
Synthesizing Designs with Inter-Part
Dependencies using Hierarchical Generative

Adversarial Networks

Wei Chen∗
Dept. of Mechanical Engineering

University of Maryland
College Park, Maryland 20742
Email: wchen459@umd.edu

Mark Fuge
Dept. of Mechanical Engineering

University of Maryland
College Park, Maryland 20742

Email: fuge@umd.edu

Real-world designs usually consist of parts with inter-part
dependencies, i.e., the geometry of one part is dependent
on one or multiple other parts. We can represent such de-
pendency in a part dependency graph. This paper presents
a method for synthesizing these types of hierarchical de-
signs using generative models learned from examples. It de-
composes the problem of synthesizing the whole design into
synthesizing each part separately but keeping the inter-part
dependencies satisfied. Specifically, this method constructs
multiple generative models, the interaction of which is based
on the part dependency graph. We then use the trained gen-
erative models to synthesize or explore each part design sep-
arately via a low-dimensional latent representation, condi-
tioned on the corresponding parent part(s). We verify our
model on multiple design examples with different inter-part
dependencies. We evaluate our model by analyzing the con-
straint satisfaction performance, the synthesis quality, the la-
tent space quality, and the effects of part dependency depth
and branching factor. This paper’s techniques for captur-
ing dependencies among parts lay the foundation for learned
generative models to extend to more realistic engineering
systems where such relationships are widespread.

1 Introduction
Representing a high-dimensional design space with a

lower-dimensional latent space makes it easier to explore,
visualize, or optimize complex designs. This often means
finding a latent representation, or a manifold, along which
valid designs, such as geometries, lie [1, 2].

While this works well for single parts, designs usually

∗Address all correspondence to this author.

have multiple parts with inter-part dependencies. For exam-
ple, the size and position of a conduit, lightening, or align-
ment hole in an airframe structure depend on the shape of the
airfoil. We can describe inter-part dependencies in a design
by using a directed acyclic graph (DAG). This DAG cap-
tures whether the geometry of a part depends on the geome-
try of its parent part(s). In this case, one may want to identify
first the parent manifold that captures major variation of par-
ent shapes, and then the child manifold that captures major
variation of feasible child shapes conditioned on any parent
shape (Fig. 1). Because, for example, we may first optimize
the airfoil shape on the airfoil manifold (parent) to obtain the
optimal lift and drag; and then given the optimal airfoil, we
may optimize the hole’s size and position on the hole mani-
fold (child) for other considerations like light-weighting, etc.

However, finding individual part manifolds that both
represent the design space well, while also satisfying part
configuration, is non-trivial. Traditionally, to learn the
inter-part dependency, one has to either define explicit con-
straints [3, 4] or learn implicit constraints via adaptive sam-
pling [2, 5]. The former uses hard-coded (often application-
specific) constraints and hence lacks flexibility; whereas the
latter queries external sources by human annotation, experi-
ment, or simulation, and thus is expensive. In this paper, we
solve these problems by instead learning these constraints
given examples. We assume that we only have the prior
knowledge on inter-part dependencies, but not the specific
types of constraints (e.g., concentric, alignment, tangent,
etc.) that confine the geometry of each part. We do this by
identifying different levels of manifolds, where the higher-
level (parent) manifold imposes implicit constraints on the
lower-level (child) manifolds. We propose a deep generative
model that synthesizes designs in a hierarchical manner ac-

Fig. 1: Manifolds of parent and child shapes

cording to those inter-part dependencies: it first synthesizes
parent parts, and then synthesizes parts conditioned on those
parent parts and so on. At each level, the model simultane-
ously captures a parent manifold and an infinite number of
child manifolds which are conditioned on parent parts. This
results in latent spaces that can synthesize and search each
part individually as well as their assemblies. Importantly, our
method is fully data-driven and requires no hard-coded rules
or querying external sources, except for providing an exam-
ple dataset of designs with part correspondence and known
inter-part dependencies. For designs without part correspon-
dence, we can apply unsupervised co-segmentation [6] as a
pre-processing step.

The paper’s key contributions are as follows:

1. A novel deep generative model architecture that simul-
taneously learns a design’s inter-part dependencies and
each part’s geometry variation conditioned on the corre-
sponding parent part(s). It decouples each part’s latent
space so that we can perform design space exploration
in separate low-dimensional latent spaces.

2. New benchmark datasets—both real-world and syn-
thetic—that can be used for studying different kinds
of inter-part dependencies including: type of geometric
constraints, depth of hierarchy, and branching factor of
parent/child relationships. This dataset can aid in future
evaluation of generative models of hierarchical parts.

3. Characterizing the effects of sample size and part depen-
dencies’ complexity (depth and branching factor) on the
synthesis performance of our generative model.

4. A new evaluation metric for generative models that mea-
sures the consistency of shape variation in the latent
space.

2 Related Work
Our work produces generative models that synthesize

designs from latent representations. There are primarily two
streams of related research from the fields of engineering de-

sign and computer graphics—Specifically, design space di-
mensionality reduction and design synthesis. We also review
generative adversarial networks (GANs) [7], which we use
to build our model.

2.1 Design Space Dimensionality Reduction
While designs can be parametrized by various tech-

niques [8], the number of design variables (i.e., the dimen-
sionality of a design space) increases with the geometric vari-
ability of designs. In tasks like design optimization, to find
better designs we usually need a design space with higher
variability, i.e., higher dimensionality. This demand creates
the problem of exploring a high-dimensional design space.
Based on the curse of dimensionality [9], the cost of explor-
ing the design space grows exponentially with its dimension-
ality. Thus, researchers have studied approaches for reducing
the design space dimensionality. Normally, dimensionality
reduction methods identify a lower-dimensional latent space
that captures most of the design space’s variability. This can
be grouped into linear and non-linear methods.

Linear dimensionality reduction methods select a set
of optimal directions or basis functions where the vari-
ance of shape geometry or certain simulation output is
maximized. Such methods include the Karhunen-Loève
expansion (KLE) [10, 11], principal component analysis
(PCA) [12], and the active subspaces approach [13].

In practice, it is more reasonable to assume that design
variables lie on a non-linear manifold, rather than a hyper-
plane. Thus, researchers also apply non-linear methods to re-
duce the dimensionality of design spaces. This non-linearity
can be achieved by (1) applying linear reduction techniques
locally to construct a non-linear global manifold [14, 15, 16,
17, 12]; (2) using kernel methods with linear reduction tech-
niques (i.e., using linear methods in a Reproducing Kernel
Hilbert Space that then induces non-linearity in the original
design space) [1, 12]; (3) latent variable models like Gaus-
sian process latent variable model (GPLVM) and generative
topographic mapping (GTM) [18]; and 4) neural networks
based approaches such as self-organizing maps [19] and au-
toencoders [20, 1, 12, 21].

This work differs from these past approaches in that we
aim at identifying two-level latent spaces with the lower-
level encodes inter-part dependencies, rather than learning
only one latent space for the complete design.

2.2 Data-Driven Design Synthesis
Design synthesis methods can be divided into two cat-

egories: rule-based and data-driven design synthesis. The
former (e.g., grammars-based design synthesis [22, 4, 3]) re-
quires labeling of the reference points or surfaces and defin-
ing rule sets, so that new designs are synthesized according
to this hard-coded prior knowledge; while the latter learns
rules/constraints from a database and generates plausible
new designs with similar structure/function to exemplars in
the database.

Usually dimensionality reduction techniques allow in-
verse transformations from the latent space back to the de-

sign space, thus can synthesize new designs from latent vari-
ables [11, 1, 12, 21]. For example, under the PCA model,
the latent variables define a linear combination of principal
components to synthesize a new design [11]; for local mani-
fold based approaches, a new design can be synthesized via
interpolation between neighboring points on the local mani-
fold [17]; and under the autoencoder model, the trained de-
coder maps any given point in the latent space to a new de-
sign [20, 21]. Researchers have also employed generative
models such as kernel density estimation [23], Boltzmann
machines [24], variational autoencoders (VAEs) [25], and
generative adversarial nets (GANs) [26, 27] to learn the dis-
tribution of samples in the design space, and synthesize new
designs by drawing samples from the learned distribution.
Discriminative models like deep residual networks [28] are
also used to generate 3D shapes.

These aforementioned models synthesize a design or
a shape as a whole. There are methods that synthesize
new shapes by assembling or reorganizing parts from an
existing shape database, while preserving the desired struc-
tures [29,30,31,32,33]. The shapes are usually parametrized
by high-level abstract representations, such as hand-crafted
feature vectors [30] or shape grammars [31]. While these
methods edit shapes at a high-level, they do not control the
local geometry of each synthesized component.

Previously the inter-part dependencies of shapes have
been modeled by grammar induction [31], kernel density es-
timation [34], probabilistic graph models [29,30,24], and re-
cursive autoencoders [27]. Those methods handle part rela-
tions and design synthesis separately. In contrast, our method
encodes part relations through the model architecture, so that
it simultaneously learns the inter-part dependencies and sin-
gle part geometry variation. The model can also be used for
inferring the generative distribution of each part conditioned
on any parent part.

2.3 Generative Adversarial Networks
Generative adversarial nets [7] model a game between

a generative model (generator) and a discriminative model
(discriminator). The generative model maps an arbitrary
noise distribution to the data distribution (i.e., the distribution
of designs in our scenario), thus can generate new data; while
the discriminative model tries to perform classification, i.e.,
to distinguish between real and generated data (Fig. 2). The
generator G and the discriminator D are usually built with
deep neural networks. As D improves its classification abil-
ity, G also improves its ability to generate data that fools D.
Thus, the objective of GAN is

min
G

max
D

V (D,G) = Exxx∼Pdata [logD(xxx)]

+Ezzz∼Pzzz [log(1−D(G(zzz)))] (1)

where xxx is sampled from the data distribution Pdata, zzz is sam-
pled from the noise distribution Pzzz, and G(zzz) is the generator
distribution. A trained generator thus can map from the pre-
defined noise distribution to the distribution of designs. The
noise input zzz is considered as the latent representation in the
dimensionality reduction scenario, since zzz captures the vari-

z

Fig. 2: Architectures of the standard GAN and the InfoGAN

ability of the data.
One advantage GANs hold over Variational Auto-

encoders (VAEs) [35] is that GANs tend to generate more
realistic data [36]. But a disadvantage of the original GAN
formulation is that it cannot learn an interpretable latent rep-
resentation. Built upon these “vanilla” GANs, the Info-
GAN [37] aims at regularizing the latent representation of
the data space by maximizing a lower bound of the mutual
information between a set of latent codes ccc and the generated
data. The generator is provided with both zzz and ccc. Thus, the
generator distribution PG = G(ccc,zzz) is conditioned on ccc. The
mutual information lower bound LI is

LI(G,Q) = Eccc∼P(ccc),xxx∼G(ccc,zzz)[logQ(ccc|xxx)]+H(ccc) (2)

where H(ccc) is the entropy of the latent codes, and Q(ccc|xxx) is
called the auxiliary distribution which approximates P(ccc|xxx).
We direct interested readers to [37] for the derivation of LI .
The InfoGAN objective combines LI with the standard GAN
objective:

min
G,Q

max
D

VIn f oGAN(D,G,Q) =V (D,G)−λLI(G,Q) (3)

where λ is a weight parameter.
In practice, H(ccc) is treated as constant if the distribution

of ccc is fixed. The auxiliary distribution Q is parametrized by
a neural network—here we call it the auxiliary network.

In our design synthesis scenario, the latent codes ccc can
represent any continuous or discrete factor that controls the
geometry of the design, e.g., the upper/lower surface protru-
sion of the airfoil.

Previously there are GAN-based models that generates
specific types of data (i.e., images and videos) by a two-level
hierarchy [38, 39]. For example, a generator first generates
the structure of an image, and then conditioned on that struc-
ture, another generator generates the texture of that image.
In the case of design synthesis, it is intuitive to generate each
design component given all its dependencies, which results
in a hierarchical model structure with multiple levels of gen-
erators.

3 Method
In this section we introduce our proposed deep neural

network architecture and its training details.

3.1 Problem Formulation
We can use a directed acyclic graph to define inter-part

dependencies of a design. We call this graph a part depen-
dency graph. For example, suppose we want to design an
airfoil with two holes inside (top left in Fig. 3). We might
first design the airfoil (Part A), and then set the position and
diameter of one hole (Part B) based on the shape of the air-
foil, followed by the design of the second hole (Part C) based
on both the airfoil shape and the first hole. Thus, the depen-
dencies can be expressed by the graph shown in the bottom
left of Fig. 3.

This paper deals with a design synthesis and design
space exploration problem, where we have a database of ge-
ometric designs, each of which has multiple parts. We have
no prior knowledge on the specific types of constraints that
confine the geometry of each part, but only inter-part depen-
dencies. We propose a model that learns to synthesize de-
signs based on those inter-part dependencies. We want to use
this model to (1) correctly synthesize each part that follows
both the shape feasibility and the dependency constraints;
and (2) use a low-dimensional latent spaces C to represent
the design spaces X of each part. The ability to learn sepa-
rate representations of each part is useful for decomposing a
design space exploration problem (e.g., in design optimiza-
tion).

Desired latent spaces satisfy the following requirements:

1. Any child latent space should be conditioned on a parent
shape (e.g., for the design in Fig. 3, any latent space of
the first hole should be conditioned on an airfoil).

2. Major variability across designs in the database should
be captured by those latent spaces.

3. Designs should changes consistently as we moves
along any basis of the latent space. This regular-
ity/consistency/smoothness will improve latent space
design exploration and optimization.

To meet the first requirement we construct a composite
generative model—a model with multiple generators, each
of which learns a (conditional) generative distribution of a
part from the design. We ensure the rest of the requirements
by adapting InfoGAN’s architecture and objective, i.e., con-
ditioning the generator on latent codes and maximizing a
lower bound of the mutual information between the synthe-
sized designs and their latent representations. This is known
to (1) make latent codes target salient features of the de-
signs, and (2) disentangle the latent representation of the data
space [37]. We introduce the details of our model’s architec-
ture in the following section.

3.2 Model Architecture
To learn separate distributions/representations of each

part, we use a generative adversarial net with multiple gener-
ators/auxiliary networks. We call this network the Hierarchi-
cal Generative Adversarial Networks (HGAN). An example
of its architecture is shown in Fig. 3. We use multiple gen-
erators to synthesize different parts in a design. The interac-
tion between generators/auxiliary networks changes with the

part dependency graph. The latent code ccc j defines the latent
representation of the j-th part, where j = 1, ...,n, and n is
the number of parts. The generator G j learns a (conditional)
shape distribution P(xxx j|ccc j,xxxPar(j)), where Par(j) denotes the
set of parent(s) of the j-th part. For the example in Fig. 3,
Par(A) = /0, Par(B) = {A}, and Par(C) = {A,B}. The out-
put distribution PG j = G j(ccc j,zzz j, x̂xxPar(j)) represents the distri-
bution of the synthesized part x̂xx j, where x̂xxPar(j) denotes the
synthesized parent part(s) of xxx j, and zzz j is the noise input to
G j.

The auxiliary network Q j predicts the latent code dis-
tribution of the corresponding part, i.e., to estimate the con-
ditional distributions P(ccc j|xxx j,xxxPar(j)). The discriminator D
predicts whether a full design is from the database or gener-
ated by generators. A properly trained D should distinguish
designs with unrealistic or mismatched parts.

The objective of HGAN is expressed as

min
{G j},{Q j}

max
D

VHGAN(D,{G j},{Q j}) =V (D,{G j})

−λLI({G j},{Q j}) (4)

where {G j} and {Q j} denotes the set of generators and aux-
iliary networks, respectively. The first term in Eqn. (4) de-
notes the standard GAN objective:

V (D,{G j}) = E{xxx j}∼Pdata [logD({xxx j})]
+E{ccc j∼P(ccc j)},{zzz j∼P(zzz j)}[log(1−D({x̂xx j}))] (5)

where x̂xx j = G j(ccc j,zzz j, x̂xxPar(j)). The second term in Eqn. (4) is
the lower bound of the mutual information between the latent
codes and the synthesized designs:

LI({G j},{Q j}) =
n

∑
j=1

Eccc j∼P(ccc j),xxx j∼G j(ccc j ,zzz j ,x̂xxPar(j))
[logQ j(ccc j|xxx j, x̂xxPar(j))]

+H(ccc j)

(6)

4 Experiments
To demonstrate the performance of our model, we built

six datasets with different ground-truth inter-part dependen-
cies. We train the proposed network on these datasets, and
evaluate the generative performance, constraint satisfaction,
and the latent space property through qualitative and quanti-
tative measures.

4.1 Experimental Setup
4.1.1 Dataset.

We created the following datasets, as shown in Fig. 4:

1. AH: An 2D airfoil (Part A) with a hole (circle, Part B)
inside.

2. AHH: An 2D airfoil (Part A) with two non-intersecting
holes (Parts B and C) inside. The centers of the two
holes lie on a horizontal line.

3. SE: A superformula [40] (Part A) with a concentric el-
lipse (Part B) inside.

zA

cA

Fig. 3: An example of part dependency and the corresponding Hierarchical GAN architecture. The interaction between
generators (GA, GB, and GC) and auxiliary networks (QA, QB, and QC) is based on the connection of the part dependency
graph. This figure is best viewed in color.

A

B

A

B

C

A

B

C

A

B C

AB

AB

AH

SE

SCC

AC

B

A

C

B

SEoEi

AB

AHH

C

A

B

C

SEiEo

Fig. 4: Datasets with different inter-part dependencies

4. SEoEi: A superformula (Part A) with two ellipses in-
side. The second ellipse (Part C) is also inside the first
one (Part B). All three shapes are concentric.

5. SEiEo: A superformula (Part A) with two ellipses in-
side. The second ellipse (Part C) is also outside the first
one (Part B). All three shapes are concentric.1

6. SCC: A superformula (Part A) with two tangent cir-
cles—one (Part B) inside and the other (Part C) outside.

In addition, we control the part dependency graph’s
depth and branching factor by adding more circles/ellipses
to SCC/SEoEi. This results in six extra datasets—S, SC,
SCCC, SCCCC, SEEE, and SEEEE. Here the dataset of
superformulas (S) is used as a baseline where no inter-part
dependency is presented.

Specifically, the airfoil shapes are from the UIUC airfoil
coordinates database2, which provides the Cartesian coordi-
nates for nearly 1,600 airfoils. Each airfoil is re-parametrized
and represented with 64 Cartesian coordinates, resulting in a
64×2 matrix.

1Note that the assembly of SEiEo is the same as SEoEi, but since we
synthesize its parts in a different order, the inter-part dependency changes
(see Fig. 4). We create this dataset for comparing different inter-part depen-
dencies, rather than simulating practical use case.

2http://m-selig.ae.illinois.edu/ads/coord_
database.html

Though targeted for real-world applications, the airfoils
may not be a perfect experimental dataset to visualize the
latent space, because the ground truth intrinsic dimension
(ID)3 of the airfoil dataset is unknown. Thus, we create an-
other synthetic dataset using superformulas and ellipses, the
IDs of which are controllable. The superformula is a general-
ization of the ellipse [40]. We generate superformulas using
the following equations:

n1 = 10s1

n2 = n3 = 10(s1 + s2)

r(θ) = (|cosθ|n2 + |sinθ|n3)
− 1

n1

(x,y) = (r(θ)cosθ,r(θ)sinθ)

(7)

where s1,s2 ∈ [0,1], and (x,y) is a Cartesian coordinate. For
each superformula, we sample 64 evenly spaced θ from 0
to 2π, and get 64 grid-point Cartesian coordinates. Equa-
tions (7) show that we can control the deformation of the
superformula shape with s1 and s2. Thus, the ground truth
ID of our superformula dataset is two. For further details on
how to modify the superformula parameters to adjust the ID,
complexity, and number of manifolds see [1].

The other shapes (e.g., circles and ellipses) are also rep-

3The intrinsic dimension is the minimum number of variables required
to represent the data. It indicates the degrees of freedom we have to control
the shape and position.

http://m-selig.ae.illinois.edu/ads/coord_database.html
http://m-selig.ae.illinois.edu/ads/coord_database.html

resented using 64 Cartesian coordinates. The ground truth
ID of ellipses in SE, SEoEi, and SEiEo is two, since we fix
their centers and only change their semi-major axis and semi-
minor axis lengths. The ground truth ID of circles in SCC is
also two, since they can change their radii and move tangen-
tial to the superformulas. The Part B (circle) in AH and AHH
has a ground truth ID of three, as both their centers and radii
can change; while the Part C in AHH has a ground truth ID
of two, since the y-coordinate of its center is fixed. Figure 5
shows samples drawn from each dataset.

For each dataset, we run experiments with sample sizes
ranging from 500 to 10,000.

4.1.2 Network and Training.
We implement our airfoil/superformula generators by

adopting the generator architecture of the BézierGAN [41,
42]. The circle/ellipse generators first generate shape param-
eters (e.g., the center coordinates and the radius for a circle),
and then convert them into grid-point coordinates using cor-
responding parametric functions. For a generator with parent
parts as inputs, we use an encoder to convert each parent part
into a feature vector before concatenating all inputs and feed-
ing them into the generator. Similarly, we use an encoder to
convert each generated part into a feature vector before feed-
ing them into the auxiliary networks and the discriminator.
The use of encoders reduces the model complexity by reduc-
ing the input dimension of the generators, the auxiliary net-
works and the discriminator. But one has to carefully choose
the feature vector dimensions to avoid loss of information
from dimensionality reduction.

At training, we sample the latent codes from uniform
distribution U(0,1), and the noise inputs from normal distri-
bution N (0,0.25). The hyper-parameter λ in Eqn. (4) was
set to 0.1 in all experiments. The network was optimized
using Adam [43] with the momentum terms β1 = 0.5 and
β2 = 0.999. The learning rates were set to 0.0001. The total
number of training steps was 100,000. The batch size was 32.
Interested readers who wish to reproduce our exact architec-
tures, hyper-parameters, and training procedures are directed
to our code located on GitHub4. The training procedure is
summarized in Algorithm 1.

We used TensorFlow [44] to build the networks. We
trained our networks on a Nvidia Titan X GPU. For each
experiment, the training process took around 2.2 hours for
SE and AH, and 3 hours for other examples. The inference
took less than 10 seconds.

5 Results and Discussion
We evaluated the performance of our trained generative

models using both visual inspection (Figs. 6-10) and quan-
titative measures (Fig. 11). We analyze the effect of sample
size and problem complexity on those quantitative perfor-
mance metrics.

4https://github.com/IDEALLab/hgan_jmd_2019

Algorithm 1 Train HGAN for designs with n parts

1: . T : number of training steps
2: . m: batch size
3: . X : training set
4: procedure TRAIN(T , m)
5: for t = 1 : T do
6: Sample {xxx1, ...,xxxm} from X , where xxxi =

[xxxi
1, ...,xxx

i
n], i = 1, ...,m

7: for j = 1 : n do
8: Sample {ccc1

j , ...,ccc
m
j } from a uniform distribu-

tion
9: Sample {zzz1

j , ...,zzz
m
j } from a normal distribu-

tion
10: end for
11: . Based on Eqn. (4-6):
12: Train D using {xxx1, ...,xxxm}, fixing G1, ...,Gn
13: x̂xxi := [G1(ccci

1,zzz
i
1, x̂xx

i
Par(1)), ...,Gn(ccci

n,zzz
i
n, x̂xx

i
Par(n))]

14: Train Q1, ...,Qn and D using {x̂xx1, ..., x̂xxm}, fixing
G1, ...,Gn

15: Train G1, ...,Gn, fixing Q1, ...,Qn and D
16: end for
17: end procedure

5.1 Visual Inspection.
The captured latent spaces for different examples are vi-

sualized in Figs. 6-9. All these plots are generated using a
sample size of 10,000. The results show that each child la-
tent space adjusts itself according to its parent part, so that
the sizes/positions of child parts matches their parent parts.
This indicates that the child generator figures out the implicit
constraints encoded in data. The latent spaces capture major
shape variations and show consistent shape change. For ex-
ample, in Fig. 6, the outer ellipse (middle subplot) has a con-
sistently decreasing width from left to right, and increasing
height from top to bottom. Interestingly, Fig. 8 shows that
the circles (middle and right subplots) change in the latent
space according to a polar coordinate system, instead of a
Cartesian coordinate system like in other examples. For ex-
ample, the inner circle’s radius decreases with the radial co-
ordinate, and its position moves with the angular coordinate.
This behavior is interesting because we did not explicitly en-
code this polar-coordinate representation into the HGAN ar-
chitecture—rather, the HGAN automatically learns that such
a representation is appropriate for this constraint. Figure 10
shows that when we removed the mutual information lower
bound LI in Eqn. (4), latent spaces either failed to capture
major shape variation, or became entangled and inconsistent.

In the AHH example (Fig. 9), unfeasible synthesized de-
signs occur when the two holes intersect. The figure shows
that while the second hole moves from one side of the airfoil
to the other side, it has to pass through a narrow unfeasible
region. This unfeasible region cuts off the latent space, but
the generator ignores this fact and learns a continuous latent
space by interpolating designs inside the unfeasible region.
The small volume of this unfeasible region may cause the
discriminator to ignore it. In other words, the generator is

https://github.com/IDEALLab/hgan_jmd_2019

AH

AHH

SE

SCC

SEoEi/SEiEo

Fig. 5: Samples drawn from datasets

Fig. 6: Latent space visualization of the SEoEi example. Left: synthesized superformulas in a 2-D latent space; middle:
synthesized outer ellipses in a 2-D latent space conditioned on a random superformula; right: synthesized inner ellipses in a
2-D latent space conditioned on a random outer ellipse.

willing to take the minor loss incurred by this small region of
the infeasible design space in order to avoid making the latent
space representation more complicated. To solve this prob-
lem, we can perform adaptive sampling in the latent space to
more accurately identify the feasible region(s) [2, 5].

5.2 Constraint Satisfaction.
We measure the precision of constraint satisfaction by

computing the proportion of feasible designs among all the
synthesized designs. We call this metric the Constraint Satis-
faction Score (CSS). Specifically, different constraints define
feasibility in different examples:

1. AH: Each point on the hole should be inside the airfoil.
2. AHH: (i) Each point on both holes should be inside the

airfoil; (ii) the centers of the two holes should have a ver-
tical distance of less than 0.01 (alignment constraint);5

and (iii) the distance of the two centers should be larger
than the sum of the two radii (non-intersection con-
straint).

5All designs are rescaled such that the airfoils and the superformulas
have unit widths.

3. SE: (i) Each point on the ellipse should be inside the su-
performula; and (ii) The distance between the origin and
the center of the ellipse should not exceed 0.01 (concen-
tric constraint).6

4. SEoEi: (i) Each point on both ellipses should be inside
the superformula; (ii) both the semi-major and semi-
minor axis lengths of the first ellipse should be larger
than the second one; and (iii) for both ellipses, the dis-
tance between their centers and the origin should not ex-
ceed 0.01 (concentric constraint).

5. SEiEo: Same as the SEoEi example, except that the first
and the second ellipses are swapped.

6. SCC: For each circle with a center Co and a radius r, the
difference between r and the distance from Co to the su-
performula should be less than 0.03 (tangent constraint).

The results on CSS in Fig. 11 show that the tangent con-
straint in the example SCC is the hardest to learn. But the
learning performance improves with a larger sample size.
The SE example outperforms SEoEi and SEiEo on CSS,

6For all the examples we assume that the superformula is centered at the
origin.

Fig. 7: Latent space visualization of the SEiEo example. Left: synthesized superformulas in a 2-D latent space; middle:
synthesized inner ellipses in a 2-D latent space conditioned on a random superformula; right: synthesized outer ellipses in a
2-D latent space conditioned on that same superformula and a random outer ellipse.

Fig. 8: Latent space visualization of the SCC example. Left: synthesized superformulas in a 2-D latent space; middle:
synthesized inner circles in a 2-D latent space conditioned on a random superformula; right: synthesized outer circles in a
2-D latent space conditioned on that same superformula. Interestingly, the HGAN automatically learns a polar-coordinate
representation for the tangent constraint.

which is expected since the task of learning constraints in SE
can be considered as a sub-task in SEoEi and SEiEo. This
also applies to AH and AHH. It is also expected that SEoEi
outperforms SEiEo, since the two are dealing with the same
design but the former has fewer dependencies.

5.3 Distance between Data and Generator Distribu-
tions.

We measure how well our generator approximates the
real data distribution by computing the kernel maximum
mean discrepancy (MMD) [45] between the data and the gen-
erator distribution:

MMD2(Pdata,PG) =

Exxxd ,xxx′d∼Pdata;xxxg,xxx′g∼PG

[
k(xxxd ,xxx′d)−2k(xxxd ,xxxg)+ k(xxxg,xxx′g)

]
where k(xxx,xxx′) = exp

(
−‖xxx− xxx′‖2/(2σ2)

)
. A lower kernel

MMD indicates that the generator distribution is closer to
the data distribution.

The top middle plot in Fig. 11 shows the results of
MMD. Here the SEoEi and SEiEo examples have similar
MMD values, which suggests that synthesized designs in
both examples have similar perceptual quality, despite the
fact that SEiEo requires more model parameters to learn
the additional dependency. The MMD plot provides insight
into how realistic the generated designs can get as the train-
ing sample size changes. In general, MMD first decreases
steeply with the sample size, and then reaches a plateau at
some point. This point indicates the smallest sample size re-
quired to reach a “perceptually good” synthesis performance.

5.4 Diversity of Generated Designs.
A common problem in GANs’ training is mode collapse,

during which the generator only generates a few types of de-
signs to fool the discriminator instead of properly learning
the complete data distribution. Therefore it is important to
measure the diversity of the synthesized designs. We use

Fig. 9: Latent space visualization of the AHH example. Top: Synthesized airfoils in a 3-D latent space (visualized by
multiple slices of 2-D latent spaces); middle: Synthesized holes in a 3-D latent space conditioned on a random airfoil;
Bottom: Synthesized holes in a 2-D latent space conditioned on that same airfoil and another random hole. Unfeasible
synthesized designs occur when the two holes intersect (indicated by red boxes).

Fig. 10: Latent spaces learned without maximizing the mu-
tual information lower bound. Left: the latent code ccc failed
to capture major shape variation; right: inconsistent shape
variation along latent space bases (LSC=0.562±0.008).

Relative Diversity (R-Div) to measure the relative level of
variability captured by the generator.

We define the diversity of N samples XXX ∈ Rd×N as7

Div(XXX) =
1
N

trace(cov[XXX ,XXX])

The R-Div metric can then be expressed as

R-Div =
Div(XXXg)

Div(XXXdata)

where XXXg and XXXdata denote the set of synthesized designs
and designs from the dataset, respectively. A R-Div close

7Here each sample is represented as a column vector containing all the
coordinates of the design.

to 0.0 means that there is little variation within the synthe-
sized designs, which could be an indicator of mode collapse.
A R-Div around 1.0 indicates that the synthesized designs
have a similar level of variability with the dataset. Note that
high diversity does not always indicate good performance, as
there could be unrealistic designs being synthesized, which
also contribute to diversity. Thus, we should view this metric
in concert with the kernel MMD to determine how well the
generator performs.

Figure 11 shows that synthesized designs tend to have
high divergence of R-Div when the sample size is small. Par-
ticularly, in the AHH example with a sample size of 500, the
low R-Div combined with the high kernel MMD indicates
the occurrence of mode collapse (Fig. 12). Increasing the
sample size stabilized the R-Div and eventually bounded it
between 0.8 and 1.1.

5.5 Latent Space Consistency.
A desirable latent space has two properties: 1) disen-

tanglement: each latent variable is related to only one fac-
tor; and 2) consistency: shapes change consistently along
any basis of the latent space. Note that this consistency is
evaluated along one direction at a time, since scales along
different directions may vary. To the best of our knowl-
edge, existing quantitative measurements for the first prop-
erty—latent space disentanglement—are supervised, i.e., the
ground-truth independent factors causing shape deformation
have to be provided [46, 47, 48]. The second property is im-
portant for latent space design exploration. When searching
for designs along a direction in the latent space, optimiza-

Fig. 11: Quantitative measure of synthesized design quality and latent space properties. LSC A, LSC B, LSC C denote the
LSC for the latent spaces of Parts A, B, C, respectively.

Fig. 12: Mode collapse occurs when the sample size is 500.
The diversity is low in these randomly generated designs.

tion algorithms and humans usually prefer if shapes change
consistently, such that the objective function over the latent
space is less complicated (i.e., has better Lipschitz continu-
ity) and has fewer local optima.

We propose Latent Space Consistency (LSC) as a quan-
titative measure of how consistently shapes change along any
basis of the latent space. Since change from one shape to
another can be measured by their dissimilarity, distances be-
tween samples along a certain direction in the latent space
should be consistent with the dissimilarity between those
samples. We use Pearson correlation coefficient to measure
this consistency. Algorithm 2 describes how to compute the
LSC. The choice of the dissimilarity function d is not central
to the overall method. In our experiments, we simply use the
Euclidean distance to measure the dissimilarity of designs.

Both the middle plots in Figs. 6 and 7 show latent spaces
with LSCs above 0.9. In contrast, the right plot in Fig. 10
provides a visual example of an LSC of around 0.56. The
bottom plots in Fig. 11 shows that a larger sample size does

Algorithm 2 Evaluate Latent Space Consistency

1: procedure LATENTCONSISTENCY(G, m, n, d)
2: . G: the mapping from a latent space to a design

space
3: . m: the number of lines to be evaluated
4: . n: the number of points sampled on each line
5: . d: a dissimilarity function
6: . C : the latent space
7: . X : the design space
8: sum = 0
9: for i = 1 : m do

10: Sample a line L parallel to any basis of C
11: Sample n points {ccc1,ccc2, ...,cccn} along L
12: {xxx1,xxx2, ...,xxxn} := {G(ccc1),G(ccc2), ...,G(cccn)}
13: DC := {‖ccci − ccc j‖}, DX := {d(xxxi,xxx j)}, where

i, j ∈ {1, ...,n}
14: Compute Pearson correlation coefficient:

ρ :=
cov(DC ,DX)

σ(DC)σ(DX)

15: sum := sum+ρ

16: end for
17: Return sum/m
18: end procedure

not improve LSCs of Part A (at least with sample sizes in the
range from 500 to 10,000), but improves the LSCs of Parts B
and C in most cases.

5.6 Effect of Encoding Inter-Part Dependencies.
To further study the effect of encoding inter-part depen-

dencies in the GAN, we compared the results of our HGAN
with a standard InfoGAN, where there is only one genera-
tor and all parts are synthesized from a single latent space.
The latent space dimension was set to the sum of all latent
space dimensions in the HGAN experiments. Figure 13 vi-
sualizes the latent space learned by a standard InfoGAN. It
shows that in each latent dimension, three parts change si-
multaneously, which indicates that the latent space does not
disentangle each part’s shape variation.

We also study the effects of part dependency graph’s
depth and branching factor on the model’s synthesis per-
formance. The examples S, SE, SEE, SEEE, and SEEEE
simulate increasing depths, respectively; while the exam-
ples S, SC, SCC, SCCC, and SCCCC simulate increasing
branch factors, respectively. The results are shown in Fig. 14.
The InfoGAN model is used as a base line where we do
not encode inter-part dependencies. As expected for both
HGAN and InfoGAN, CSS decreases with increased number
of parts, since additional parts brings extra constraints. The-
oretically, encoding inter-part dependencies introduces extra
constraints to the model and hence complicates the overall
task. However, based on the results, the HGAN shows no
significant performance drop comparing to the InfoGAN, ex-
cept for the CSS when increasing the branching factor and
the R-Div when increasing the depth. Note that the MMD
values are below 0.05 and do not change notably. The lower
CSS or R-Div indicates that HGAN compromises its syn-
thesis precision (i.e., the precision of satisfying constraints)
or generator distribution’s coverage for disentangling each
part’s latent space. We also included the training history of
HGAN and InfoGAN in the online supplemental material.

6 Limitations and Future Work
One limitation of our approach is that it is difficult to

achieve high precision in satisfying some constraints. This
problem exists in all purely data-driven design methods,
where there is no process of incorporating restricted con-
straints in the generative model or validating the constraint
satisfaction of the outputs. While we can address this by
encoding constraints explicitly in the generative model, this
requires us to know these constraints in advance and create
hand-coded rules for all types of constraints. For example,
to generate concentric ellipses, one can simply fix the cen-
ter of the second ellipse to have the same coordinate as the
first one. However, it may be difficult to incorporate some
constraints in the generative model (e.g., the constraint of
one part being inside another). Also, it is sometimes hard
to even know the type of the exact constraint between parts
(e.g., aesthetic preferences when placing handles on a vase).
Thus, here we assume that we have no prior knowledge on
the types of constraints, and inter-part dependencies are the
only knowledge we need for our model. Despite the limita-
tion of purely data-driven design methods, they can be used
in the conceptual design stage for exploring a wide range of
design alternatives and inspiring novel designs. We can also

use validation based on simulation, experiment, or human
annotation to exclude infeasible synthesized designs when
performing latent space exploration [2, 49], which could be
an interesting avenue for future work.

Another limitation is that all designs must have the same
part dependency graph, which is impractical in some cases.
For example, not all tables have four legs, thus for some de-
signs their part dependency graphs might miss some nodes.
Future study needs to address this situation.

Sometimes the design data is not partitioned into sepa-
rate components. One possible solution to this problem is
to apply unsupervised co-segmentation [6] to partition de-
signs and establish correspondences between common com-
ponents in different designs. Then we can use HGAN to
learn the latent spaces and generate new designs.

7 Conclusion
We introduced a GAN-based generative model for syn-

thesizing designs with inter-part dependencies. It decom-
poses the synthesis into synthesizing each part conditioned
on the corresponding parent part. This also creates a condi-
tioned low-dimensional latent representation that allows ac-
celerated design exploration. This model is build for prob-
lems where design space exploration over the latent space
has to be staged since the optimal solution of one part de-
pends on the geometry of another. Such models can acceler-
ate design optimization problems, which we are exploring in
our future work.

An advantage of neural-network-based generative mod-
els (e.g., GANs and VAEs), compared to other dimensional-
ity reduction models (e.g., PCA and GPLVM), is that one can
define or regularize latent distributions. Our model adapts In-
foGAN’s mutual information objective to derive a consistent
latent space, where the change of shapes is consistent along
any basis of the latent space. This property is desirable in la-
tent space design exploration, as the objective function over
the latent space is less complicated and has less local optima.

We also created new benchmark datasets for studying
different kinds of inter-part dependencies including: type of
geometric constraints, depth of hierarchy, and branching fac-
tor of parent/child relationships. By using these datasets, we
characterized the effects of sample size and part dependen-
cies’ complexity (depth and branching factor) on the synthe-
sis performance of our generative model. We also proposed
a new evaluation metric for generative models that measures
the consistency of shape variation in the latent space. Com-
pared to a standard InfoGAN, the HGAN disentangles each
part’s latent space at the cost of weakened synthesis precision
when the branching of the part dependency increases.

The concept of decoupling the latent space of a design is
important for design space exploration in general. It allows
separate exploration and synthesis of each part, and helps us
understand how different constraints control shape variation.
Though we use GANs to achieve this goal, the idea of encod-
ing inter-part dependencies, learning conditioned generative
distributions, and the latent space analysis is also applica-
ble to other generative models. Thus, this paper’s techniques

C2

C1

C4

C3

C6

C5

Fig. 13: The latent space learned by a standard InfoGAN. This plot visualizes a 6-D latent space of the SEoEi example by
showing each two dimensions while setting the latent coordinates of other dimensions to zero. In each dimension, three parts
change simultaneously. This shows that the latent space learned by a standard InfoGAN does not disentangle each part’s
shape variation. In contrast, the results of the HGAN disentangle and separate each part’s latent space.

Fig. 14: Effects of depth (top) and branching factor (bottom) on synthesis performance. Here we denote the example SEoEi
as SEE for simplicity.

lay the foundation for learned generative models to extend to
more realistic engineering systems where inter-part depen-
dencies are widespread.

Acknowledgements
This work was supported by The Defense Advanced

Research Projects Agency (DARPA-16-63-YFA-FP-059) via

the Young Faculty Award (YFA) Program. The views, opin-
ions, and/or findings contained in this article are those of the
author and should not be interpreted as representing the of-
ficial views or policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the Depart-
ment of Defense.

References
[1] Chen, W., Fuge, M., and Chazan, N., 2017. “Design

manifolds capture the intrinsic complexity and dimen-
sion of design spaces”. Journal of Mechanical Design,
139(5), pp. 051102–051102–10.

[2] Chen, W., and Fuge, M., 2017. “Beyond the known:
Detecting novel feasible domains over an unbounded
design space”. Journal of Mechanical Design, 139(11),
pp. 111405–111405–10.

[3] Königseder, C., and Shea, K., 2016. “Visualiz-
ing relations between grammar rules, objectives, and
search space exploration in grammar-based computa-
tional design synthesis”. Journal of Mechanical De-
sign, 138(10), p. 101101.

[4] Königseder, C., Stanković, T., and Shea, K., 2016. “Im-
proving design grammar development and application
through network-based analysis of transition graphs”.
Design Science, 2, p. e5.

[5] Chen, W., and Fuge, M., 2018. “Active expansion sam-
pling for learning feasible domains in an unbounded in-
put space”. Structural and Multidisciplinary Optimiza-
tion, 57(3), pp. 925–945.

[6] Sidi, O., van Kaick, O., Kleiman, Y., Zhang, H., and
Cohen-Or, D., 2011. “Unsupervised co-segmentation
of a set of shapes via descriptor-space spectral clus-
tering”. ACM Trans. Graph., 30(6), Dec., pp. 126:1–
126:10.

[7] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y., 2014. “Generative adversarial nets”. In Advances
in neural information processing systems, Curran As-
sociates, Inc., pp. 2672–2680.

[8] Samareh, J. A., 2001. “Survey of shape parameter-
ization techniques for high-fidelity multidisciplinary
shape optimization”. AIAA journal, 39(5), pp. 877–
884.

[9] Bellman, R., 1957. Dynamic programming. Princeton
University Press, Princeton, NY.

[10] Diez, M., Campana, E. F., and Stern, F., 2015. “Design-
space dimensionality reduction in shape optimization
by karhunen–loève expansion”. Computer Methods in
Applied Mechanics and Engineering, 283, pp. 1525–
1544.

[11] Chen, X., Diez, M., Kandasamy, M., Zhang, Z., Cam-
pana, E. F., and Stern, F., 2015. “High-fidelity global
optimization of shape design by dimensionality reduc-
tion, metamodels and deterministic particle swarm”.
Engineering Optimization, 47(4), pp. 473–494.

[12] DAgostino, D., Serani, A., Campana, E. F., and Diez,
M., 2018. “Nonlinear methods for design-space dimen-
sionality reduction in shape optimization”. In Machine
Learning, Optimization, and Big Data, Springer Inter-
national Publishing, pp. 121–132.

[13] Tezzele, M., Salmoiraghi, F., Mola, A., and Rozza, G.,
2018. “Dimension reduction in heterogeneous paramet-
ric spaces with application to naval engineering shape
design problems”. Advanced Modeling and Simulation
in Engineering Sciences, 5(1), p. 25.

[14] Raghavan, B., Breitkopf, P., Tourbier, Y., and Villon,
P., 2013. “Towards a space reduction approach for ef-
ficient structural shape optimization”. Structural and
Multidisciplinary Optimization, 48(5), pp. 987–1000.

[15] Raghavan, B., Xia, L., Breitkopf, P., Rassineux, A., and
Villon, P., 2013. “Towards simultaneous reduction of
both input and output spaces for interactive simulation-
based structural design”. Computer Methods in Applied
Mechanics and Engineering, 265, pp. 174–185.

[16] Raghavan, B., Le Quilliec, G., Breitkopf, P., Rassineux,
A., Roelandt, J.-M., and Villon, P., 2014. “Numerical
assessment of springback for the deep drawing process
by level set interpolation using shape manifolds”. In-
ternational Journal of Material Forming, 7(4), pp. 487–
501.

[17] Le Quilliec, G., Raghavan, B., and Breitkopf, P., 2015.
“A manifold learning-based reduced order model for
springback shape characterization and optimization in
sheet metal forming”. Computer Methods in Applied
Mechanics and Engineering, 285, pp. 621–638.

[18] Viswanath, A., J. Forrester, A., and Keane, A., 2011.
“Dimension reduction for aerodynamic design opti-
mization”. AIAA journal, 49(6), pp. 1256–1266.

[19] Qiu, H., Xu, Y., Gao, L., Li, X., and Chi, L., 2016.
“Multi-stage design space reduction and metamodel-
ing optimization method based on self-organizing maps
and fuzzy clustering”. Expert Systems with Applica-
tions, 46, pp. 180–195.

[20] Burnap, A., Liu, Y., Pan, Y., Lee, H., Gonzalez, R., and
Papalambros, P. Y., 2016. “Estimating and exploring
the product form design space using deep generative
models”. In ASME 2016 International Design Engi-
neering Technical Conferences and Computers and In-
formation in Engineering Conference, American So-
ciety of Mechanical Engineers, pp. V02AT03A013–
V02AT03A013.

[21] D’Agostino, D., Serani, A., Campana, E. F., and Diez,
M., 2018. “Deep autoencoder for off-line design-
space dimensionality reduction in shape optimization”.
In 2018 AIAA/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference, p. 1648.

[22] Gmeiner, T., and Shea, K., 2013. “A spatial grammar
for the computational design synthesis of vise jaws”. In
ASME 2013 International Design Engineering Techni-
cal Conferences and Computers and Information in En-
gineering Conference, American Society of Mechani-
cal Engineers, pp. V03AT03A006–V03AT03A006.

[23] Talton, J. O., Gibson, D., Yang, L., Hanrahan, P., and
Koltun, V., 2009. “Exploratory modeling with collabo-
rative design spaces”. ACM Trans. Graph., 28(5), Dec.,
pp. 167:1–167:10.

[24] Huang, H., Kalogerakis, E., and Marlin, B., 2015.
“Analysis and synthesis of 3d shape families via deep-
learned generative models of surfaces”. Computer
Graphics Forum, 34(5), pp. 25–38.

[25] Nash, C., and Williams, C. K., 2017. “The shape varia-
tional autoencoder: A deep generative model of part-
segmented 3d objects”. Computer Graphics Forum,

36(5), pp. 1–12.
[26] Wu, J., Zhang, C., Xue, T., Freeman, B., and Tenen-

baum, J., 2016. “Learning a probabilistic latent space
of object shapes via 3d generative-adversarial model-
ing”. In Advances in Neural Information Processing
Systems 29, Curran Associates, Inc., pp. 82–90.

[27] Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H.,
and Guibas, L., 2017. “Grass: Generative recursive au-
toencoders for shape structures”. ACM Trans. Graph.,
36(4), July, pp. 52:1–52:14.

[28] Sinha, A., Unmesh, A., Huang, Q., and Ramani, K.,
2017. “Surfnet: Generating 3d shape surfaces using
deep residual networks”. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pp. 6040–6049.

[29] Chaudhuri, S., Kalogerakis, E., Guibas, L., and Koltun,
V., 2011. “Probabilistic reasoning for assembly-based
3d modeling”. ACM Trans. Graph., 30(4), July,
pp. 35:1–35:10.

[30] Kalogerakis, E., Chaudhuri, S., Koller, D., and Koltun,
V., 2012. “A probabilistic model for component-based
shape synthesis”. ACM Trans. Graph., 31(4), July,
pp. 55:1–55:11.

[31] Talton, J., Yang, L., Kumar, R., Lim, M., Goodman, N.,
and Měch, R., 2012. “Learning design patterns with
bayesian grammar induction”. In Proceedings of the
25th Annual ACM Symposium on User Interface Soft-
ware and Technology, UIST ’12, ACM, pp. 63–74.

[32] Xu, K., Zhang, H., Cohen-Or, D., and Chen, B., 2012.
“Fit and diverse: set evolution for inspiring 3d shape
galleries”. ACM Trans. Graph., 31(4), July, pp. 57:1–
57:10.

[33] Zheng, Y., Cohen-Or, D., and Mitra, N. J., 2013.
“Smart variations: Functional substructures for part
compatibility”. Computer Graphics Forum, 32(2pt2),
pp. 195–204.

[34] Fish, N., Averkiou, M., Van Kaick, O., Sorkine-
Hornung, O., Cohen-Or, D., and Mitra, N. J., 2014.
“Meta-representation of shape families”. ACM Trans.
Graph., 33(4), July, pp. 34:1–34:11.

[35] Kingma, D. P., and Welling, M., 2014. “Auto-encoding
variational bayes”. In Proceedings of the 2nd Interna-
tional Conference on Learning Representations.

[36] Radford, A., Metz, L., and Chintala, S., 2015. “Un-
supervised representation learning with deep convolu-
tional generative adversarial networks”. arXiv preprint
arXiv:1511.06434.

[37] Chen, X., Duan, Y., Houthooft, R., Schulman, J.,
Sutskever, I., and Abbeel, P., 2016. “Infogan: Inter-
pretable representation learning by information max-
imizing generative adversarial nets”. In Advances
in Neural Information Processing Systems, pp. 2172–
2180.

[38] Wang, X., and Gupta, A., 2016. “Generative im-
age modeling using style and structure adversarial net-
works”. In European Conference on Computer Vision,
Springer, pp. 318–335.

[39] Ohnishi, K., Yamamoto, S., Ushiku, Y., and Harada,

T., 2018. “Hierarchical video generation from orthog-
onal information: Optical flow and texture”. In Thirty-
Second AAAI Conference on Artificial Intelligence.

[40] Gielis, J., 2003. “A generic geometric transforma-
tion that unifies a wide range of natural and abstract
shapes”. American journal of botany, 90(3), pp. 333–
338.

[41] Chen, W., and Fuge, M., 2018. “Béziergan: Au-
tomatic generation of smooth curves from inter-
pretable low-dimensional parameters”. arXiv preprint
arXiv:1808.08871.

[42] Chen, W., Chiu, K., and Fuge, M., 2019. “Aerody-
namic design optimization and shape exploration using
generative adversarial networks”. In AIAA 2019 Sci-
ence and Technology Forum and Exposition, no. AIAA
2019-2351.

[43] Kingma, D. P., and Ba, J., 2014. “Adam: A
method for stochastic optimization”. arXiv preprint
arXiv:1412.6980.

[44] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen,
Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin,
M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G.,
Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur,
M., Levenberg, J., Mané, D., Monga, R., Moore, S.,
Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,
B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke,
V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.,
2015. TensorFlow: Large-scale machine learning on
heterogeneous systems. Software available from ten-
sorflow.org.

[45] Gretton, A., Borgwardt, K. M., Rasch, M. J.,
Schölkopf, B., and Smola, A., 2012. “A kernel two-
sample test”. Journal of Machine Learning Research,
13(Mar), pp. 723–773.

[46] Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot,
X., Botvinick, M., Mohamed, S., and Lerchner, A.,
2017. “Beta-VAE: Learning basic visual concepts with
a constrained variational framework”. In Proceedings
of the 5th International Conference on Learning Repre-
sentations.

[47] Kim, H., and Mnih, A., 2018. “Disentangling by fac-
torising”. In Proceedings of the 35th International
Conference on Machine Learning, Vol. 80 of Proceed-
ings of Machine Learning Research, PMLR, pp. 2649–
2658.

[48] Chen, T. Q., Li, X., Grosse, R. B., and Duvenaud,
D. K., 2018. “Isolating sources of disentanglement in
variational autoencoders”. In Advances in Neural In-
formation Processing Systems 31, Curran Associates,
Inc., pp. 2610–2620.

[49] Guo, T., Herber, D. R., and Allison, J. T., 2019. “Cir-
cuit synthesis using generative adversarial networks
(GANs)”. In AIAA 2019 Science and Technology Fo-
rum and Exposition, no. AIAA 2019-2350.

Supplemental Material: Synthesizing Designs
with Inter-Part Dependencies using Hierarchical

Generative Adversarial Networks

S1 Training History
Theoretically, modeling inter-part dependency requires extra model parameters (e.g., in the SEoEi example, the HGAN

model has 86,213,654 parameters; while the InfoGAN has 33,270,374), and hence should be harder to optimize. This effect
will amplify as more inter-part dependencies are introduced. In practice, to demonstrate the difference, we compared the
training history of the HGAN and the InfoGAN, as shown in Fig. S1. It shows that there is no significant difference between
the training histories of HGAN and InfoGAN except for the example of SCCCC, where it is more difficult for the HGAN’s
generator to reduce its training loss comparing to InfoGAN. This is an interesting observation and is worth future study to
identify specific cause of difference in the training difficulty.

1

Fig. S1: Training history of HGAN and InfoGAN

2

