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The MechProcessor: Helping
Novices Design Printable
Mechanisms Across Different
Printers
Additive manufacturing (AM), or 3D-printing, sits at the heart of the Maker Movement—
the growing desire for wider-ranges of people to design physical objects. However, most
users that wish to design functional moving devices face a prohibitive barrier-to-entry:
they need fluency in a computer-aided design (CAD) package. This limits most people to
being merely consumers, rather than designers or makers. To solve this problem, we com-
bine advances in mechanism synthesis, computer languages, and design for AM to create
a computational framework, the MechProcessor, which allows novices to produce 3D-
printable, moving mechanisms of varying complexity using simple and extendable interfa-
ces. The paper describes how we use hierarchical cascading configuration languages,
breadth-first search, and mixed-integer linear programming (MILP) for mechanism syn-
thesis, along with a nested, printable test-case to detect and resolve the AM constraints
needed to ensure the devices can be 3D printed. We provide physical case studies and an
open-source library of code and mechanisms that enable others to easily extend the
MechProcessor framework. This encourages new research, commercial, and educational
directions, including new types of customized printable robotics, business models for
customer-driven design, and STEM education initiatives that involve nontechnical audi-
ences in mechanical design. By promoting novice interaction in complex design and fab-
rication of movable components, we can move society closer to the true promise of the
Maker Movement: turning consumers into designers. [DOI: 10.1115/1.4031089]

1 Introduction

AM—or 3D printing—has blossomed substantially over the
past decade, thanks in part to a growing philosophical culture
called the Maker Movement: “people’s need to engage passion-
ately with objects in ways that make them more than just consum-
ers” [1]. It posits that all people should be able to tinker with and
invent new objects; a democratization of design that directly
involves consumers in the design process.

This paper addresses a fundamental problem that consumers face
when participating in the Maker Movement: “How can nonprofes-
sionals generate or modify new designs that can be reliably printed,
when they do not know how to use professional computer-aided
design (CAD) tools or understand the limitations of AM equi-
pment?” Currently, consumers have two options: (1) download pre-
existing geometry files from a repository (e.g., THINGIVERSE), limiting
their ability to modify the design, or (2) use simplified CAD tools
(e.g., SKETCHUP, TINKERCAD, etc.), limiting a design’s complexity.

We propose a third option, built off an analogy to how a word
processor works. In a word processor, a user focuses on the con-
tent of the document (the words they type), while the processor
uses a library of configurable settings (such as fonts and page
styles) to typeset and layout the document. Users can extend a
word processor by including third-party settings (e.g., adding new
fonts), or changing advanced layout settings themselves (e.g.,
altering paragraph spacing or letter kerning). This abstraction pro-
vides different levels of control: complete novices can produce
new printed documents easily by using default settings, while
more advanced users can adjust settings manually or even provide
new fonts or templates that can be shared with (or sold to) others.

In this paper, we apply this word processor analogy to mechani-
cal devices, specifically mechanisms, in a framework we call the
MechProcessor. The key difficulties lie in how to take ambiguous
high-level mechanism graphs (e.g., Fig. 4.2) and choose among
(possibly equally good) design decisions, such as selecting com-
ponents, connecting them in 3D space, and specifying dimensions
such that it will print successfully. The paper’s key contributions
lie in a process for integrating advances across mechanism synthe-
sis, computer languages, and design for AM to fully customize
mechanical designs to printers of different qualities. Specifically,
this paper contributes:

(1) An extensible design representation that uses hierarchical
default configurations to resolve certain, predefined uncer-
tainties not prescribed by the user, including specific com-
ponent selections, part dimensions, and spatial orientations,
subject to manufacturing constraints (Sec. 3.1).

(2) Algorithms that use graph simplification techniques and
MILP to progressively reduce the mechanism design space
complexity (Sec. 3.2).

(3) A nested test geometry that, when printed, assesses a 3D
printer’s capabilities by only counting separated compo-
nents (Sec. 3.3), allowing a novice user to customize a
design to a particular machine.

While the above build upon existing computational synthesis
methods, the key advance is the merger of three disparate areas
(user specifications of mechanisms, handling mechanical synthe-
sis constraints, and capturing critical manufacturing information)
to automatically adapt a design to various 3D printers. Section 4
demonstrates this through four-bar and six-bar linkages printed on
both consumer- and professional-grade fused-deposition modeling
(FDM) machines, providing examples where successful parts
must account for both user and manufacturing specifications.
These contributions open up the possibility of permitting user-
driven mechanical device design not only for specific engineering
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uses but also for engineering education, new forms of online
collaboration, and new business models.

2 Related Work

This paper builds upon advances in several different fields,
including mechanical design, computer science, and manufactur-
ing. Specifically, we leverage techniques from automated mecha-
nism synthesis, digital fabrication, and AM.

2.1 Design Representations for Mechanism Synthe-
sis. Prior work in automated mechanism synthesis falls into
roughly two areas: graph theoretic techniques for analyzing or
computing mechanism properties and artificial intelligence (AI)
techniques for searching over mechanism structure or function.
Our work combines these areas while integrating techniques spe-
cifically designed to address design for AM concerns (Sec. 3.3).

Kinematic analysis of mechanisms shares many important par-
allels with graph theory, and there are textbooks [2,3] and articles
[4] that provide a thorough review of both. Important extensions
of this graph theoretic framework include the work of Kota et al.
on decomposing mechanisms into fundamental building blocks
that can be combined together to synthesize new designs through
dual vector algebras [5] and matrix compositions [6,7]. For
particular classes of mechanisms, specific techniques can be used
to synthesize new mechanism graphs, such as Sunkari’s and
Schmidt’s [8] use of group-theory over graph isomorphisms.

Researchers have also approached mechanism synthesis through
the usage of AI techniques. Hoeltzel and Chieng [9] were one of
the first in long research thread that combined search-based techni-
ques with rule-checking and traditional kinematic analysis. In these
approaches, a program would exhaustively enumerate various pos-
sible mechanism configurations that might form a kinematic graph
and then use rules or search strategies to prune the number of
options, using a heuristic to arrive at a mechanism layout which sat-
isfies all constraints or minimizes some objective function. To this
framework, others have added functional reasoning [10,11], search
heuristics [12], additional types of rules [13], and new types of con-
straints [14]. Alternative approaches include case-based reasoning
techniques, where new mechanisms are formed by modifying or
extending those in an existing library [15], or through an evolution-
ary process, such as genetic algorithms [16,17]. This also includes
a body of work under the nomenclature “computational design syn-
thesis” [18], where researchers have used techniques from graph-
grammars [14,19–21] and Boolean satisfiability [22] to optimize
mechanical systems. These approaches tackle a larger design scope,
such as mechanical functional synthesis, than this paper addresses,
allowing us to leverage the structure of mechanism design to
simplify the necessary constraint solution techniques.

In relation to AM of mechanisms, Mavroidis et al. [23] pro-
vided some of the earliest work on printing joints for robotic
manipulators using selective laser sintering. Throughout the next
decade researchers would begin to combine 3D printing with
mechanism testing [24], however it was only within the past year
that robotic toolkits have emerged which combine algorithms for
synthesizing mechanisms with the intention of directly printing
them [25–28]. Our paper builds upon these efforts by connecting
mechanism design and robotics with the AM test-cases necessary
to allow novices to use these algorithms on different 3D printers.

2.2 Computer Graphics and Digital Fabrication. The com-
puter graphics community has also recently begun focusing on
design tools for mechanisms and geometry, under the nomencla-
ture of “digital fabrication” [29]. Prior approaches cluster into
either translating user input into planar mechanism constraints or
generating new geometry using a model library. Researchers in
mechanical engineering have also explored techniques for simpli-
fying CAD interfaces, including sketch-based CAD [30,31] and
gesture-based CAD [32], and through design repositories [33] and

model-based synthesis (e.g., the adaptive vehicle make program
[34]).

For translating user input, researchers have used motion capture
[35] or sketch-based input to define desired motion paths [27,28]
or generate links [36]. Their contributions focus on optimization
techniques for matching a small class of mechanism primitives
(gears, revolute joints, etc.) to specific kinematic paths. In con-
trast, this paper connects these user interface techniques with
machine-specific AM limitations.

When using component libraries to generate new designs, past
techniques focused on hierarchical compositions of parametric
components [25,26,37,38] or probabilistic models of large collec-
tions [39]. Their central challenge has been modeling the geomet-
ric relationships between parts of an object so that it can be
modified while preserving the overall design intent and manufac-
turability. The closest work to ours in this regard is Mehta et al.
[26] who reason about foldable robots. In contrast, this paper
encompasses a wider array of mechanism components, tackles
general mechanism graphs rather than hierarchies, and customizes
the design to machine-specific manufacturability limitations.

2.3 AM. Relevant past research around design for AM has
focused in two areas: design tools for specific mixed material
properties and how to account for AM errors in early-stage
design.

While certain types of AM allow users to print multiple types
of material, designing for such processes is challenging. Ma et al.
[40] use traditional FDM to produce mechanism housings that
include break-away shells that can be used for casting flexible
materials; this allowed them to produce multimaterial functional
hinges using traditional FDM hardware. With machines capable
of printing multiple materials, Skouras et al. [41] develop a finite
element formulation that allowed them to simulate and optimize
the material elasticity and actuation points to automatically
achieve certain user-specified deformations. For mechanisms
where different surface friction properties are needed, Cali et al.
[42] devised a method for altering internal friction in single mate-
rial printed joints by creating offset ridges that provide appropri-
ate friction when rotated out of position. Lastly, Stava et al. [43]
account for the material limitations of a specific printer by using
finite element analysis as a preprocessing step to insert additional
supporting structure into a part.

AM machines also have varying dimensional accuracy, and
designing around this error has been approached in multiple ways.
The approaches most similar to our work use physical test-cases
to calibrate specific machines. For example, Bochmann et al. [44]
design a set of calibration geometry to measure the dimensional
accuracy of FDM machines using professional coordinate meas-
uring machines. Rather than directly measuring dimensional accu-
racy, Clemon et al. [45] and Cali et al. [42] use the physical
characteristics of printed objects to determine minimum wall
closure distances and frictional properties, respectively.

Dimensional errors are also introduced as part of slicing opera-
tions: Hildebrand et al. [46] improve accuracy across parts by opti-
mizing the geometry’s slicing direction and then re-assembling it
postprinting. Nelaturi et al. [47] formalize the geometric deviation
of layered printed parts by defining a “printability map” that can
adjust geometry so that it can be printed with lower error. Lastly,
Rajagopalan and Cutkosky developed analytical error analysis
techniques for predicting the kinematic performance envelope of
additively manufacturing linkages [48]; these kinds of techniques
are a useful design validation step which would complement the
strategies we propose in Sec. 3.2.

Our paper is most similar to the works of Cali et al. [42] and
Bochmann et al. [44] in that we also create a printable test-case to
verifying certain AM manufacturing constraints for movable
joints and mechanisms. Our work differs in that our test-cases
allow users with no technical background or measurement equip-
ment to recover their AM machine’s accuracy simply through
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counting (Sec. 3.3). This allows complete novices to easily
calibrate a variety of printers (see Fig. 6).

3 The MechProcessor Framework

Our framework contains several key elements (shown in Fig. 1):
(a) a design representation that can be extended by users of differ-
ent skill levels (Sec. 3.1); (b) a constraint solver that handles geo-
metric, manufacturing, and interface constraints (Sec. 3.2); and (c)
an AM test-case that identifies a machine’s printing capabilities
without high precision measurement tools (Sec. 3.3). Integrating
these elements resolves three central ambiguities when transform-
ing user input into a printable mechanism: ambiguities in user
specifications, component selection, and machine capabilities.

3.1 Design Representation. Given a fully specified mecha-
nism design, one can easily extract the underlying kinematic
graph; however, going the other way (from graph to design) is
substantially more difficult [2]. This is due to an inherent loss-of-
information: a graph only specifies the types of joints, which
joints are connected to one another, and possibly specific lengths
or angles that might constrain motion. That kinematic graph com-
municates what a mechanism should do (e.g., its degrees-of-
freedom (DOF), possible displacements, velocities, and accelera-
tions, etc.), which is why novices and experts alike find it useful.
However, that representation tells us nothing about many design
details: How wide should a joint be? What does the physical joint
look like, and how should links attach to that joint to maintain the
desired motion? How large should gaps in joints be to create an
acceptable running clearance on a particular printer? These types
of detailed decisions tie the overall function (the mechanism
graph) to specific geometric and manufacturing constraints.

The key challenge is specifying a design representation that is
comprehensive enough to produce reasonable mechanisms given
a general, high-level kinematic graph, but flexible enough to allow
experts to specify design details. We accomplish this via two
methods: (1) a parametric part library that provides specific
instances of more general classes of mechanism components (e.g.,
revolute joints), and (2) a configuration language that allows a
graph to separately inherit information from users, default config-
urations, and manufacturing tests, and resolve inconsistencies or
ambiguities.

For the part library, we use an object-oriented design represen-
tation where joints, linkages, or support structures inherit a com-
mon set of properties and actions, including: basic dimensions,
the part’s global placement in 3D space, and interfaces allowing
other components to connect to the part (similar to port-based
modeling methodologies [49], such as those used in SYSML).
Expert users can create new parts from scratch, or inherit and
extend properties from existing parts. Figure 2 demonstrates typi-
cal joints and links, as well as subclassing multiple instances of a
joint (e.g., the two spherical joint options).

For the configuration language, we use the YAML specification
[50] to encode the kinematic graph and manufacturing constraints.
Unlike XML and variants, YAML can store relational data structures
and embed other YAML files as input, allowing one to nest mecha-
nism descriptions or share complex designs. More importantly,
one can define a separate set of default specifications, such as pre-
ferred joint components and dimensions, that one can use to
resolve ambiguities if the user does not specify particular details.
This ability to fall back on prior configurations allows our algo-
rithm to generate printable mechanisms when novice users only
specify the high-level kinematic graph. It also permits a cascading
specification pattern similar to how cascading style sheets work in
a web-browser: expert users can set particular details (e.g., a
particular desired thickness or joint type) and the algorithm can
cascade backwards through a hierarchical set of default configura-
tions for parameters that remain ambiguous after considering the
user and manufacturing specifications.

For example, a user might specify that a joint should be a
“spherical joint,” however, given the two options in Fig. 2 it is
unclear whether they mean a fully enclosed joint or the cage-type
socket. In this case, one of two things might occur: (1) If the
options are equally preferable with respect to manufacturing limi-
tations, the algorithm uses the one defined in the default specifica-
tion (e.g., a fully enclosed socket), much like a word processor
might default to “times new roman.” (2) If the manufacturing
specifications (Sec. 3.3) place limits on the part, such as minimum
spherical clearances or single- versus dual-extrusion printing, then
certain defaults might be eliminated and the algorithm would cas-
cade back to other options. For example, the fully enclosed socket
in Fig. 2 can only be built using AM machines that print dissolve-
able support, whereas the cage-type socket, while structurally
weaker, can be printed in two parts on a single-extrusion machine
and then snap-fit together after printing.

As another example, consider two different users building a
crank-slider linkage (RRRP). For a user providing the minimum
required kinematic graph as input and no additional details
(Fig. 3), the algorithm would cascade back to using all default
joints and linkage types. In contrast, a different user might specify
particular joint and link details (such as increasing the link thick-
nesses and altering revolute joint sizes and types—Fig. 3-boxed),
overriding some details and cascading back to defaults on others.
By controlling this cascade process, the algorithm can ensure
mechanism printability: in the boxes in Fig. 3 the user wants to
decrease a joint size (d), however the algorithm might override
those modifications if the test-case (Sec. 3.3) indicates that the 3D
printer could not produce free-running joints with that size or
clearance.

3.2 Geometric Reasoning and Constraint Satisfaction.
Next, we resolve ambiguities in the specific configuration,
placement, and dimensions of the mechanism. These include: (1)
solving any position constraints regarding joint angles, etc.; (2)
ensuring that parts correctly connect to adjoining parts to permit
appropriate DOF; and (3) modifying any geometry so that it can
be reliably printed on a specific AM machine. To solve these, we
take advantage of the mechanism graph structure and use the
following progression (Fig. 4).

First, we translate the user input (Fig. 4.1) into an idealized
mechanism graph (Fig. 4.2) using the techniques in Sec. 3.1. We
randomly project the node positions into 2D, and then use the
geometric constraint solver proposed by van der Meiden and
Bronsvoort [51] (Fig. 4.3) to resolve any geometric constraints.

If the graph is underconstrained (e.g., missing certain lengths or
angles), we substitute constraints as shown in Fig. 5. A common
cause of underconstrained mechanisms lies in not constraining
their driving DOF: in a four- or six-bar linkage, there will typi-
cally be one angle or length that is needed to constrain the system
to one particular point in its motion path. For CAD systems in
general, automatically adding constraints is an indeterminate
problem, however, one can leverage a mechanism’s structure to
solve special cases. For example, if a driving DOF is missing, we
iterate over the mechanism graph as follows (Fig. 5):

(1) Build a breath-first search graph over nodes in the graph,
using one of the grounded nodes as the root.

(2) Traverse the graph, adding candidate angle constraints
between a node and two of its neighbors (for all permuta-
tions of neighbors).

(3) Evaluate candidates using either a solver [51] or the loop
mobility criterion (Sec. 4.4) [2] to determine if the added
constraint will determine the system.

(4) If so, sweep angles in the constraint until the angle satisfies
the rest of the mechanism constraints. If not, move to the
next candidate.

Our present approach is limited to only slightly
underconstrained systems (missing a single angle or length). For
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severely underconstrained systems missing several angles or
lengths, one would need more advanced techniques, such as enu-
merating a mechanism’s configuration space [52] and then select-
ing points among that space, or to elicit additional information
from the user.

If the input graph is overconstrained, or if the user specifies
infeasible geometry, the algorithm raises an error to the user, who
can modify the original input file. In cases where the model is cor-
rectly constrained, but the constraint solver [51] cannot find a
solution, we restart with randomized positions to explore different
local optima and then terminate if we are still unable to resolve
the constraints.

Once the algorithm finds joint positions that satisfy geometric
constraints for the graph (Fig. 4.3), it selects specific components
(Fig. 4.4) from the part library (Sec. 3.1) to optimize further. It
chooses a component from the library using either the user-input
file (if specified) or from a default configuration. At this point, the
algorithm knows approximately where each part should go and
which geometry it might use for each part, but not how to cor-
rectly position and interface those pieces.

To determine how components should connect, the algorithm
requests the specific interfaces from each object (Sec. 3.1). Recall
that each object (e.g., revolute joint, bar linkage, prismatic joint,
etc.) defines its own set of interface points on the geometry (e.g.,
the end faces of a bar or the outer collar of a revolute joint). The
algorithm aggregates these interfaces and assumes that if two parts
are linked in the graph, then any interfaces on one part could con-
nect to any interfaces on another (Fig. 4.5).

The difficulty comes in selecting which particular interface pair
to choose: (1) certain interfaces might be kinematically coupled
(e.g., the two ends of a revolute joints represent two different
interfaces, despite sharing a common, rigidly connected shaft),
and (2) interfaces have physical consequences since a particular
joint interface implies a specific height for a joint or linkage that
must reconnect to the graph (see examples in Fig. 6).

To select appropriate interfaces, we formulate the task as a
MILP problem: binary indicator variables activate or deactivate
each interface and each part has a specific continuous z-height or-
thogonal to its movement direction. We then minimize the part’s
build volume (reducing printing time and support material), sub-
ject to the following constraints: (1) grounded links are at
height¼ 0 with respect to the build plate; (2) two interfaces
should connect at the same orthogonal height (i.e., interfaces con-
nected on the graph should be physically coincident in space); and
(3) if a joint has interfaces for the same DOF (e.g., the two shaft
ends in a revolute joint), then only one edge in the mechanism
graph can connect to that DOF (i.e., edges passing through a node
in the mechanism graph cannot share interfaces that are rigidly
connected, since that would defeat the purpose of the joint). We
then solve this MILP using Mitchell et al. [53]. For feasible solu-
tions, the algorithm moves the parts so that the interface locations
align correctly in 3D space. If the solver returns no feasible solu-
tions, our algorithm terminates, since the joint parameters (such as
heights, lengths, or depths) often overconstrain feasible solutions.
One extension of this work would be to progressively relax non
user-specified dimensions to expand the feasible region.

After the algorithm optimizes the positions and interfaces, it
alters lengths, widths, radii, or other parameters of matching parts
so that they fuse together correctly. For example, in Fig. 4.6, since
the algorithm knows that the end face of a bar connects to the out-
side joint collar, it calls a function defined in the part library (Sec.
3.1) on the interface pair that modifies the bar by reducing its end
length, such that it only connects to the outer collar without inter-
fering with the joint’s internal shaft.

3.3 Detecting Manufacturing Constraints. To print mecha-
nisms on different printers, a user has to know their machine’s
capabilities. While one can approximate this using a manufac-
turer’s specifications (e.g., nozzle diameters, (x, y, z) tolerances,

etc.), the printer’s actual performance may vary substantially
depending on how the machine was installed or its operating envi-
ronment. In addition, the slicing software that turns a user’s
stereolithography (STL) files into machine code often introduces
additional variation. Given this variation, a user cannot predict
how well his or her machine will produce mechanical parts. As
mentioned in Sec. 2.3, past researchers have developed physical
test-cases for measuring machine accuracy; however, these rely
on measurement equipment and technical expertise.

To allow novice users to assess their machine’s ability to pro-
duce movable joints, we designed a printable test-case that incor-
porates the principle used in a Matryoshka doll, also known as a
Russian nesting doll: we nest similar parts on top of one another,
monotonically increasing their relative clearance distances (e.g.,
0.6 mm, 0.5 mm, 0.4 mm, etc.), so that certain parts fuse together
around the machine’s threshold clearance.

In Fig. 6, the L-shaped, semicircular, and hemispherical pieces
test the clearances between planar, cylindrical, and spherical
joints, respectively. The fourth piece varies the thickness from left
to right (with dimensions 4 mm, 2 mm, 1 mm, and 0.5 mm, respec-
tively), allowing a user to deflect each piece and qualitatively
evaluate a material’s strength.

Once a user prints the test-case, he or she simply counts the
number of separated components (Fig. 6, upper row) and enters
those counts into a configuration file. Based on these counts, our
algorithm maps the number of separated components into approxi-
mate planar, circular, and spherical clearance tolerances. For
example, given the number of separated parts in Fig. 6(a), the
minimum planar, revolute, and spherical clearances are 0.3 mm,
0.4 mm, and 0.6 mm, respectively. One can also use this technique
to compare printing performance along different orientations or at
different locations in the build volume.

To verify the accuracy of our proposed test-case, we tested both
its internal and external validity: if internally valid, our manufac-
turing test should correctly mirror the actual performance of
printed joints, and if externally valid, it should consistently
replicate across different machines and accuracy levels.

To demonstrate internal validity, we printed a series of pris-
matic, cylindrical, and spherical joints on our consumer-grade
Flashforge Creator Dual Extrusion 3D printer using acrylonitrile
butadiene styrene (ABS) and high impact polystyrene (HIPS) as

Fig. 1 An overview of MechProcessor framework. The user
provides a kinematic graph, along with a set of desired default
lengths, radii, etc.; (a) a part library containing parametrized
kinematic elements is (b) matched to the input graph and
adjusted to account for user-specified geometric constraints
and (c) machine capabilities, as captured by a calibration test-
case. Our framework resolves these constraints and (d) gener-
ates a customized stereolithography file tuned to a particular
AM machine’s capabilities.
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the dissolvable support material. We recorded whether the per-
formance of the joints mirrored the test-case. Each joint used
clearances equivalent to the test-case. As shown in Fig. 6(a), the
joints mirrored the test piece exactly as predicted: Clearance
values that fused in the test piece, likewise fused in the joints.

To demonstrate external validity, we repeated the above test on
two additional machines: the Stratasys Dimension 1200es and
uPrint SE. These professional-grade machines cost 1 to 2 orders
of magnitude more than standard consumer-grade printers, and
one would expect their performance on both the test-case and
printed joints to improve commensurately. The Dimension 1200es
and uPrint SE use a proprietary ABS blend as the main material,
but different proprietary soluble support materials.

As expected, both professional-grade printers achieved smaller
clearances compared to the Flashforge tests (Fig. 6). Moreover,
the respective test-cases mirrored the mechanical joint tests
exactly across all printers. Our test-case provides more informa-
tion than could simply be obtained using the manufacturers speci-
fications: the fact that the Stratasys machines can produce tighter
spherical and prismatic tolerances than circular tolerances cannot
be readily discerned from the manufacturers specification sheets.

While this nesting approach should scale up or down to differ-
ent resolution sizes and build volumes (provided the clearance
sizes are adjusted appropriately), we have yet to verify that claim
on machines with an accuracy greater than that of the Dimension

1200es. The test piece only works with removable support (the
joints our library generates also require that capability). This test-
case only needs to be run once upon machine installation and can
be used to recalibrate our algorithm if the machine’s performance

Fig. 2 Examples of some parametrized parts included in the
library, include: rod and bar linkages; cylindrical, revolute, and
spherical joints; and involute gear pairs

Fig. 3 An example of a user-input file for a crank-slider linkage
(RRRP). The details inside the boxes indicate details that a user
might provide to customize the generated mechanism. Remov-
ing these details would cause the algorithm to cascade back to
default values. If user-provided values conflict with manufactur-
ability limits from the test in Sec. 3.3., they would be
overridden.

Fig. 4 How we progressively resolve ambiguities in the user
input (1): (2) Create an undirected mechanism graph, (3) solve
for the ideal 2D positions using a geometric constraint solver
[51], (4) substitute in user-selected components from the
library, if specified, or appropriate defaults given the AM test
(Sec. 3.3), (5) create an interface graph from the selected com-
ponents and optimize build volume using MILP [53], and (6)
locally modify the geometry at the selected interfaces to ensure
movement when printed

Fig. 5 For underconstrained systems, we attempt to reduce
the mechanism DOF by adding angle constraints starting
breadth-first from a randomly selected ground node
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degrades over time. The test-case only accounts for systematic
machine error and does not account for one-off errors in printing
that occur due to misprints (e.g., when supporting structures peel
and warp due to a nonlevel build plate). In these cases, joints that
would otherwise print fine will be warped and may not move as
intended.

4 Physical Case Studies

We provide several physical case studies that demonstrate how
a user-input file translates to a physical mechanism: (1) a four-bar
linkage, (2) a crank-slider linkage, and (3) a six-bar linkage. We
implemented the framework in PYTHON, using FREECAD (as a wrap-
per for the OPENCASCADE CAD kernel) to generate the STL mesh

Fig. 6 Top: Our manufacturing test-case accurately emulates the performance of joints
across three printers: a consumer-grade FDM machine (Flashforge Creator Pro), and two
professional-grade FDM machines (Stratasys uPrint SE and Dimension 1200es). Across all
tests, the joint clearances decrease monotonically from 0.6 mm to 0.2 mm. Middle: Our algo-
rithms modify the user-specified geometry to match those achievable clearances. The right-
hand side shows the same mechanisms, but printed on different printers and then manually
positioned so that each mechanism is in a different point in its motion path. Bottom: the YAML

input file and printed mechanism for a four-bar linkage and Stephenson type-II linkage.
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files. We printed all parts on a sub-$1500 FlashForge Creator
Dual Extrusion 3D printer using ABS and HIPS as the dissolvable
support material. PYTHON code used the user-provided YAML files to
generate all examples. Those who wish to replicate our results can
download the open-source library, manufacturing test-cases, and
example STL files from the paper’s companion website.2

All mechanisms can be parametrically controlled by the user to
increase link lengths, etc. However, all joint and linkage place-
ment is performed automatically, and the joint clearances for the
revolute, prismatic, and spherical joints are calculated via the one-
time calibration test in Fig. 6. Figure 6 demonstrated how the
user-input file maps to the underlying mechanism graph and
the resultant 3D printed mechanism. They also demonstrate how
the design representation handles user-specified constraints, such
as different joint lengths or types.

The printed examples mirror the results of our test-case, except
when the printer misprints its material. For example, when parts
fail to adhere to the build plate securely or when extrusion nozzles
accidentally scrape and move support filaments warping the part.

5 Discussion and Limitations

The above methods come with several limitations that future
research could address: (1) design validation and optimization, (2)
user interface design, (3) additional kinematic pairs, materials,
and machine types, (4) algorithmic improvements to expand the
feasible domain of mechanism designs, and (5) improvements to
the manufacturing test-case.

5.1 Design Validation and Optimization. Presently, our
algorithm does not perform static, dynamic, kinematic, or interfer-
ence testing of the virtual model. Past research efforts in this area
could be combined with our framework to achieve this [27,28] by
incorporating it into either the initial geometric solution (Figs. 4.2
and 4.3) or as an additional objective function during the MILP
optimization (Fig. 4.5). Likewise, on the manufacturing side, one
could use our physical test-cases as a user-friendly input to analyt-
ical error-checking techniques [47,48], identifying machine speci-
fications by aggregating across multiple users and machines. A
similar approach might be used for capturing the strengths of
various print materials, and using those results to modify the
geometry, as in Ref. [43].

5.2 User Interface Design. Presently, our algorithm relies on
a set of YAML configuration files as input. Future work could pro-
vide more intuitive user interfaces that simplify how novices
design and print working mechanisms. One possible direction
could use 2D or 3D sketch [30,54] or drag-and-drop interfaces
[37] to automatically generate the input files. We intend to
implement such an interface and conduct formal user studies with
novice and expert participants in the future. Presently our repre-
sentation provides basic geometric connectivity, but does not yet
encode functional constraints, such as movement paths, which
could be used to further guide mechanism generation.

5.3 Expanded Kinematic Pairs, Materials, and
Machines. Our algorithms operate on lower-order kinematic pairs
(e.g., revolute joints, prismatic joints, spherical joints, etc.). How-
ever, mechanisms will combine these lower-order pairs into
higher-order pairs to save space or improve mechanism perform-
ance. Higher-order pairs would require improvements to the graph
generation, geometric constraint solver, and interface optimization
(Figs. 4.2, 3, and 5), to account for collapsed nodes and interfaces
in the mechanism graph.

Our test-case and mechanisms require removable support
material, given the internal joint complexity. While this is not
a large barrier to entry (dual-extrusion FDM machines are

presently available for under $1500), the vast-majority of
consumer-grade FDM machines only support single extrusion.
Future research could explore algorithms for automatically
segmenting the mechanism graph at joints in such a way that
a single extruded parts might snap or assemble together into
a larger mechanism. Expanding our techniques to account for
mixed or functionally graded materials [41] is another open
challenge.

5.4 Expanding Feasible Mechanism Domains. Certain
mechanisms represent future research avenues: (1) particular con-
figurations of over- and underconstrained geometry and (2) infea-
sible interface selections. Our algorithm terminates and requests a
revision from the user if the user specifies inconsistent,
overconstrained, or underconstrained geometry. This occurs if the
default lengths, angles, etc. do not produce a feasible solution.
This might be resolved if the algorithm had access to additional
information: if it could simulate a mechanism’s dynamic or kine-
matic performance, it could break ties between candidate con-
straints to produce reasonable motion. The tradeoff between
following user specifications and correcting faulty designs
remains an open question. Interface optimization may also fail if
the allowable part geometry is too rigidly defined (i.e., it cannot
adjust the heights of various joints or connections to find a feasi-
ble solution). In this case, we require the user to relax possible
constraints on a part (such as the height) to open up feasible
regions. However, future work could explore automated methods
to sequentially relax these component constraints subject to some
penalty.

5.5 Improving the Manufacturing Test-Case. In long joints
with tight clearances dissolving the support material may take lon-
ger than a user is willing to wait, even if the joints would eventu-
ally separate. Figure 2 demonstrates one possible solution: a
spherical joint uses a cage-type socket, rather than a fully enclosed
socket, so that the solution more easily dissolves the supports.

The examples in Sec. 4 used polymer dual-extrusion FDM
processes. While we do not expect our techniques to differ sub-
stantially for other processes or material types, future research
could explore different manufacturing methods, such as direct
metal laser sintering. Likewise, specific printer CAM settings
(i.e., how the machine transforms the STL file into tool paths)
affect the test-case results: if settings such as infill size or how it
shells an STL file differ between the test-case and the printed
mechanism, one would expect the test-case to lose accuracy. One
can avoid this by printing a mechanism with the same print set-
tings used to print the test-case.

6 Conclusions

This paper presents methods for fabricating printable mecha-
nisms from a user-specified graph and basic dimensions. We cali-
brate these methods to a specific machine’s capabilities using a
nesting-doll test-case that does not require measurement
equipment or prior knowledge of a machine’s tolerances and spec-
ifications. We demonstrate this capability on several examples: a
four-bar linkage, a crank-slider linkage, and a six-bar linkage. All
examples are entirely programmatically generated.

Our framework accomplishes this through algorithms that
leverage (1) an object-oriented design representation that allows
experts and novices alike to describe mechanisms of differing com-
plexity, cascading back to defaults when needed; (2) a series of con-
straint solvers that calculate mechanism positions, select
components, and optimize how those components attach to one
another (Fig. 4); and (3) a printable test-case that captures machine
variation in planar, revolute, and spherical joint clearances, as well
as minimum part thickness. Through simple counting, a user can
capture appropriate joint tolerances, which our algorithm uses to
modify the geometry. To verify the test-case, we compare the test-2https://ideal.umd.edu/mechprocessor
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case to printed mechanical joints across three printers of varying
quality: a Flashforge Creator Pro, a Stratasys Dimension 1200es,
and a Stratasys uPrint SE. In all cases, the joints match test-cases
exactly. The entire library and source-code is available for experi-
mental replication or extension by future researchers.2

The utility of our contributions is several folds:

(1) Novices can now prototype complex, moving mechanisms
without needing familiarity with the full capabilities of a
CAD system or measurement equipment.

(2) Mechanisms and robotics researchers can use or modify our
library to quickly test and print mechanisms or platforms
on various AM machines.

(3) Our AM test-case provides an intuitive way to approximate
joint clearances required for mechanisms across different AM
size scales and without requiring any measuring equipment.

All of the above can be performed on equipment costing less
than $1500, lowering the barrier-to-entry for printable mecha-
nisms and robotics. It also opens up many opportunities for educa-
tional initiatives that can use our framework and library for STEM
education or outreach.

The “Maker Movement” and recent interest in AM have
placed renewed interest on incorporating novices into the
design of new devices. Society needs tools not just for the
mass consumption of AM goods but also those that empower
novices to create new ideas. Our framework steps in that
direction, providing a means for those without extensive me-
chanical knowledge to contribute and identify as makers; to
turn consumers into designers.
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