula
shape with s1 and s2. Thus the ground truth intrinsic dimen-
sion of our superformula dataset is two. We use ellipses as child
shapes. We generate ellipses with random semi-major axis and
semi-minor axis lengths and fixed centers (at the centers of the el-
lipses). Hence the intrinsic dimension for the ellipses is also two.
We rule out the ellipses that are not inside the superformulas. We
set the intrinsic dimensions of both superformulas and ellipses to
two because we want a two-dimensional latent space which is

2http://m-selig.ae.illinois.edu/ads/coord_database.
html

3The intrinsic dimension is the minimum number of variables required to rep-
resent the data.

easy to visualize, evaluate, and verify. As with the A+H dataset,
every superformula/ellipse is represented with 100 Cartesian co-
ordinates, thus each sample in the S+E dataset is also a 200× 2
matrix.

Network Details. Figure 5 shows the details of the dis-
criminator. The input is a 200× 2 matrix, containing the parent
shape and the child shape, each of which is expressed with 100
2D Cartesian coordinates. The input goes through four down-
sampling blocks, each performs a 1D convolution, a batch nor-
malization, and a LeakyReLU activation. The length of each 1D
convolution window is 5. The last downsampling block is fol-
lowed by fully connected layers, predicting the mean and log
standard deviation of latent codes, and the source of the input.

The generators’ architectures, as shown in Fig. 6, basically
mirror that of the discriminator. The parent generator gets two in-
puts: the parent latent codes cccp of size 2 and the input noise zzzp of
size 100. The inputs are then concatenated, fed into a fully con-
nected layer, and reshaped to a 3D matrix. Then it goes through
four upsampling blocks. The difference between the downsam-
pling block and the upsampling block is that we use deconvolu-
tion (also called transposed convolution) [39] in the upsampling
block, rather than convolution in the downsampling block. The
final layer is a deconvolutional layer with hyperbolic tangent ac-
tivation, and outputs the parent shape x̂xxp, a 2×100×1 matrix. It
is then flattened and fed into the child generator. The child gen-
erator has the same architecture as the parent generator, except
that there are three inputs—the flattened parent shape xxxp of size
200, the child latent codes cccc of size 2 and the input noise zzzc of
size 100. The final output is the child shape x̂xxc.

We compared HGAN with a naı̈ve solution where we built
two independent GANs—one for generating parent shapes, and
another for generating child shapes conditioned on parent shapes.
So there are two generators and two discriminators in this naı̈ve
solution. One discriminator for predicting the source of parent
shapes and parent latent codes, and the other for predicting the
source of child shapes and child latent codes. We used the same
architecture for both generators as in HGAN.

Training Details. At training, we sample cccp and cccc from
uniform distribution U(0,1), and zzzp and zzzc from normal distri-
bution N (0,0.25). The hyperparameter λ in Eqn. (4) was set to 1
in all experiments. The network was optimized using Adam [40]
with the momentum terms β1 = 0.5 and β2 = 0.999. The learning
rates of the discriminator and two generators were set to 0.00005
and 0.0002, respectively. The total number of training steps was
100,000. The batch size was 100. The training procedure is sum-
marized in Algorithm 1.

To avoid the problem that the generative distribution and
the true data distribution does not have overlapping support, we
added normally distributed instance noise to discriminator in-

5 Copyright c© 2018 by ASME

http://m-selig.ae.illinois.edu/ads/coord_database.html
http://m-selig.ae.illinois.edu/ads/coord_database.html

Figure 4: RANDOMLY SELECTED TRAINING DATA. LEFT: SUPERFORMULAS WITH ELLIPSES; RIGHT: AIRFOILS WITH
HOLES.

2

200
...

100x1x64

...

50x1x128

...

25x1x256

...

13x1x512

1024

Real/Fake

128

128

log σ (cp)

µ (cp)

log σ (cc)

µ (cc)

[xp , xc]

Fully

Connected

Convolution Convolution

ConvolutionConvolution Fully

Connected

Figure 5: ARCHITECTURE OF THE DISCRIMINATOR.

puts [41]. Its standard deviation decreases as the number of train-
ing steps increases:

σ = e−t/10000

We used Keras [42] with TensorFlow [43] backend to build
the networks. We trained our networks on a Nvidia Titan X GPU.
For each experiment, the training process took around 6.5 hours,
and the testing took less than 10 seconds.

Results and Discussion
We evaluated the performance of our trained generative

models using both visual inspection and quantitative measures.
The quantitative results are shown in Table 1.

Visual Inspection. The captured latent spaces for both
examples are shown in Fig. 7 and Fig. 8. To test the general-
ization ability of the child generator, we use parent shapes from
the test set as inputs to the child generator. Thus each child la-

6 Copyright c© 2018 by ASME

100

2
...

7x2x512

...

14x2x256

...

28x2x128

...

56x2x64

...

112x2x32

2

100

xp

cp

zp

100

2
...

7x2x512

...

14x2x256

...

28x2x128

...

56x2x64

...

112x2x32

2

100

xc

cc

zc

200

Flatten

Fully

Connected

Deconv Deconv Deconv Deconv Deconv

Fully

Connected

Deconv Deconv Deconv Deconv Deconv

Figure 6: ARCHITECTURE OF THE GENERATORS. TOP: PARENT GENERATOR; BOTTOM: CHILD GENERATOR.

tent space shown in the plots is conditioned on a random test
sample (plotted with dashed lines). The results show that the
child latent spaces adjust themselves according to their parent
shapes, so that the sizes/positions of child shapes fit in their par-
ent shapes. This indicates that the child generator figures out
the implicit constraints that holes/ellipses should be inside air-
foils/superformulas. The shapes show a consistent change along
any direction of the latent spaces. In contrast, latent spaces be-
came entangled and inconsistent (Fig. 9) when we removed the
mutual information lower bound LI in Eqn. (4).

Likelihood under Generator Distribution. We mea-
sure how good our generator approximates the real data distribu-
tion by estimating the likelihood of test samples under our trained
generator distribution. Specifically, since the exact likelihood of
our generative models is not tractable, we compute the mean
log-likelihood (MLL) by fitting a Gaussian kernel density esti-
mator (KDE) to 2,000 synthesized designs, and computing the
mean probability density of test data under the estimated distri-
bution [44]. The bandwidth of the Gaussian kernel was obtained

by cross-validated grid search.
Results show that the MLL of the naı̈ve solution is much

lower than HGAN. This means that HGAN, which contains only
one discriminator, synthesizes designs that better resemble those
in the database than the naı̈ve solution which uses two discrimi-
nators. The maximization of LI did not affect the MLL much.

Diversity of Generated Designs. A common problem
in GANs’ training is mode collapse, during which the generator
only generates a few types of designs to fool the discriminator in-
stead of properly learning the complete data distribution. There-
fore it is important to measure the diversity of the synthesized
designs. We use Structural Similarity Index (SSIM) [45] to mea-
sure this diversity. The SSIM is expressed as

SSIM(xxx,yyy) =
(2µxµy +C1)+(2σxy +C2)

(µ2
x +µ2

y +C1)(σ2
x +σ2

y +C2)
(8)

where x and y are two designs, µx, σx, and σxy are the mean of x,
the variance of x, and the covariance of x and y, respectively. The

7 Copyright c© 2018 by ASME

Figure 7: LEFT: AIRFOILS IN THE PARENT LATENT SPACE; RIGHT: HOLES IN THE LATENT SPACES CONDITIONED ON
TWO RANDOM TEST SAMPLES OF AIRFOIL.

Figure 8: LEFT: SUPERFORMULA SHAPES IN THE PARENT LATENT SPACE; RIGHT: ELLIPSES IN THE LATENT SPACES
CONDITIONED ON TWO RANDOM TEST SAMPLES OF SUPERFORMULA.

8 Copyright c© 2018 by ASME

Table 1: QUANTITATIVE EVALUATION OF SYNTHESIZED DESIGNS.

Method Design MLL R-SSIM LSC (Parent) LSC (Child)

A+H

Naı̈ve 438.1±272.9 111...000111999±±±000...000000555 0.880±0.011 0.995±0.000

HGAN w/o maxLI 111222555666...444±±±111...666 0.993±0.007 0.098±0.008 0.071±0.005

HGAN 1240.1±1.6 1.006±0.005 000...999777666±±±000...000000111 000...999999888±±±000...000000000

S+E

Naı̈ve −1.7±62.2 1.046±0.008 000...999555111±±±000...000000666 0.993±0.000

HGAN w/o maxLI 811.3±27.9 111...000555888±±±000...000000555 0.061±0.007 0.065±0.004

HGAN 999444888...000±±±222666...999 1.006±0.006 0.935±0.006 000...999999777±±±000...000000000

Algorithm 1 Train HGAN.

1: . T : number of training steps
2: . m: batch size
3: . X : training set
4: procedure TRAIN(T , m)
5: for t = 1 : T do
6: Sample {xxx1, ...,xxxm} from X , where xxxi = [xxxi

p,xxx
i
c], i =

1, ...,m
7: Sample {ccc1

p, ...,ccc
m
p } from a uniform distribution

8: Sample {zzz1
p, ...,zzz

m
p } from a normal distribution

9: Sample {ccc1
c , ...,ccc

m
c } from a uniform distribution

10: Sample {zzz1
c , ...,zzz

m
c } from a normal distribution

11: . Based on Eqn. (4-6):
12: Update D, fixing Gp and Gc
13: Update Gp, fixing D and Gc
14: Update Gc, fixing D and Gp
15: end for
16: end procedure

Figure 9: LATENT SPACES LEARNED WITHOUT MAXI-
MIZING THE MUTUAL INFORMATION LOWER BOUND.

constants C1 = (k1L)2, and C2 = (k2L)2 are used to prevent the
error of division by a small integer close to zero from happening.
By default, k1 = 0.01, k2 = 0.03, and L is the range of coordi-
nates. The SSIM score ranges from 0.0 (no similarity) to 1.0
(high similarity). Different from the Euclidean distance which
focuses on local details, SSIM compares the overall structure of
designs, and is more invariant under translation and rotation.

Here we use relative SSIM (R-SSIM) to measure how well
the generated designs cover the diversity of the training samples:

R-SSIM =
ExxxD,xxx′D∼Pdata

[SSIM(xxxD,xxx′D)]

ExxxG,xxx′G∼PG
[SSIM(xxxG,xxx′G)]

(9)

Results show that the R-SSIM scores under all methods are
around 1, which means the diversity of generated designs is at
the same level as the database and mode collapse did not happen.

Latent Space Consistency. A desirable latent space
has two properties: 1) disentanglement: each latent variable is
related to only one factor; and 2) consistency: shapes change
consistently along any direction in the latent space. Note that
this consistency is evaluated along one direction at a time,
since scales along different directions may vary. To the best
of our knowledge, existing quantitative measurements for the
first property—latent space disentanglement—are supervised,
i.e., the ground-truth independent factors causing shape defor-
mation have to be provided [46, 47, 48]. The second property
is important for design space exploration. When searching for
designs along a direction in the latent space, the algorithm or hu-
man usually prefer the shape to change consistently, such that the
objective function over the latent space is less complicated and
has less local optima.

We propose Latent Space Consistency (LSC) as a quantita-
tive measure of how consistently shapes change along any di-
rection in the latent space. Since change from one shape to an-

9 Copyright c© 2018 by ASME

other can be measured by their dissimilarity, distances between
samples along a certain direction in the latent space should be
consistent with the dissimilarity between those samples. We use
Pearson correlation coefficient to measure this consistency. De-
tails for computing LSC is shown in Algorithm 2. The choice of
the dissimilarity function d is not central to the overall method.
In our experiments, we simply use the Euclidean distance to mea-
sure the dissimilarity of designs. The LSC obtained without max-
imizing the mutual information lower bound LI in Eqn. (4) is also
shown in Table 1.

Algorithm 2 Evaluate Latent Space Consistency.

1: procedure LATENTCONSISTENCY(G, m, n, d)
2: . G: the mapping from a latent space to a design space
3: . m: the number of lines to be evaluated
4: . n: the number of points sampled on each line
5: . d: a dissimilarity function
6: . C : the latent space
7: . X : the design space
8: sum = 0
9: for i = 1 : m do

10: Sample a line L parallel to any basis of C
11: Sample n equally-spaced and ordered points
{ccc1,ccc2, ...,cccn} along L

12: {xxx1,xxx2, ...,xxxn}= {G(ccc1),G(ccc2), ...,G(cccn)}
13: DC = {‖ccc2− ccc1‖,‖ccc3− ccc2‖, ...,‖cccn− cccn−1‖}
14: DX = {d(xxx2,xxx1),d(xxx3,xxx2), ...,d(xxxn,xxxn−1)}
15: Compute Pearson correlation coefficient:

ρ =
cov(DC ,DX)

σ(DC)σ(DX)

16: sum = sum+ρ

17: end for
18: Return sum/m
19: end procedure

Results show that the LSC is significantly lower when we do
not maximize LI . This is also verified by comparing Fig. 8 and
Fig. 9.

CONCLUSION
We introduced a GAN-based generative model for synthe-

sizing designs with hierarchical structures. It decomposes the
synthesis into two stages: first synthesizes the parent shape from
a learned latent representation; and then synthesizes the child
shape from another learned latent representation conditioned on
the parent shape. This model is build for problems where design
space exploration over the latent space has to be staged since

the optimal solution of one component depends on the geometry
of another. We will use this model to solve design optimization
problems in our future work.

An advantage of neural networks based generative models
(e.g., GANs and VAEs), compared to other dimensionality re-
duction models (e.g., PCA and GPLVM), is that one can define
or regularize latent distributions. Our model adapts InfoGAN’s
mutual information objective to derive a consistent latent space,
where the change of shapes is consistent along any direction of
the latent space. This property is desirable in design space ex-
ploration, as the objective function over the latent space is less
complicated and has less local optima.

One problem of our method is that some synthesized shapes
have low smoothness. This can be solved by either adding a post-
processing step to fit Bezier or B-spline curves to the synthesized
grid-point coordinates; or a pre-processing step to convert the
grid-point coordinates in the training data to spline representa-
tions (i.e., control point coordinates of spline curves), so that the
generators directly synthesize spline representations.

Further testing on synthesizing designs with higher dimen-
sions or more complex inter-part dependencies is also required.
For example, the parent-child relationship can possibly be one-
to-many (increased complexity in breadth), and the hierarchy
may have three or more levels (increased complexity in depth).
Techniques may need to be developed to reduce the high compu-
tational cost and avoid possible convergence issues.

ACKNOWLEDGMENT
This work was supported by The Defense Advanced Re-

search Projects Agency (DARPA-16-63-YFA-FP-059) via the
Young Faculty Award (YFA) Program. The views, opinions,
and/or findings contained in this article are those of the author
and should not be interpreted as representing the official views
or policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the Department of Defense.

REFERENCES
[1] Chen, W., Fuge, M., and Chazan, N., 2017. “Design man-

ifolds capture the intrinsic complexity and dimension of
design spaces”. Journal of Mechanical Design, 139(5),
pp. 051102–051102–10.

[2] Chen, W., and Fuge, M., 2017. “Beyond the known:
Detecting novel feasible domains over an unbounded de-
sign space”. Journal of Mechanical Design, 139(11),
pp. 111405–111405–10.

[3] Königseder, C., and Shea, K., 2016. “Visualizing relations
between grammar rules, objectives, and search space explo-
ration in grammar-based computational design synthesis”.
Journal of Mechanical Design, 138(10), p. 101101.

10 Copyright c© 2018 by ASME

[4] Königseder, C., Stanković, T., and Shea, K., 2016. “Im-
proving design grammar development and application
through network-based analysis of transition graphs”. De-
sign Science, 2.

[5] Chen, W., and Fuge, M., 2017. “Active expansion sam-
pling for learning feasible domains in an unbounded in-
put space”. Structural and Multidisciplinary Optimization,
pp. 1–21.

[6] Kalogerakis, E., Chaudhuri, S., Koller, D., and Koltun, V.,
2012. “A probabilistic model for component-based shape
synthesis”. ACM Transactions on Graphics (TOG), 31(4),
p. 55.

[7] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.,
2014. “Generative adversarial nets”. In Advances in neural
information processing systems, pp. 2672–2680.

[8] Samareh, J. A., 2001. “Survey of shape parameterization
techniques for high-fidelity multidisciplinary shape opti-
mization”. AIAA journal, 39(5), pp. 877–884.

[9] Bellman, R., 1957. Dynamic programming. Princeton Uni-
versity Press, Princeton, NY.

[10] Diez, M., Campana, E. F., and Stern, F., 2015. “Design-
space dimensionality reduction in shape optimization by
karhunen–loève expansion”. Computer Methods in Applied
Mechanics and Engineering, 283, pp. 1525–1544.

[11] Chen, X., Diez, M., Kandasamy, M., Zhang, Z., Campana,
E. F., and Stern, F., 2015. “High-fidelity global optimiza-
tion of shape design by dimensionality reduction, meta-
models and deterministic particle swarm”. Engineering
Optimization, 47(4), pp. 473–494.

[12] DAgostino, D., Serani, A., Campana, E. F., and Diez, M.,
2017. “Nonlinear methods for design-space dimensionality
reduction in shape optimization”. In International Work-
shop on Machine Learning, Optimization, and Big Data,
Springer, pp. 121–132.

[13] Tezzele, M., Salmoiraghi, F., Mola, A., and Rozza, G.,
2017. “Dimension reduction in heterogeneous parametric
spaces with application to naval engineering shape design
problems”. arXiv preprint arXiv:1709.03298.

[14] Raghavan, B., Breitkopf, P., Tourbier, Y., and Villon, P.,
2013. “Towards a space reduction approach for efficient
structural shape optimization”. Structural and Multidisci-
plinary Optimization, 48(5), pp. 987–1000.

[15] Raghavan, B., Xia, L., Breitkopf, P., Rassineux, A., and
Villon, P., 2013. “Towards simultaneous reduction of both
input and output spaces for interactive simulation-based
structural design”. Computer Methods in Applied Mechan-
ics and Engineering, 265, pp. 174–185.

[16] Raghavan, B., Le Quilliec, G., Breitkopf, P., Rassineux,
A., Roelandt, J.-M., and Villon, P., 2014. “Numerical as-
sessment of springback for the deep drawing process by
level set interpolation using shape manifolds”. Interna-

tional Journal of Material Forming, 7(4), pp. 487–501.
[17] Le Quilliec, G., Raghavan, B., and Breitkopf, P., 2015. “A

manifold learning-based reduced order model for spring-
back shape characterization and optimization in sheet metal
forming”. Computer Methods in Applied Mechanics and
Engineering, 285, pp. 621–638.

[18] Viswanath, A., J. Forrester, A., and Keane, A., 2011. “Di-
mension reduction for aerodynamic design optimization”.
AIAA journal, 49(6), pp. 1256–1266.

[19] Qiu, H., Xu, Y., Gao, L., Li, X., and Chi, L., 2016. “Multi-
stage design space reduction and metamodeling optimiza-
tion method based on self-organizing maps and fuzzy clus-
tering”. Expert Systems with Applications, 46, pp. 180–
195.

[20] Burnap, A., Liu, Y., Pan, Y., Lee, H., Gonzalez, R., and
Papalambros, P. Y., 2016. “Estimating and exploring the
product form design space using deep generative models”.
In ASME 2016 International Design Engineering Techni-
cal Conferences and Computers and Information in Engi-
neering Conference, American Society of Mechanical En-
gineers, pp. V02AT03A013–V02AT03A013.

[21] D’Agostino, D., Serani, A., Campana, E. F., and Diez,
M., 2018. “Deep autoencoder for off-line design-space di-
mensionality reduction in shape optimization”. In 2018
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conference, p. 1648.

[22] Gmeiner, T., and Shea, K., 2013. “A spatial grammar
for the computational design synthesis of vise jaws”. In
ASME 2013 International Design Engineering Technical
Conferences and Computers and Information in Engineer-
ing Conference, American Society of Mechanical Engi-
neers, pp. V03AT03A006–V03AT03A006.

[23] Talton, J. O., Gibson, D., Yang, L., Hanrahan, P., and
Koltun, V., 2009. “Exploratory modeling with collabora-
tive design spaces”. ACM Transactions on Graphics-TOG,
28(5), p. 167.

[24] Huang, H., Kalogerakis, E., and Marlin, B., 2015. “Analy-
sis and synthesis of 3d shape families via deep-learned gen-
erative models of surfaces”. In Computer Graphics Forum,
Vol. 34, Wiley Online Library, pp. 25–38.

[25] Nash, C., and Williams, C. K., 2017. “The shape variational
autoencoder: A deep generative model of part-segmented
3d objects”. In Computer Graphics Forum, Vol. 36, Wiley
Online Library, pp. 1–12.

[26] Wu, J., Zhang, C., Xue, T., Freeman, B., and Tenenbaum,
J., 2016. “Learning a probabilistic latent space of object
shapes via 3d generative-adversarial modeling”. In Ad-
vances in Neural Information Processing Systems, pp. 82–
90.

[27] Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H., and
Guibas, L., 2017. “Grass: Generative recursive autoen-
coders for shape structures”. ACM Transactions on Graph-

11 Copyright c© 2018 by ASME

ics (TOG), 36(4), p. 52.
[28] Sinha, A., Unmesh, A., Huang, Q., and Ramani, K., 2017.

“Surfnet: Generating 3d shape surfaces using deep resid-
ual networks”. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 6040–6049.

[29] Chaudhuri, S., Kalogerakis, E., Guibas, L., and Koltun, V.,
2011. “Probabilistic reasoning for assembly-based 3d mod-
eling”. In ACM Transactions on Graphics (TOG), Vol. 30,
ACM, p. 35.

[30] Talton, J., Yang, L., Kumar, R., Lim, M., Goodman, N., and
Měch, R., 2012. “Learning design patterns with bayesian
grammar induction”. In Proceedings of the 25th annual
ACM symposium on User interface software and technol-
ogy, ACM, pp. 63–74.

[31] Xu, K., Zhang, H., Cohen-Or, D., and Chen, B., 2012. “Fit
and diverse: set evolution for inspiring 3d shape galleries”.
ACM Transactions on Graphics (TOG), 31(4), p. 57.

[32] Zheng, Y., Cohen-Or, D., and Mitra, N. J., 2013. “Smart
variations: Functional substructures for part compatibil-
ity”. Computer Graphics Forum (Eurographics), 32(2pt2),
pp. 195–204.

[33] Fish, N., Averkiou, M., Van Kaick, O., Sorkine-Hornung,
O., Cohen-Or, D., and Mitra, N. J., 2014. “Meta-
representation of shape families”. ACM Transactions on
Graphics (TOG), 33(4), p. 34.

[34] Kingma, D. P., and Welling, M., 2013. “Auto-encoding
variational bayes”. arXiv preprint arXiv:1312.6114.

[35] Radford, A., Metz, L., and Chintala, S., 2015. “Un-
supervised representation learning with deep convolu-
tional generative adversarial networks”. arXiv preprint
arXiv:1511.06434.

[36] Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever,
I., and Abbeel, P., 2016. “Infogan: Interpretable representa-
tion learning by information maximizing generative adver-
sarial nets”. In Advances in Neural Information Processing
Systems, pp. 2172–2180.

[37] Wang, X., and Gupta, A., 2016. “Generative image model-
ing using style and structure adversarial networks”. In Eu-
ropean Conference on Computer Vision, Springer, pp. 318–
335.

[38] Gielis, J., 2003. “A generic geometric transformation that
unifies a wide range of natural and abstract shapes”. Amer-
ican journal of botany, 90(3), pp. 333–338.

[39] Zeiler, M. D., Krishnan, D., Taylor, G. W., and Fergus, R.,
2010. “Deconvolutional networks”. In Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference
on, IEEE, pp. 2528–2535.

[40] Kingma, D. P., and Ba, J., 2014. “Adam: A method for
stochastic optimization”. arXiv preprint arXiv:1412.6980.

[41] Sønderby, C. K., Caballero, J., Theis, L., Shi, W., and
Huszár, F., 2016. “Amortised map inference for image
super-resolution”. arXiv preprint arXiv:1610.04490.

[42] Chollet, F., et al., 2015. Keras. https://github.com/
keras-team/keras.

[43] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Leven-
berg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah,
C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Tal-
war, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas,
F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M.,
Yu, Y., and Zheng, X., 2015. TensorFlow: Large-scale ma-
chine learning on heterogeneous systems. Software avail-
able from tensorflow.org.

[44] Breuleux, O., Bengio, Y., and Vincent, P., 2011. “Quickly
generating representative samples from an rbm-derived
process”. Neural computation, 23(8), pp. 2058–2073.

[45] Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli,
E. P., 2004. “Image quality assessment: from error visi-
bility to structural similarity”. IEEE transactions on image
processing, 13(4), pp. 600–612.

[46] Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X.,
Botvinick, M., Mohamed, S., and Lerchner, A., 2016.
“beta-vae: Learning basic visual concepts with a con-
strained variational framework”.

[47] Kim, H., and Mnih, A., 2018. “Disentangling by factoris-
ing”. arXiv preprint arXiv:1802.05983.

[48] Chen, T. Q., Li, X., Grosse, R., and Duvenaud, D., 2018.
“Isolating sources of disentanglement in variational autoen-
coders”. arXiv preprint arXiv:1802.04942.

12 Copyright c© 2018 by ASME

https://github.com/keras-team/keras
https://github.com/keras-team/keras

