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Abstract
This paper presents a large-scale empirical study of

OpenIDEO, an online collaborative design community. Us-
ing network analysis techniques, we describe the proper-
ties of this collaborative design network and discuss how
it differs from common models of network formation seen
in other social or technological networks. One major find-
ing is that in OpenIDEO’s social network the highly con-
nected members talk more to less connected members than
each other—a behavior not commonly found in other social
and collaborative networks. We discuss how some of the in-
terventions and incentives inherent in OpenIDEO’s platform
might cause this unique structure, and what advantages and
disadvantages this structure has for coordinating distributed
design teams. Specifically, its core-periphery structure is ro-
bust to network changes, but is at risk of decreasing design
exploration ability if the core becomes too heavily clustered
or loses efficiency. We discuss possible interventions that
can prevent this outcome: encouraging core members to col-
laborate with periphery nodes, and increasing the diversity
of the user population.

1 The Rise of Distributed Design Communities
To solve increasingly complex design problems, compa-

nies are beginning to look outside of their existing talent pool
to absorb and build off of ideas from distributed individuals
or groups. This practice is called different names by differ-
ent groups, including Open Innovation, Crowdsourcing, and
Crowd Design, among others. It is practiced by a range of
organizations, from large global corporations (e.g., P&G’s
Connect+Develop program1) all the way down to small de-
centralized groups of individuals (the Open Source Software
movement). Internet technologies enable regular people to
cooperatively design better products, permitting a powerful
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new kind of product development process.
To increase the effectiveness of these distributed teams,

it would be helpful to understand how they act differently
than traditional groups, and how existing design and man-
agement practices need to be adapted to this new setting.
This paper contributes to that understanding through the use
of network analysis techniques. By comparing a real-world
design network with prior models of collaborative networks,
this paper presents two main contributions:

(1) An empirical network analysis of OpenIDEO, an online
design innovation network, which can act as a test bed
for models of design networks.

(2) A summary of key differences between observed behav-
ior and existing network models, with discussion on the
implications for directing design practice.

Specifically, we explore the role of community structure
in OpenIDEO, explaining how some of its common network
properties predispose OpenIDEO to certain advantages and
disadvantages when facilitating idea generation and collab-
oration. We find that OpenIDEO’s social interactions center
around a core of users who communicate more frequently
with members on the periphery than among themselves (an
uncommon disassortative core-periphery social structure).
This structure is more robust to network changes than stan-
dard social networks—a good thing for open innovation plat-
forms in which participation is voluntary. However, the cen-
tral core structure also represents a risk to potential idea gen-
eration effectiveness: high clustering within the core could
precipitate design fixation on a small number of concepts as
a result of complex contagion (repeated exposure to the same
stimuli from multiple people) [1]. We discuss several possi-
ble interventions that can prevent this effect, such as promot-
ing collaboration between core and periphery members and
increasing diversity of participants.

This paper provides a brief introduction of current net-
work models and reviews previous studies of similar net-
works (e.g., Open Source Software networks, Co-Authorship
networks, etc.). It then describes the OpenIDEO dataset and
the network qualities we studied, and presents our empirical
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results. Finally, it discusses the implications of our results on
design network models and management strategies for dis-
tributed design teams.

2 Prior Research on Network Structures
Despite the growing trend to use distributed design com-

munities to crowd-source design tasks, there has been limited
empirical study of the network properties of product or ser-
vice design communities themselves. This is due, in part, to
the lack of non-proprietary data, as well as the relatively re-
cent emergence of online design communities compared to
communities in different fields (e.g., software or social com-
munication). A notable exception is Stephen et al. [2], who
studied network effects of small, experimentally-controlled
design teams. This paper extends that line of work by study-
ing large in-situ teams. To our knowledge, this paper is the
first to empirically study the collaboration practices of a dis-
tributed product or service design community that operates
outside of a single corporate entity.

This paper builds on prior work in three areas: 1) net-
work analysis techniques, 2) existing empirical studies of
collaboration networks, and 3) existing theoretical models
of design networks. These three aspects provide the back-
ground necessary to discuss the main results of our study,
which center around the network properties of OpenIDEO
and its effects on ideation.

2.1 Background on Network Analysis Techniques
Network Analysis is a class of mathematical techniques

that can be used to study particular types of complex phe-
nomena. Its primary assumption is that a phenomenon can
be reasonably modeled as a mathematical graph consisting
of nodes (or vertices) connected to each other by links (or
edges). For example, in a social network such as Facebook, a
node might be a person, a link might be the strength of a rela-
tionship, and the phenomena of interest might be how a viral
video propagates among people over time. By representing
phenomena as graphs, network analysis can adapt measures
from graph theory in order to explain or predict certain be-
haviors, ranging from disease transmission to co-authorship
to protein interactions. A full summary of these techniques
is beyond the scope of the paper, but interested readers are
directed to [3, 4].

The most critical assumption in any network analysis
study comes from how the network nodes and links are de-
fined. However, once the nodes and links have been defined,
one can compare several graph properties, both on a global
(whole network) level, and at a local (node-centric) level that
provide insight into the behavior of the network. For exam-
ple, graph properties can be used to predict qualities like the
social power of individuals, weak-points in information flow
within networks, or the likelihood of co-authorship between
researchers.

Our goal in this paper is to investigate several network
properties that have implications on the ability to share and
build off of information present in a design collaboration net-

work. We first define some commonly used terms from Net-
work Analysis that help clarify our later explanations:

Link (also called an edge) is a connection between two
nodes on the graph. It can have a direction as well as
a weight (e.g., A sent B ten emails).

Size is the total number of nodes in a graph.
Diameter is the length of the shortest path between the two

farthest nodes in the graph. It provides a sense of how
spread out the graph is and provides one measure of the
resistance to the flow of information.

Connected Component is a subset of the nodes in a graph
that can be reached by following links between them.
For example, if two nodes are connected to each other,
but not to any other nodes, then they form their own con-
nected component. Real-world networks tend to have
one large connected component which contains most of
the nodes (e.g., the center component of Fig. 1d contains
around 95% of the nodes), followed by some smaller
components with only a few nodes each (e.g., the single
nodes on the outside of Fig. 1d).

Density is the ratio between the number of links that exist
between nodes and the maximum number of possible
links that could exist (i.e., a complete graph). In large
real-world networks, the density is typically low.

Clustering Coefficient is a measure of how tightly con-
nected nodes are in a graph, specifically measuring the
ratio of number of triangles between a node and any
two neighbors and the number of possible triangles (e.g.,
how many of your friends are also friends with each
other) [3]. Node-wise clustering coefficients can be av-
eraged to characterize how clustered a graph is as a
whole [3].

Centralization refers to how well the graph is centered
around a single focal point on a scale from zero to one.
High centralization would imply a deeply hierarchical
structure, such as a star graph (Fig 1a), while low cen-
tralization would imply that all nodes are equally cen-
tral, such as a cycle graph (Fig 1c).

Efficiency measures how easily and quickly information is
transferred across a network. It is inversely related to
the average shortest path length required to go between
all pairs of nodes on the graph; if efficiency is high, all
nodes are within a few links of one another, and if effi-
ciency is zero then no node can communicate with any
other node.

Degree of a node measures the number of incoming and out-
going links to that node. For example, in Fig. 1(c), node
one has a degree of four because it connects to four other
nodes.

Degree Distribution refers to the fact that different nodes
have different degrees. The distribution of these degrees
follows different patterns depending on the type of net-
work structure. In many real-world networks, this dis-
tribution is power-law distributed (or scale-free), which
means that it exhibits a relatively linear plot when plot-
ted log-log scaled, as in Fig. 3. This corresponds to
many nodes having only a few links, and only a few
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nodes having many links.
Assortativity or assortative mixing, is the propensity for

nodes in a network to create links with similar nodes,
and to avoid creating links with dissimilar nodes. For
example, engineers might be more likely to be friends
with other engineers than with dentists, and vice versa.
Degree assortativity, means that nodes with high degree
(those who communicate with many people) are more
likely to communicate with other nodes with high de-
gree, instead of nodes with low degree (those who com-
municate infrequently). Social networks are known for
being positively degree assortative.

k-Clique is a set of k nodes that are all connected to one
another (i.e., they form a complete sub-graph). For ex-
ample, if A knows B and C, and B also knows C, then A,
B, and C are a 3-clique. We study these cliques in sec-
tion 3.3 to address community structure in OpenIDEO.

We return to several of the above network properties in
section 3, when we address how each of them determines the
advantages and disadvantages of the OpenIDEO network for
idea generation and collaboration.

2.2 Empirical Findings from Other Fields
We review prior studies of three types of networks: 1)

Open Source Software, 2) research co-authorship, and 3) so-
cial communication. We pick these three since they each
have elements you would expect to find in a collaborative
design network, and therefore serve as a meaningful basis on
which to benchmark OpenIDEO.

Open source software is similar to open design networks
in that the members are typically decentralized, can choose
which projects they want to work on, and are creating some
artifact that will be used by people. This type of network
study is the closest existing example to the work that we are
presenting, though it is different in both the kind of project
as well as the specific mechanisms of collaboration. In most
studies of Open Source Software, the node unit of analysis is
a particular developer and a link exists between developers
if they have worked on the same project together [5]. These
networks display high assortativity and often generate many
smaller communities, particularly around programming lan-
guages. They possess standard power-law distributed degree
distributions that are typical of many social networks [6].

Research co-authorship is another type of network
where there is formal interaction and the goal is to gen-
erate new ideas in collaboration with others. It differs
from OpenIDEO in that the barriers to collaboration in
OpenIDEOs case are smaller than for research co-authorship,
and the online social interactions in OpenIDEO are trace-
able in a way that is not feasible in research networks. Co-
authorship networks are also positively assortative, tend to
form communities within the larger network, and have a low
average clustering coefficient [3].

Social networks, such as social media or email net-
works, are similar to online design networks in that a trace-
able process of social communication occurs between partic-
ipants, and because OpenIDEO’s user population is situated

in a social community. Social networks tend to be highly
positively assortative with multiple smaller communities of
people interacting together [3,7,8]. They also tend to possess
power-law distributed degree distributions, though there are
notable exceptions (e.g., Facebook [8]).

2.3 Theoretical Models for Design Networks
While there has been limited empirical work on actual

design networks, prior research has proposed different theo-
retical models for how design networks might operate. The
vast majority of available theoretical models for collabo-
rative design networks are either simulation studies using
agents with predefined collaboration rules, or are optimiza-
tion studies which fit common theoretical network models,
such as Preferential Attachment models [3, Ch. 14.1], to data
from almost exclusively open source software communities.

Agent-based simulations typically define a computa-
tional model of a product, and then create a series of software
agents who can choose what portion of the product to work
on. These simulations then track the product and commu-
nication between the agents, building a simulated collabora-
tion network that can then be analyzed for structural prop-
erties [9–11]. The typical applications for this line of work
are in identifying potential strategies for managing complex
system design, under the assumption that the agents behave
similarly to real people.

In contrast, network optimization studies attempt to take
real network data and fit theoretical network models to that
data [12]. The key assumption behind this line of work is that
if real networks obey certain properties, such as power-law
distributions, one should be able to determine those param-
eters by matching the theoretical model to the data. Upon
doing so, insights are often gained about why the network
does or does not conform to theoretical expectations.

3 Analysis of OpenIDEO Design Network
We chose OpenIDEO from among other possible online

design collaboration platforms (e.g., Napkin Labs, frogMob,
VehicleForge, etc.) due to the breadth of project types, the
large user community, and availablity of collaboration meta-
data (such as explicit links between concept ideas). To under-
stand both the general properties of the OpenIDEO network
as well as the properties of any sub-communities, we divided
our analysis into three parts: 1) Structural measures that ad-
dress information flow within the network; 2) Community
measures that address the network’s robustness and commu-
nity structure; and 3) Effects of certain members that address
the specific role of possible OpenIDEO interventions.

3.1 Data Collection and Pre-processing
We collected data from 22 OpenIDEO challenges that

were complete at the time of writing2. Most design chal-
lenges start with a question, for example “How might we

2http://www.openideo.com/open
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restore vibrancy in cities and regions facing economic de-
cline?” Each challenge consists of a series of sequential
phases: Inspiration, Concepting, Applause, Evaluation, Se-
lection of Winners, and Realization. During Inspiration, con-
tributers can submit “insights, examples, stories, or com-
ments”3 designed to provoke possible solutions from the
community. During Concepting, contributors submit con-
cepts designed to solve the challenge. Inspirations and con-
cepts are typically a few paragraphs long with accompanying
figures.

In either stage, contributors can link to other people’s
inspirations or concepts by clicking a “build off of this idea”
button in the web interface. This creates an explicit link that
we use to model interrelations between the submissions: we
construct a graph (using the NetworkX library [13]) where
nodes represent a submission in the particular design chal-
lenge, and we add a directed link from node A to B if concept
B builds upon concept A (e.g., Fig. 1). We refer to this as the
concept graph. We created separate concept graphs for each
of the 22 challenges.

During all stages of the challenge, people may post com-
ments on other people’s concepts as well as reply to com-
ments on their own concepts. To model this social interac-
tion, we construct a separate graph (the social graph) where
each node represents an OpenIDEO user, and a weighted di-
rected link is added from user A to user B if user A comments
on user B’s concept for that particular design challenge or
if user A replies to a comment given by user B. Every ad-
ditional interaction from A to B adds an additional unit of
weight to the link between A and B. There are separate so-
cial graphs for each of the 22 challenges. There are particular
users, who we refer to as OpenIDEO community managers,
that have specific roles on the platform: they help facilitate
the challenge by reaching out to many concepts and com-
menting on them to promote interaction. There are usually
two of these managers per challenge, one who is a member
of IDEO staff and another who is an active member of the
larger community.

3.2 Structural Measures
The measures in this section are designed primarily to

address the ease with which information flows through each
network. Greater size and diameter imply that information
has farther to travel, while greater clustering, centralization,
efficiency, and density imply greater ease of information
transfer.

Comparing the concept and social graphs across chal-
lenges reveals certain key structural similarities and dif-
ferences: Despite similar network sizes, the two networks
have drastically different link structures, diameters, den-
sities, and average clustering. Figure 1b and d illustrate
representative concept and social graphs, respectively, po-
sitioned using a Fruchterman–Reingold force directed lay-
out algorithm; immediate inspection reveals the tightly clus-
tered core-periphery structure of the social graph (Fig. 1d) as
well as the sparser, more community clustered concept graph

3http://www.openideo.com/how-it-works/full.html

(Fig. 1b). To make the differences between these structures
clearer, Fig. 2 highlights several key similarities and differ-
ences:

Size (Figure 2a): within each challenge, both the con-
cept and social graphs have approximately between 200-
800 nodes, with two concept graphs reaching into the low
1,000s—these sizes are fairly small compared to social in-
ternet communication networks, but large compared to the
size of typical collaborative design groups. Particularly for
the concept graphs, this size indicates that it would be time-
prohibitive for any individual to actually read through all
available ideas in a challenge.

Diameter (Figure 2b): Since both types of networks in
OpenIDEO have disconnected components (thus infinite
graph diameters), it is more reasonable to measure the diame-
ter of the largest connected component of the graph. For that
case, OpenIDEO’s social graph has a significantly smaller
component diameter than that of the concept graph, despite
their being of roughly equal size. Part of the reason for this
smaller diameter is the fairly efficient center of the social
graph (Fig. 1d) which bridges many nodes, decreasing the
distance information needs to travel and making communi-
cation and feedback easier to transmit.

It is notable, though not unexpected, that both the con-
cept and social graph have disconnected components. This
indicates that there are concepts that are never being built off
of and users who are not participating in the social commu-
nity, both of which are losses of potential information.

Density (Figure 2c): The social graph is about four times
as dense as the concept graph—most people who help out
with the challenge interact at least once, whereas, on average,
42% of the inspirations or concepts that get submitted are
never built off of (or at least tagged as such on the website).
The concept graph’s low density is possibly due to the shear
number of available concepts or the effort required to build
off of an idea.

Average Clustering Coefficient (Figure 2d): As ex-
pected, the sparsely connected and spread out concept graph
has low average clustering, while the social graph has higher
clustering, roughly comparable to other social networks.

Centralization (Figure 2e): Figure 2e demonstrates that
both the concept graphs and social graphs are decentralized,
with the concept graphs having significantly less central-
ization. Both of these results match what you would ex-
pect from an open innovation platform: many users should
have access to different parts of the graph in order to have
exposure to diverse groups of ideas and people. Part of
the increased centralization in the social graph comes from
the presence of the OpenIDEO community managers who
are well connected to many members of the social commu-
nity—a point we explore more in section 3.4.
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(b) Concept Graph 

(d) Social Graph(c) Cycle Graph

(a) Star Graph

Fig. 1: Directed links are represented by a thicker segment indicating the direction (e.g., in (c) 2 points to 3, and 3 points
to 4). (b) is a concept graph, where red nodes represent inspirations and the green nodes represent concepts. (d) is a social
graph, where redder nodes indicate more comments are received than given, whereas bluer indicates the opposite. In both
cases, the size of the nodes represent the degree (number of incoming and outgoing links) of the node.

Efficiency (Figure 2f): Figure 2f illustrates the global net-
work efficiency of both the concept and social graph. The
low efficiencies in the graphs come with both advantages
and disadvantages: on the one hand, lower efficiencies mean
higher network redundancy and robustness at a given den-
sity—the concept graph has both low density and low effi-
ciency, so it doesn’t gain the redundancy benefit, while the
social graph’s central core structure does. However, at a
given density, higher efficiencies create better information

transfer across the network and also correlate to lower clus-
tering—this is a useful structure when groups of people have
to collaboratively solve uncertain problems together without
getting stuck [1]. We will return to these ramifications in
section 4 once we discuss the role that community structure
plays in these two types of networks.
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Fig. 2: The concept graphs have higher diameter(2b) and lower density (2c) than the social graphs, despite roughly equivalent
network sizes(2a). This is possible due to small levels of clustering within the concept graph, and the fact that the social
graph has certain mechanisms built in that reduce the graph diameter (see section 4). The concept graph exhibits low
centralization(2e) and low global efficiency(2f), while the social graph exhibits medium centralization and low efficiency.
In both cases, higher efficiency would be more advantageous in order to ease transfer of ideas and feedback, respectively.
Figure 1 provides some visual intuition behind these results.

3.3 Community Measures
To understand the type of community structures inherent

in the OpenIDEO network, we conducted three types of anal-
ysis: (1) degree distribution, (2) assortativity, and (3) com-
munity detection using the k-clique percolation method [14].
The results were unexpectedly different than other networks
of their type: the social graph is highly disassortative with
only a single, large core structure, while the concept graph
has many small communities. For the social graph, this
unique structure gives it higher robustness under node re-
moval than standard social networks, and its disassortativity
likely helps it maintain that structure—both of these are ad-
vantageous properties for an open innovation network where
participation is voluntary.

Degree Distribution (Figure 3): Both the concept and so-
cial graphs appear power-law distributed, due to the linear

nature of the degree distributions in Fig. 3. In terms of ro-
bustness, power-law distributed networks are robust (i.e., do
not change much) under random node removal (i.e., random
people leaving the network), but are particularly susceptible
to targeted node removal (i.e., removing the highest degree
or most important individuals) [3]. However, as we demon-
strate below, OpenIDEO possesses a core-periphery struc-
ture that mitigates this robustness concern [15, 16]; even re-
moving several of OpenIDEO’s highest degree members (the
OpenIDEO community managers) does not significantly al-
ter the network properties.

Assortativity (Figure 4): One possible reason for the so-
cial graph’s robust core-periphery structure lies in the net-
work’s lack of assortativity. Figure 4 compares the assorta-
tivity of the OpenIDEO concept and social graphs, where as-
sortativity ranges from 1 (completely assortative) to -1 (com-
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(b) Social Graphs

Fig. 3: Degree complementary cumulative distribution func-
tions (CCDF) for the largest connected component of differ-
ent types of Open IDEO networks. Each line corresponds to
a different challenge. Both types of networks are generally
power-law distributed.

pletely disassortative).
Unlike other social networks, the OpenIDEO social

graph is actually disassortative, meaning that those mem-
bers who communicate frequently are actually communicat-
ing more often with infrequent members of the group rather
than frequent members, and vice versa. Indeed the directed
links in Fig. 1d display a balance between outsiders com-
menting on concepts generated by members within the core,
as well as core members reaching out to those on the periph-
ery.

We hypothesize that this is one of the reasons for the
disassortative, core-periphery structure seen in the social
graph. Other possible reasons include: OpenIDEO’s repu-
tation system, which awards “collaboration points” for com-
menting with other people’s concepts; community managers
who reach out to less active users; specific stages of the de-
sign process for commenting, viewing, and evaluating the
work of others; and soft incentives from IDEO that reward

1.0 0.5 0.0 0.5 1.0
Assortativity
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Social

Fig. 4: Unlike most social networks, the OpenIDEO so-
cial graph appears negatively assortative (disassortative) by
degree, rather than positively assortative. This means that
members with high degree (lots of communication) talk more
with those with low degree, rather than with others of high
degree. This style of communication is highly atypical of
most social networks. It reduces the diameter of the network
and increases the fraction of the members in the largest graph
component. The concept graph appears neither assortative
nor disassortative.

active users through possible job opportunities within the
larger company.

While these features undoubtedly improve participation,
collaboration, and disassortativity, they may not be present
in other design networks. We encourage this behavior as
a means to increase network efficiency, decrease clustering,
and improve idea generation—a recommendation we return
to in section 4.

K-Clique Percolation (Figures 5&6): To uncover any
possible community structures, we used the Clique Percola-
tion Method [17] to detect communities of different sizes and
overlap. This approach constructs k-cliques and then merges
k-cliques together if they share k-1 nodes in common, iden-
tifying larger communities. For example, a 2-clique would
be any 2 connected node pair, and a 2-clique community
would merge any pairs which shared at least 1 node in com-
mon—this special case would be the same as finding the
connected components of the graph. By increasing k, you
can uncover increasingly connected communities within the
graph.

Figure 5 compares the number of k-clique communities
for each type of graph as k is increased. The concept graph
contains many 3 and 4-clique communities, but none larger
than 5. The social graph contains, on average, 1-2 commu-
nities, but becomes a well-connected central community as k
increases.

To characterize what these communities look like,
Fig. 6 plots a representative example from challenge 10 that
compares the identified k-clique communities as k is in-
creased. In the concept graph, as k increases we see several
mostly non-overlapping communities form throughout dif-
ferent parts of the graph—this demonstrates patches of inter-
relation between small collections of different concepts. In
contrast, the social graph starts with a large, central commu-

7



concept10: 3-clique communities

(a) Concept 3-Cliques

concept10: 4-clique communities

(b) Concept 4-Cliques

concept10: 5-clique communities

(c) Concept 5-Cliques
social10: 3-clique communities

(d) Social 3-Cliques

social10: 4-clique communities

(e) Social 4-Cliques

social10: 5-clique communities

(f) Social 5-Cliques

Fig. 6: Visualizing the communities created using the k-Clique Percolation Method, for different values of k in both the social
and concept graphs [14]. This uses the networks from challenge 10 as a representative example. Colored sub-graphs represent
nodes within a given community, and red nodes represent nodes in multiple communities. For the concept graphs(6a-6c),
multiple, non-overlapping communities are present at different community scales(k=[3,5]). However, for the social graphs
there is generally only a single core community—any additional communities tend to be heavily overlapping (e.g., the red
nodes in 6f)

nity incorporating most of the network core. As k increases,
the core remains, decreasing somewhat in size. Any new
communities that form have substantial overlap with the ex-
isting central core, rather than forming on a different portion
of the graph—this is again consistent with the notion of the
social graph maintaining a core-periphery structure.

We conducted an additional verification of these results
using a different method proposed by Sarkar and Dong [7],
however, the conclusions were the same so we omitted the re-
sults in the interest of space. Interested readers are welcome
to download supplemental results of additional analyses.4

3.4 Effect of OpenIDEO Community Managers
One hypothesis for some of the observed behavior is that

the OpenIDEO community managers could be purposefully
acting within the network to produce these structures, and
that removing them from the graph would better resemble a
standard social network model. To test this hypothesis, we
removed those users, and any of their links, from the social
graphs across all challenges and re-ran all of our above anal-
yses. Almost all of our results remain unchanged.

Figure 7 compares the two most substantive changes:
(7a) demonstrates that removing the OpenIDEO commu-

4http://www.markfuge.com/openideo

nity managers increases the assortativity of the social graph,
though it still remains significantly disassortative; (7b)
demonstrates that the centralization of the network decreases
substantially. Given that the role of the OpenIDEO commu-
nity managers is to reach out and involve different members,
it is not surprising that their actions change both assortativ-
ity and centralization. What is surprising is that, even devoid
of the community managers’ comments, OpenIDEO’s social
graph remains disassortative and still somewhat centralized.
We discuss possible cause and implications of this next.

4 Implications for Design Practice and Research
Our interpretations of these results fall into two cate-

gories: implications for operators of design collaboration
networks, and implications for theoretical models of design
networks.

4.1 Implications for Operators of Design Collaboration
Networks

Low efficiency and high diameter reduce information
flow in the concept graphs. Since concept nodes repre-
sent ideas and links represent information flow in the form
of building off of ideas, the way concept graphs are evolving
into distributed, low efficiency networks leads to a couple of
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(b) Social Graphs

Fig. 5: Boxplots of the number of communities detected
using the k-Clique Percolation Method, for different values
of k in both the concept(5a) and social graphs(5b) [14]. The
concept graphs have a high number of small communities,
while the social graphs have only a few communities that are
significantly more connected. This reinforces the visual data
in Fig. 6.

possible conjectures: (1) the vast majority of concepts lack
useful information, and thus are not worth building off of; (2)
it is difficult to find and connect disparate concepts, leading
to only minor local clustering and limited global structure; or
(3) the time frame or format of concept submission is such
that it does not provide sufficient time to review, connect, and
cycle through iterations of concepts on the network.

Addressing (1) is outside of our scope, but (2) and (3)
could be addressed by employing many of the techniques we
have used in our network analysis: locating ideas from dis-
tance parts of the graph to present to participants as possible
idea “mash-ups” or using community detection techniques to
identify or create common idea groupings.
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(b) Degree Centralization

Fig. 7: Removing OpenIDEO community managers from
the social graph (“Social w/o CM”), we see some notice-
able, but small changes: the centralization of the network
decreases and the assortativity increases. The general behav-
iors we described above are unlikely to be caused exclusively
by existing OpenIDEO community managers.

Incentivizing core-periphery social structures increases
robustness, centralization, and efficiency. While the
core-periphery social structure was different than expected,
it carries with it several advantages and trade-offs that help
make the design network more robust and stable:

(1) Core-periphery networks are more robust to random or
targeted node loss than other power-law distributed net-
work types of similar efficiency [3, 15, 16]. This is good
since open innovation networks are reliant on voluntary
participation by individual nodes, any of which could
stop participating at any moment.

(2) The core-periphery structure is conducive to high cen-
tralization and network efficiency, which helps transfer
information among collaborators.

(3) The disassortative mixing creates an inclusive environ-
ment for periphery users to get involved and move to-
wards the core.

As a proactive strategy for strengthening design networks,
we recommend incentivizing disassortative behavior by ask-
ing high-degree core members to comment or collaborate
with periphery members more regularly (a practice currently
employed by the OpenIDEO community managers).

However, a highly clustered central core may harm
ideation potential. The primary concern with highly clus-
tered core networks is that, when used to communicate ideas
or concepts, it may impede idea generation. Highly clus-
tered, inefficient networks facilitate forms of complex conta-
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gion, or multiple repeated exposure, that can cause people to
prematurely cease exploring ideas [1]. Essentially, if all your
neighbors are exploring similar ideas, you are more likely
to produce something similar to that idea—fixating on it in
place of exploring other options. In a highly clustered net-
work this effect feeds on itself since many people have com-
mon neighbors, creating false confidence about the strength
of an idea and premature fixation on a portion of the design
space.

Therein lies the double-edged sword of using a core-
periphery structure as a base for a design network: it can
enable a robust, self-sustaining, efficient collaboration net-
work, but if the network becomes too clustered it can result
in premature design fixation and lack of exploration (“group-
think,” essentially). We recommend the following counter-
vailing measures that maintain structure and increase the ef-
ficiency of the network while reducing clustering:

(1) Encourage core nodes to collaborate with periphery
nodes—this increases disassortativity and efficiency,
and lowers clustering.

(2) Expand the diversity of the contributors—this improves
the overall diversity and quality of sets of ideas being
discussed, regardless of network structure.

(3) Encourage the idea generation practice of first doing
individual ideation before viewing the ideas of oth-
ers—this limits initial exposure to potentially fixating
ideas, after which members can take better advantage of
the core-periphery network regardless of its efficiency or
clustering.

(4) Encourage building off of ideas from different parts of
the concept graph—this creates better efficiency within
the concept graph and has the potential to combine dis-
tinct features from different parts or “idea communities”
within the concept graph.

4.2 Implications for Theoretical Models of Design Net-
works

Consider explicitly modeling disassortativity in collabo-
ration networks. The disassortative nature of the collabo-
ration social graph is non-standard in current social collabo-
ration models, and does not appear in datasets from nearby
domains like Open Source Software. We would encourage
those working on theoretical or simulation models of de-
sign team collaboration to consider including disassortativity
characteristics as part of their modeling strategy.

We need better understanding and models of core-
periphery structures. Research in core-periphery struc-
tures is still an active area of research [15,16]—there is much
to be gained by collaborating with other researchers working
in network analysis. As an example, we presented an ini-
tial exploration of the role of the community managers in
section 3.4—much more work could be done to explore the
possibilities for network interventions in design collabora-
tions. A natural extension of this work would be exploring
the structural effect of pairing new periphery members with

existing core members or recommending concepts from dif-
ferent parts of the concept graph.

5 Conclusion
This paper presented an empirical study of OpenIDEO,

a real-world design innovation network. Through the use
of network analysis techniques, we found that OpenIDEO’s
social graph is disassortative and lacks the multiple com-
munity structure found in typical social networks. Instead,
the graph contains a moderately centralized core-periphery
structure that is robust to network attacks. This could be
caused by multiple factors, including: size, presence of com-
munity member leads, and collaboration incentives, though
further study would be necessary to determine causal rela-
tionships.

While the efficiency and robustness benefits of the so-
cial graphs’ structure are advantageous, there is the possi-
bility for design fixation through complex contagion if the
core network becomes too clustered. We discussed pos-
sible counter-strategies including increased community in-
volvement with periphery nodes and increased participant
diversity. We also addressed how these structures might
impact theoretical models of design networks, specifically
the need to model disassortative collaboration behavior and
core-periphery structures.

Moreover, this work raises several new questions for fu-
ture investigation: At what point do transitions occur be-
tween single and multi community network structures? How
do these design structures change over time, as people begin
to develop reputations within the community? How do you
balance network efficiency with the desire to help members
exploit the good ideas of others? By using network analysis
techniques to better understand their structure and operation,
this paper helps further the potential of online communities,
by providing insight into what types of behavior make them
sustainable and effective.
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