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Global optimization of aerodynamic shapes usually requires a large number of expensive

computational fluid dynamics simulations because of the high dimensionality of the design

space. One approach to combat this problem is to reduce the design space dimension by

obtaining a new representation. This requires a parametric function that compactly and suffi-

ciently describes useful variation in shapes. We propose a deep generative model, Bézier-GAN,

to parameterize aerodynamic designs by learning from shape variations in an existing database.

The resulted new parameterization can accelerate design optimization convergence by improv-

ing the representation compactness while maintaining sufficient representation capacity. We

use the airfoil design as an example to demonstrate the idea and analyze Bézier-GAN’s rep-

resentation capacity and compactness. Results show that Bézier-GAN both (1) learns smooth

and realistic shape representations for a wide range of airfoils and (2) empirically accelerates

optimization convergence by at least two times compared to state-of-the-art parameterization

methods.

Nomenclature

c = latent codes

c† = near-optimal latent code solution to the first-stage optimization

c∗ = optimal latent code

CD = drag coefficient

CL = lift coefficient

d = latent dimension

d ′ = noise dimension

D = discriminator
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G = generator

Ma = Mach number

n = Bézier degree

P = control points of the rational Bézier curve

Pc = prior distribution of latent codes

Pdata = data distribution

PG = generative distribution

Pz = prior distribution of noise variables

Q = auxiliary distribution

Re = Reynolds number

t = parameter variables of the rational Bézier curve

w = weights of the rational Bézier curve

x = design variables

x∗ = optimal design

z = noise variables

z∗ = optimal noise variables

α = angle of attack

λ0,λ1,λ2,λ3,λ4 = regularization coefficients of Bézier-GAN

I. Introduction

Aerodynamic shape optimization is a necessary step in designing parts like aircraftwings and (propeller/rotor/turbine)

blades. The bottleneck for most high-fidelity aerodynamic shape optimization lies in performing computational

fluid dynamics (CFD) simulations given its high computational cost. To perform global optimization, where we search

the design space for global optima, the demand for CFD evaluations increases with the number of design variables (i.e.,

design space dimensionality). While current state-of-the-art can leverage gradient-based techniques, such as adjoint

methods, to compute shape derivatives and efficiently guide the search, such approaches are not always feasible—for

example, in chaotic flows where adjoints may become numerically ill-conditioned [1] or for solvers that do not calculate

adjoints. In such cases, practitioners turn to gradient-free methods. However, in gradient-free methods the need for CFD

evaluations can increase exponentially with the design space dimensionality due to the curse of dimensionality [2, 3].

Even with advanced techniques to balance the exploration and exploitation of the design space [4–8], this can still make

optimization intractable for complex geometries.

To combat this curse of dimensionality, previous research has developed dimensionality reduction (DR) techniques
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to more compactly represent the original design space. This accelerates exploration by capturing only those dimensions

that either affect the final design’s performance [9–13] or capture major shape variability [14–21]. However, these DR

models may not sufficiently or compactly capture the true variation that we observe in real-world designs —that is, they

may requre more dimensions than are needed. Also, the distribution of the reduced design variables corresponding to

valid designs is usually unknown, making it difficult to efficiently explore or bound this reduced space. Meanwhile,

machine learning researchers have conducted a vast amount of DR research using deep neural networks such as

variational autoencoders (VAEs) [22] and generative adversarial networks (GANs) [23] to learn low-dimensional

representations for data from complex high-dimensional distributions. Compared to traditional DR methods, these deep

learning frameworks can learn an arbitrary design data distribution parameterized by neural networks. As a result, they

can model the highly complex variability of designs using a compact set of variables with a known prior distribution.

In this paper, we apply GANs to learn an interpretable low-dimensional space (i.e., the latent space) that encodes

major shape variation of aerodynamic designs. Variations not captured by the latent space (i.e., minor features)

can be encoded via a noise space. The separation of major and minor features allows fast design space exploration

while maintaining the representation capacity (i.e., the geometry information is preserved when reducing the design’s

dimensionality). However, one cannot direct adopt standard GANs to synthesize aerodynamic designs, since they are

designed for generating discrete representations such as images and text and do not conserve continuity properties

important for aerodynamic shapes. Therefore, we extend the concept of GANs and propose the Bézier-GAN for

synthesizing smooth aerodynamic designs.

The specific scientific contributions of this paper are:

1) A new type of generative model, Bézier-GAN, appropriate for smooth geometry (such as those expressed via

splines or Bézier curves) that improves the design synthesis quality and convergence rate compared to traditional

GANs. It also enables a two-level shape parameterization that separately controls the major and the minor shape

deformation.

2) A two-stage optimization method that accelerates convergence by prioritizing the optimization of major shape

features.

3) A study of the comparative optima and convergence rate while using several competing parameterization

methods— our Bézier-GAN with different configurations, genetic modal design variables (GMDV) [24], singular

value decomposition (SVD) [20], and Bézier surface free-form deformation (FFD) [25, 26]. We discuss the

representation capacity and compactness of each parameterization.

II. Background
In this section, we introduce previous work on common algorithms used in aerodynamic design optimization

(Sec. II.A), parameterization techniques (Sec. II.B), and methods for reducing design space dimensionality (Sec. II.C).
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A. Aerodynamic Design Optimization

Aerodynamic design is, in large part, an optimization problem. One prototypical example is to find design variables

that minimize the drag coefficient CD , while maximizing or constraining the lift coefficient CL [11, 13, 15]. In this

section, we divide the optimization approaches into two categories, namely gradient-based and gradient-free methods,

and introduce the current state-of-the-art in each category.

1. Gradient-Based Methods

Gradient-based methods search for the optimum based on the gradient of the objective function. When the objective

is based on CFD simulations, automatic differentiation (AD) or adjoint methods can be used to compute the gradients.

Such methods provide a relatively fast and exact method of calculating numerical gradients whose computation cost

can be independent of the number of design variables and within an order of magnitude of the forward simulation

pass. Because of this, previous work [27–33] has used such methods for gradient calculations. Combined with

optimization algorithms such as sequential quadratic programming (SQP) [31, 32], steepest descent [30], and Newton

and quasi-Newton methods [27, 28, 33], such methods can drastically accelerate gradient calculations in the optimization

process [27, 32, 33].

However, adjoint methods can become numerically ill-posed when using simulation techniques like Large Eddy

Simulation [1]. In addition, AD or adjoint methods require additional simulations beyond the original forward pass to

calculate the gradient at each design; depending on the implementation, this can add significant computational costs. In

terms of memory, AD or adjoint methods can be expensive compared to, e.g., a finite difference method. Additionally,

as a method of gradient calculation, AD or adjoint methods will still inherit some disadvantages of gradient-based

algorithms, e.g., converging to local minima in non-convex problems. To mitigate this issue, Berguin et al. [12] use

solutions to surrogate-based optimization as starting points for AD methods, hoping to find good local optima.

2. Gradient-free Methods

As mentioned earlier, there are cases where the optimization problem is ill-conditioned or gradients of the

objective are inaccessible. Gradient-free methods can side step this problem and can increase the likelihood of

finding a global optimum [34]. Two classes of approaches are widely used for gradient-free aerodynamic shape

optimization — population-based optimization (PBO) and surrogate-based optimization (SBO).

A popular PBO method in aerodynamic shape optimization is the genetic algorithm (GA) [14, 17, 35, 36]. It mimics

the process of biological evolution through mutation, recombination, and reproduction of different designs. Work has

also been done to augment GA with the bees algorithm [37] and adaptive mutation rates [38], resulting in more accurate

optimization and/or faster convergence. Other PBO methods applied in aerodynamic optimization are differential

evolution [39] and particle swarm optimization [34, 40]. However, due to the large number of CFD evaluations needed
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to form the population at each iteration, PBO methods can usually be prohibitively expensive computationally, especially

if every evaluation requires a high-fidelity CFD simulation [36].

Surrogate-based optimization uses an inexpensive surrogate model to approximate the expensive CFD evaluations.

Bayesian optimization (BO) is a commonly used SBO method. It consists of two components: a sampling strategy (e.g.,

maximum expected improvement [41] or maximum upper confidence bound [42]) and a surrogate modeling method

(e.g., Gaussian process regression, also known as kriging [43]). In each iteration, the sampling strategy proposes a

point in the design space for evaluation, which is then used to update the surrogate model. Compared to methods like

GAs, surrogate-based optimization reduces the number of expensive CFD evaluations needed in aerodynamic shape

optimization [9, 11, 14, 16, 44]. However, for a high-dimensional design space, the number of evaluations will still be

inevitably high due to the curse of dimensionality. This creates a demand for shape parameterization methods or design

space dimensionality reduction techniques that can reduce the number of design variables in optimization.

There are other gradient-free methods beyond the above two classes (e.g., simulated annealing [45, 46]) but are not

as commonly used in aerodynamic shape optimization. We direct interested readers to Ref. [36] for a thorough review

of these methods.

B. Shape Parameterization

A parameterization maps a set of parameters to points along a smooth curve or surface via a parametric function.

Common parameterization for aerodynamic shapes includes splines (e.g., B-spline and Bézier curves) [47–49], free-form

deformation (FFD) [25, 26], class-shape transformations (CST) [50, 51], PARSEC [52, 53], and Bézier-PARSEC [54].

Usually during design optimization, parameters are sampled to generate design candidates [44]. There are two main

issues when optimizing these parameters from conventional parameterization: (1) one has to guess the limits of the

parameters to form a bounding-box within which the optimization operates, and (2) the design space dimensionality is

usually higher than the underlying dimensionality for representing sufficient shape variability [55] —i.e., to capture

sufficient shape variation, manually designed shape parameterizations require higher dimensions than are strictly

necessary. In contrast, this paper shows that learned parameterizations can often achieve much higher compactness

without a loss in representation quality or optimization performance.

C. Design Space Dimensionality Reduction

It is usually wasteful to search for optima in the spaces of aforementioned shape parameters, since valid designs

only constitute a small portion of those spaces so that most CFD evaluations are performed on invalid designs. Past

work has studied methods to obtain more compact representations via dimensionality reduction. Factor screening

methods [56, 57] can select the most relevant design variables for a design problem while fixing the rest as constant

during optimization. These methods fail to consider the correlation between design variables. In response, researchers
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have studied ways to capture the low-dimensional subspace that identifies important directions with respect to the

change of response (i.e., QoI or performance measure) [9–13]. This response-based dimensionality reduction usually

has several issues: (1) it requires many simulations when collecting samples of response gradients; (2) variation in

gradients can only capture non-linearity rather than variability in the response, so extra heuristics are required to select

latent dimensions that capture steep linear response changes; (3) the learned latent space is not reusable for any different

design space exploration or optimization task (i.e., when a different response is used); and (4) the linear DR techniques

applied in previous work may not model well responses with non-linear correlation between partial derivatives.

The first three issues can be avoided by directly applying DR on design variables without associating them with the

response. Doing so assumes that if changes in a design are negligible, changes in the responses are also negligible. In

the area of aerodynamic design, researchers use linear models such as principal component analysis (PCA) [16–18] or

singular value decomposition (SVD) [19, 20, 58] to reduce the dimensionality of design variables. Although those linear

models provide optimal solutions to the linear DR problem, their linear nature makes them unable to achieve the most

compact representation (i.e., use the least dimensions to retain similar variance in the data) when the data is nonlinear,

which is the most common case for real-world data. Nonlinear models like generative topographic mapping [14, 15]

can solve this problem to some extent, but are still limited to the assumption that data follow a Gaussian mixture

distribution, which is too strict in most real-world cases. Beyond these data-driven methods, genetic modal design

variables (GMDV) [24] generates airfoils through orthogonal modes derived from the reduced singular matrix of the

third-difference matrix. None of these DR methods encourage compactness of the reduced shape representation, where

the volume of the latent space that maps to the domain of invalid designs are minimized. Complementary work in DR

has been done in other fields such as computer vision and computer graphics [59, 60], where DR is used for generating

images or 3D shapes. Deep generative networks such as VAEs and GANs have been widely applied in those areas to

learn the latent data representations. These methods are known for their ability to learn a compact latent representation

from complex high-dimensional data distributions, where the latent representation follows a simple, known distribution

(e.g., a normal or uniform distribution). Our work extends this class of techniques by considering the generation of

smooth geometries such as those needed in spline-based representations.

Note that our assumption is that we already have a reasonably distributed dataset and the target design is within or at

least not far from the coverage of the data distribution. This assumption exists for all data-driven methods. For example,

given a database of airfoils, a data-driven method may help solve an airfoil design problem, but would not necessarily

give a good solution for a hydrofoil design problem.

As DR models map latent variables to shapes, we can treat the latent variables and the mapping as parameters and

the parametric function, respectively. Thus, in a broader sense, we will also refer to these methods as parameterizations

throughout this paper, though these are distinct from prior work in parameterizations since they are inferred from data

directly, rather than fixed apriori.
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III. Learning Compact and Disentangled Representations
In this section, we introduce two deep generative models — GAN [23] and its variant, InfoGAN [61], which our

proposed Bézier-GAN builds upon. Given a set of existing aerodynamic designs (e.g., airfoils from the UIUC database),

a deep generative model like GAN can learn a mapping from a known distribution to the unknown distribution of

existing designs. We call the set of existing designs the training data. In GANs, we usually set the known distribution

as a normal or uniform distribution. Samples drawn from this distribution are called noise. The noise dimension is

typically much lower than the design space dimension and hence we can treat the noise as a reduced representation of

designs.

A GAN consists of two components: a generator G and a discriminator D (Fig. 1). The generator takes in random

noise z from some known prior distribution Pz and generates data x̃ = G(z). The discriminator takes in a sample (either

from the training data or synthesized by the generator) and predicts the probability of the sample coming from the

training data. The generator tries to make the generative distribution PG look like the data distribution Pdata to fool the

discriminator; the discriminator tries not to be fooled. GANs achieve this by solving the following minimax problem:

min
G

max
D

V(D,G) = Ex∼Pdata
[log D(x)] + Ez∼Pz [log(1 − D(G(z)))]. (1)

Both D and G components improve via training until the discriminator cannot differentiate between real (data) and fake

(synthetic) inputs, implying that the generative distribution resembles the data distribution. We direct interested readers

to [23] for a more detailed explanation of GANs.

Standard GANs do not have a way of regularizing the latent representation (noise); thus, the noise may end up

being non-interpretable. This causes the noise variation not to reflect an intuitive design variation, which impedes

design space exploration. To compensate for this weakness, the InfoGAN encourages interpretable and disentangled

latent representations by maximizing the mutual information between the latent codes c and the generated samples x̃.

Thus, InfoGAN’s generator takes c as an additional input, i.e., x̃ = G(c, z) (Fig. 1). Unfortunately, it is hard to directly

maximize the mutual information I(c; G(c, z)), so instead, an InfoGAN approximates the solution by maximizing a

lower bound. The mutual information lower bound LI is

LI (G,Q) = Ex∼PG [Ec′∼P(c |x)[log Q(c ′ |x)]] + H(c), (2)

where H(c) is the entropy of the latent codes, and Q is the auxiliary distribution for approximating P(c |x). We direct

interested readers to [61] for the derivation of LI . The InfoGAN’s loss function combines LI with the standard GAN’s

loss:

min
G,Q

max
D
Ex∼Pdata

[log D(x)] + Ec∼Pc,z∼Pz [log(1 − D(G(c, z)))] − λLI (G,Q), (3)
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Fig. 1 Architectures of GAN and InfoGAN.

where Pc is the prior distribution of latent codes and λ is a weight parameter. In practice, H(c) is treated as constant if

the distribution of c is fixed. The auxiliary distribution Q is also learned by a neural network and is simply approximated

by sharing all the convolutional layers with D and adding an extra fully connected layer to D to predict the conditional

distribution Q(c |x). Thus, as shown in Fig. 1, the discriminator tries to predict both the source of the data and the

latent codes ∗. Note that although the InfoGAN encourages disentangled latent representation, it does not guarantee

orthogonal latent variables as PCA or SVD does. Instead, it guarantees statistical independence among latent or noise

variables when each variable is independently sampled. This is similar in concept to what independent component

analysis (ICA) [62] does for linear DR. We build upon the work of InfoGAN, extending it to spline-based geometry.

IV. Bézier-GAN: Spline-Based Shape Synthesis
Typical approaches to generative shape models (such as GANs) represent shapes as a collection of discrete samples

(e.g., as pixels or voxels) owing to the their original development in the computer vision community. For example, a

naïve way of synthesizing aerodynamic shapes like airfoils would be to generate this discrete representation directly

using the generator, such as generating a fixed number of coordinates sampled along the airfoil’s surface curve (e.g.,

Fig. 6, left). However, in practice, aerodynamic shapes typically possess substantial smoothness/continuity and are

typically represented using parametric curve families like splines, Bézier curves, or NURBS surfaces. The naïve

GAN representation of predicting discretized curves from the generator usually (1) creates noisy curves that have low

smoothness and (2) have parametric output that is harder for humans to interpret and use in standard CAD packages

compared to equivalent curve representations (e.g., Bézier curves). This creates problems, particularly in aerodynamic

shape synthesis.

To solve this issue, we modified the InfoGAN’s generator such that it only generates smooth shapes that conform to

Bézier curves. We call this generative adversarial network a Bézier-GAN [63].

A. Architecture

As shown in Fig. 3, the overall architecture is adapted from the InfoGAN. However, instead of directly outputting

discrete coordinates along the curve, the generator synthesizes control points {Pi |i = 0, ...n}, weights {wi ≥ 0|i = 0, ...n},
∗Here we use the discriminator D to denote both Q and D, since they share neural network weights.
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and parameter variables {0 ≤ tj ≤ 1| j = 0, ...,m} of rational Bézier curves, where n is the Bézier degree, and the

number of surface points to represent the curve is m + 1. The last layer of the generator—the Bézier layer—converts this

rational Bézier curve representation into discrete representation x:

x j =

∑n
i=0

(n
i

)
tij(1 − tj)n−iPiwi∑n

i=0
(n
i

)
tij(1 − tj)n−iwi

, j = 0, ...,m. (4)

Since x j is differentiable with respect to {Pi}, {wi}, and {tj}, we can train the network using back propagation. To

improve numerical stability, the Bernstein polynomial is computed via its natural logarithm:

Bn
i (t) =

(
n
i

)
ti(1 − t)n−i = exp (log Γ(n + 1) − log Γ(i + 1) − log Γ(n − i + 1) + i log t + (n − i) log(1 − t)) , (5)

where Γ denotes the gamma function.

Particularly, as is shown in Fig. 2, an aerodynamic surface (here we use airfoil as an example) can be represented as

an ordered sequence of points. Thus, the parameter variables have to satisfy 0 = t0 < tj−1 < tj < tm = 1, j = 2, ...,m− 1.

Instead of directly generating {tj | j = 0, ...,m}, we use a softmax activation to generate the intervals {δj = tj − tj−1 | j =

1, ...,m} and then compute the cumulative sum of {δj} to get {tj}.

Fig. 2 Ordering of the airfoil representation.
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Fig. 3 Model architecture of the Bézier-GAN.

B. Regularization

The rational Bézier representation (i.e., the choice of P, w, and t) for a point sequence is not unique. For example, we

have observed that the generated control points are dispersed and disorganized. The weights vanish at control points far
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away from the surface points, and the parameter variables have to become highly non-uniform to adjust the ill-behaved

control points. To prevent Bézier-GAN from converging to bad optima, we regularize these Bézier parameters.

1. Control Points

Since the control points can be dispersed and disorganized, causing the weights and parameter variables to also

behave abnormally, one way to regularize control points is to keep them close together. We use the average and

maximum Euclidean distance between each two adjacent control points as a regularization term:

R1(G) =
1

Nn

N∑
s=1

n∑
i=1

P(s)i − P(s)
i−1

, (6)

where N is the sample size.

2. Weights

To eliminate the effects of redundant control points and avoid convoluted curves, we regularize the weights of

control points except for the first and the last ones:

R2(G) =
1

Nn

N∑
s=1

n−1∑
i=1

��w(s)i ��. (7)

3. Edge Alignment

We represent the aerodynamic surface curve by 2D points starting from and ending at the trailing edge, as shown in

Fig. 2. Thus, the first and last control points (P0 and Pn) should meet at the trailing edge so that the surface curve can be

closed. To enforce this constraint, we add the following regularization term to the loss function:

R3(G) =
1
N

N∑
s=1

P(s)0 − P(s)n
. (8)

In addition, we use the following regularization term to ensure that the surface curve does not self-intersect near the

trailing edge:

R4(G) =
1
N

N∑
s=1

max
{
0,−10

(
P(s)0y − P(s)ny

)}
, (9)

where P(s)iy denotes the y-coordinate of the i-th control point in the j-th airfoil sample.

With the above regularization terms, the loss function of Bézier-GAN becomes

min
G,Q

max
D

V(D,G) − λ0LI (G,Q) +
4∑

r=1
λr Rr (G), (10)
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where λi controls the weight of each corresponding regularization term.

V. Two-Stage Optimization over the Bézier-GAN Parameterization
For a normal parameterization F (e.g., FFD), we can synthesize an airfoil design x (i.e., the Cartesian coordinates

of surface points) through some given parameters p (e.g., in FFD, p is the coordinates of control points). This synthesis

process can be expressed as x = F(p). The CFD simulator is also a function f that maps a design x to its performance

metric y (e.g., the drag coefficient). We can write this process as y = f (x) = f (F(p)). The optimization problem can

be expressed as

min
p

y = f (F(p))

If we use Bézier-GAN’s generator G as a paramterization, there will be two sets of parameters we must optimize

over — the latent code c and the noise variables z. The synthesis process can be written as x = G(c, z). Thus, the

optimization becomes

min
c,z

y = f (G(c, z))

But instead of optimizing c and z simultaneously, we propose a two-stage optimization (TSO) designed to exploit

Bézier-GAN’s two-level parameterization for faster convergence towards good solutions (Alg. 1).

Latent codes (c)

Mean noise (μz)

Generator
(G)

Simulator
( f ) CL/CD

(a) Stage 1

(b) Stage 2

Design (x)

Objective function (g)

Latent codes (c)
+

Noise variables (z)

Generator
(G)

Simulator
( f ) CL/CD

Design (x)

~

~

Objective function (h)

Fig. 4 Objective functions in both stages of two-stage optimization (TSO).

Since we maximize the mutual information of the lower bound between the latent codes and the generated design,

the latent codes c will capture major shape variations, while minor variations are controlled by the noise z. This is

further demonstrated in Sec. VI. This two-level representation allows us to perform design space exploration in a more

efficient way. Specifically, we first optimize c with fixed z to quickly find a near-optimal solution c†:

c† = arg min
c

g(c), (11)

where g(c) = f (G(c, µz)) and µz = Ez∼Pz [z] (Fig. 4a). When Pz is a normal distribution centered at 0, we have µz = 0.
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Algorithm 1 Two-stage optimization (TSO)
1: . Given the latent dimension d, the noise dimension d ′, the mean noise µz , a trained generator G, a CFD simulator

f , and evaluation budget T
2: procedure TSO(d, d ′,G, f ,T)
3: T1 ← Td/(d + d ′), T2 ← T − T1 . Assign budget to each stage
4: For t = 1 : T1, solve minc g(c) = f (G(c, µz)) . First-stage optimization
5: c† ← arg minc g(c)
6: For t = 1 : T2, solve minc,z h(c, z) = f (G(c, z)) with (c†, µz) as a warm start . Second-stage optimization
7: c∗, z∗ ← arg minc,z h(c, z)
8: x∗ ← G(c∗, z∗) . Synthesize the optimal design
9: return x∗
10: end procedure

Then using (c†, µz) as a warm start, we optimize both c and z to refine the near-optimal solution:

c∗, z∗ = arg min
c,z

h(c, z), (12)

where h(c, z) = f (G(c, z)) (Fig. 4b). We can then synthesize the optimal shape x∗ = G(c∗, z∗).

For the first-stage optimization (i.e., optimizing c), we want to quickly find a good solution c† near the true underlying

optimum. In this paper we use an SBOmethod called Efficient Global Optimization (EGO) [41]. This method minimizes

the number of function evaluations by only evaluating at the point that shows the maximum expected improvement

(EI) [41]. The value of EI is estimated by a Gaussian process (GP) regressor [43]. At each iteration of EGO we want to

find a latent code that is expected to best improve upon the current optimum and then evaluate at that point. Since it is

also possible to have latent codes corresponding to invalid designs, we are dealing with a constrained SBO problem.

Inspired by Refs. [64] and [65], we solve the following constrained optimization problem at each iteration:

max
c

EI(c)Pr(C(c))

s.t. Pr(C(c)) ≥ 0.5
(13)

where C(c) is an indicator of feasibility at c (i.e., whether the constraints are satisfied or whether the objective function

has definition). In practice, we use a GP classifier [43] to estimate Pr(C(c)), where C(c) = 0 indicates the shape

corresponds to c is self-intersecting or the simulation is not successful. At each iteration t, we find the solution c(t) to

Eq. (13) and evaluate at c(t). The hyperparameters of both the GP regressor and the GP classifier are optimized by

maximizing the log marginal likelihood (LML). We direct interested readers to [43] for details of implementing a GP

regressor/classifier and using LML for hyperparameter optimization.

The last iteration of the first-stage optimization provides a latent code c† that roughly locks down the major features

of an optimal design. The true optimal latent code is likely to be near c†. The second-stage optimization then refines

this solution by jointly optimizing c ∈ Rd and z ∈ Rd
′ . We set z ∼ Pz = N(µz,Σz), which means to synthesize realistic
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designs we need to sample z near µz . Thus, in the second stage, we start from (c†, µz) and use GA to search for a refined

solution.

VI. Experiment: Airfoil Synthesis and Shape Optimization
In this section, we test the performance of the Bézier-GAN as a parameterization in two aspects: (1) representation

capacity, or the ability to cover the design space, and (2) representation compactness, or the ability of using the least

number of parameters to cover a sufficient design space while every point in the parametric space maps to a valid design.

A. Dataset and Preprocessing

Weuse theUIUC airfoil database† as our training data for the Bézier-GAN. It provides the geometries of approximately

1600 real-world airfoil designs that cover applications from low Reynolds number airfoils for UAVs and model aircraft

to jet transports and wind turbines. Each design is represented by discrete 2D coordinates along their upper and lower

surfaces. From the dataset, we removed outliers with unrealistic appearance. The number of coordinates for each

airfoil is inconsistent across the database, so we use B-spline interpolation to obtain consistent shape representations.

Specifically, we interpolate 192 points over each airfoil with the concentration of these points along the B-spline

curve based on the curvature [47]. The preprocessed data are visualized at the top of Fig. 5. We have published the

preprocessed data and the code for reproducing the experimental results‡.

B. Bézier-GAN Parameterization

The latent codes and the noise were concatenated and fed into the generator. The generator has two branches — one

generates control points and weights through dense layers and deconvolutional layers [66] and the other generates

parameter variables via only dense layers. The Bézier layer combines the outputs of the two branches and synthesizes

2D point coordinates along the surface curve. The discriminator takes in the coordinates and predicts the source of the

input and the latent codes with dense layers and convolutioinal layers. Batch normalization and Leaky ReLU activation

were used at each intermediate layer. The number of training steps was 10,000 and the batch size was 32. We set

Pc = Unif(0, 1) and Pz = N(0, 0.5I ). The detailed implementation of Bézier-GAN can be found in our code. For the

loss function shown in Eq. (10), we used λ0 = 1 and λ1 = λ2 = λ3 = λ4 = 10. We trained the Bézier-GAN using an

Adam optimizer [67] on a Nvidia Titan X GPU. The wall-clock training time is about 1 hour, and the inference takes

less than 15 seconds.

Figure 5 shows the synthesized airfoils by linearly interpolating points in the latent space and the noise space using a

trained Bézier-GAN. The three-dimensional latent space captured large shape variations with respect to features such as

thickness and camber/cord line curvature. Those are major features of the airfoil geometry. In contrast, shapes in the
†http://m-selig.ae.illinois.edu/ads/coord_database.html
‡https://github.com/IDEALLab/bezier-gan
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noise space only show small variations when fixing the latent codes. This indicates that the noise space captured minor

features.
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Fig. 5 Examples in the airfoil database and synthesized airfoil shapes in the latent space and the noise space
(visualized by uniform slices of multiple two-dimensional spaces).

Figure 6 compares synthesized shapes during the training processes of a Bézier-GAN and an InfoGAN. It demonstrates

that the Bézier-GAN converged smooth and realistic airfoil shapes in far fewer training samples compared to the

InfoGAN.

Training steps

1000

2000

3000

4000

5000

Bézier-GANInfoGAN

Fig. 6 Synthesized shapes during the training processes for an InfoGAN (left) and a Bézier-GAN (right).

One other advantage of the Bézier-GAN over an InfoGAN or other discrete parameterizations like SVD [20] is that

it synthesizes continuous Bézier curves through the Bézier layer, rather than directly generating discrete surface point

representations. This means that the resultant shapes will always have continuous curvature. This guarantee benefits

aerodynamic performance, since past work has shown that aerodynamic performance is strongly dependent on the

shape’s curvature continuity [68–70]. As Figure 7 shows, the synthesized airfoils exhibit smooth curvature profiles. We
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compute the curvature at a surface point (x(t), y(t)) via:

κ(t) =
Ûx Üy − Üx Ûy

( Ûx2 + Ûy2)
3
2
, (14)

where x, y, and their derivatives can be obtained from Eq. (4), given control points P1, ..., Pn and weights w1, ...,wn

as the generator’s intermediate layer output. We also visualize the control points and the weights in Fig. 7. If one

needs to constrain the curvature (e.g., to improve aerodynamic performance, reduce simulation complexity, or satisfy

manufacturing tolerances), we can add another regularization term which contains κ(t) to Bézier-GAN’s loss function in

Eq. (10). However, this is beyond the scope of the current work and we leave it for future study.
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Fig. 7 Control points (square markers with sizes indicating the magnitudes of weights w) and curvatures of
three randomly synthesized airfoils.

To study the effects of latent/noise dimensions on the Bézier-GAN parameterization and the optimization performance,

we trained multiple Bézier-GANs with different combinations of latent dimension (d = 2, 4, 6, 8, 10) and noise dimension

(d ′ = 0, 10, 20). We used kernel maximum mean discrepancy (MMD) [71] to evaluate the quality of generated designs.

The MMD metric measures how well our generator approximates the real data distribution:

MMD2(Pdata, PG) = Exd,x
′
d
∼Pdata ;xg,x′g∼PG

[
k(xd, x ′d) − 2k(xd, xg) + k(xg, x ′g)

]
, (15)

where k(x, x ′) = exp
(
−‖x − x ′‖2/(2σ2)

)
is a Gaussian kernel and σ is the kernel length scale which was set to 1.0.

A lower MMD indicates that the generator is better at generating realistic designs. Results shown in Fig. 8 were

collected via ten runs for each latent and noise dimension configuration. It indicates that the latent dimension plays a

key role in improving the generator. Also, no significant improvement is shown after the latent dimension reaches eight,

indicating that major features of the airfoil geometry can be adequately encoded with eight latent variables. Ideally,

one would expect lower MMD values when the noise dimension is larger, as the noise can encode minor features that

are not captured by latent codes. However, in our results that was true only when the latent dimension was two. One
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explanation for this is because increasing the number of latent dimensions leaves less room for the noise variables to

control meaningful shape variation, as the latent codes have a higher priority of capturing shape variation than the noise

variables. Thus, the noise variables are less effective when the latent dimension is high.
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Latent dimension

0.00
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0.10
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M
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Noise dim.
0
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20

Fig. 8 Maximum mean discrepancy (MMD) metrics of trained Bézier-GANs. The error bars indicate 95%
confidence intervals.

We benchmark Bézier-GAN against three state-of-the-art parameterization approaches, namely GMDV [24],

SVD [20], and FFD [8, 25]. We also perform a fitting test to evaluate a parameterizaton’s ability to recover a wide range

of existing airfoil designs. Specifically, we perform least squares fitting to match the synthesized airfoils with the UIUC

airfoils under different parameterizations and numbers of design variables. The results are shown in Fig. 9 (we set

Bézier-GAN’s noise dimension to 10). Lower mean square error (MSE) indicates better coverage of the UIUC data. Note

that the fitting performance is biased towards SVD and GMDV and will not solely depend on the design space coverage,

since both SVD and GMDV have analytical solutions to the least squares problem whereas Bézier-GAN’s solution is

approximate. This approximation is because the fitting problem is non-analytical and non-convex for Bézier-GAN,

requiring iterative methods to find the (possibly sub-optimal) least squares fit. While this hinders Bézier-GAN fitting

performance on the training data, it will not necessarily affect its performance in design optimization, as we show in

the next section. The fitting results show that all the tested methods converge to a plateau as the number of variables

increases. As shown in Fig. 9a, SVD has the lowest MSE, which is reasonable as it uses UIUC airfoils as training data

and we can obtain the exact optima of the least squares problem. Bézier-GAN with fixed noise has a result similar

to GMDV. In Fig. 9b, we show two scenarios: (1) we only optimize latent codes and fix noise variables during the

least squares fitting; and (2) we optimize both latent and noise variables. The figure shows that as the latent dimension

increases, optimizing noise variables contributes less to lowering the MSE (i.e., has less control on shape variation).

This result offers one indication or test as to when performing the two-stage optimization is beneficial.

The elbow point in Fig. 9 (i.e., the number of design variables where the corresponding fitting error drops with

relatively small difference) can indicate the lowest number of variables needed to reasonably cover the original design
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(a) (b)

Fig. 9 The fitting test results showing the performance of recovering the UIUC airfoils (Note that the fitting
performance is biased towards SVD and GMDV and will not solely depend on the design space coverage, since
both SVD and GMDV have analytical solutions to the least squares problem whereas Bézier-GAN’s solution is
approximate).

space. For Bézier-GAN, the elbow point suggest a latent dimension of 8. For SVD and GMDV, their elbow points locate

at 8 and 9, respectively. Thus, we will set the number of modes for SVD and GMDV according to these numbers in the

rest of our experiments.

In addition to the design space coverage study, we also compared the performance space coverage (i.e., how the

synthesized airfoils cover the space of CL and CD) of Bézer-GAN, SVD, GMDV, and FFD (Fig. 10). For FFD, we

use a set of 3 × 4 control points and fix their x coordinates based on [8]. It shows that the performance distribution of

Bézier-GAN airfoils best matches the UIUC database. SVD’s performance coverage is similar to the data, but contains

a large portion of invalid performances, where shapes are self-intersecting or cause unsuccessful simulations. Both

GMDV and FFD have larger coverage of the performance space compared to the input data. This is expected since

GMDV and FFD are not explicitly trained on the input data and thus their parameterizations readily sample designs far

beyond the original design space.

The coverage of the design space and the performance space indicate the level of representation capacity. Another

crucial property of a parameterization is its representation compactness, which indicates the proportion of useful designs

in its design space. Figure 11 shows airfoils synthesized by randomly sampling points under different parameterizations

(i.e., random samples of the design space). Specifically, the Bézier-GAN airfoils are synthesized by using latent codes

and noise variables drawn from their respective distributions (mentioned in Section VI.B). Knowing the distribution of

design variables corresponding to valid designs (valid design variables) can benefit design space exploration. For the

other three parameterizations where the distribution of valid design variables is unknown, the airfoils are synthesized

by design variables drawn uniformly at random within specific bounds. For GMDV, we set the bounds according to

Ref. [24] (more details can be found in the code). For SVD, we set the bounds as the minimum bounding box of design

variables corresponding to the database. For FFD, we set the bounds to be ±0.2 perturbation of the NACA 0012 airfoil.
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Fig. 10 Comparison of parameterizations’ performance spaces under random samples. Points at the origin
represent performances unable to compute due to self-intersecting shapes or simulation failures, which we call
invalid performance. Note that the plots are in different scales.

All designs synthesized by the Bézier-GAN look realistic, while other parameterizations contain a larger proportion of

invalid (e.g., self-intersected) designs. This indicates that Bézier-GAN has a higher representation compactness than the

other parameterizations, which is expected as Bézier-GAN’s objective forces each point in the latent or noise space to

map to a design resembling the training data.

C. Optimization

In Section VI.B, we show the representation capacity of Bézier-GAN through the coverage of the design space and

the performance space. We also visualize the design space through randomly synthesized designs, which provides an

indication for representation compactness. But why do either of these properties matter? In this section, we demonstrate

the benefits of such properties for accelerating an aerodynamic optimization task. The performance of global optimization

is closely related to the parameterization’s representation capacity and compactness. The low representation capacity

may lead to a sub-optimal solution, since a better one cannot be represented by the parameterization. Meanwhile, low

representation compactness can contribute to slow convergence due to the curse of dimensionality and the vast amount

of invalid designs an optimizer might evaluate; this wastes the evaluation budget.

The below optimization task is only a means to assess the impact of each parameterization’s representation capacity

and compactness. To make the below experiments easy and fast to replicate and evaluate by other researchers, we

use XFOIL [72] to compute the lift and drag coefficients CL and CD of candidate airfoils. However, our approach is

not limited to XFOIL. One can apply our techniques to any CFD or performance code including Reynolds-Averaged
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Fig. 11 Random airfoils synthesized by parameterizations.

Navier-Stokes simulations or LES. The specific choice of CFD simulation method we use below is not central to

evaluating the key contributions of the paper, though evaluating the impact of better parameterizations on more expensive

and advanced flow simulations is an interesting area for future work.

Specifically, for the following experiments our optimization objective is to maximize the lift to drag ratio, i.e.,

f (x) = CL/CD . The operating conditions are set as follows: Reynolds number Re = 1.8 × 106, Mach number

Ma = 0.01, and angle of attack α = 0°.

We trained ten Bézier-GANs for each configuration of latent/noise dimensions. For each configuration, we obtained

one optimization result by using each of the ten Bézier-GANs as the parametric model and studied the statistics (e.g.,

mean and standard deviation of the optimization history) of those results. Thus, different from other parameterizations,

the variance in Bézier-GAN’s optimization results also depends on the stochasticity of trained Bézier-GAN models. At

the first-stage optimization, each latent code was bounded in [−0.2, 1.2]. After getting the near-optimal latent code c†,

we perform the second-stage optimization by bounding each latent code in [c†i − 0.1, c†i + 0.1], i = 1, ..., d and each

noise variable in [−1.0, 1.0].

Figure 12 compares the optimization performance under the two-stage optimization (TSO) and the one-stage

optimization§ (OSO, i.e., the case where we assign the overall budget to only optimizing the latent codes). Figure 12a

shows that compared to OSO, TSO is more effective in terms of the final optimal CL/CD when the latent dimension is

small. Figure 12b shows the CL/CD improvement of TSO over OSO (∆(CL/CD)) is much more significant throughout
§We used EGO for the one-stage optimization.
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the optimization history when the latent dimension is lower. These results make sense because, as already indicated by

the MMD values (Fig. 8) and the fitting errors (Fig. 9b), the increase of the latent dimension leaves less room for the

noise variables to control shape variation, and hence optimizing noise variables at the second stage becomes less useful.

(a) (b)

Fig. 12 Optimization results for Bézier-GAN parameterization with (i.e., two-stage optimization or TSO) and
without (i.e., one-stage optimization or OSO) refining the noise variables. The noise dimensions was set to
10. Plot (a) shows the final optimal CL/CD over different latent dimensions. Plot (b) shows the performance
improvement history of TSO over OSO (∆(CL/CD)). The dotted horizontal line represents ∆(CL/CD) = 0,
referring to the case where TSO has exactly the same performance as OSO.

The optimization performance is affected by both a parameterization’s representation capacity and compactness.

While low representation capacity may lead to solutions with limited performance, low representation compactness

may explore larger regions of invalid designs and hence be slower at finding an optimum. To some extent, we can

evaluate a parameterization by comparing its corresponding optimization history. As shown in Fig. 13, the optimization

performance improved when increasing the latent dimension from two to eight, but further increases in the latent

dimension decreases the convergence speed. This result is consistent with the aforementioned MMD values (Fig. 8) and

fitting errors (Fig. 9). All our results indicate that a latent dimension of eight suffices with respect to the representation

capacity for our specific optimization problem.

Fig. 13 Optimization history under Bézier-GAN parameterization with different latent dimensions. The noise
dimension was fixed to 10.

Figure 14 shows that although the noise dimension cannot affect the optimization performance as significantly as the
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latent dimension does, having noise variables is still better than not. Note that as the noise dimension goes up, the

representation capability will go up (which leads to an improved final optimal solution under the noise dimension of

10 over 0), but the optimization convergence may slow due to a reduced representation compactness and the curse of

dimensionality, e.g., using a noise dimension of 20 coverged slower than when using 10).
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Fig. 14 Optimization history under Bézier-GAN parameterization with different noise dimensions. The latent
dimension was fixed to 8.

We also compared our method to several state-of-the-art parameterization methods (Fig. 15). The latent and noise

dimensions of Bézier-GAN were set to 8 and 10, respectively. For GMDV and SVD, we set the number of design

variables to 8 and 9, respectively, according to their elbow points in the fitting test results (Fig. 9). We used 3× 4 control

points for FFD, according to Ref. [8]. The design variable bounds for GMDV were set according to Ref. [24]. For SVD,

we set the design variable bounds as the minimum bounding box of design variables corresponding to the database.

For FFD, the design variable bounds were ±0.2 perturbation of the NACA 0012 airfoil. When performing GA, the

population size was 100, and the chance of mutation (i.e., the probability of mutating an individual’s parameter) was

0.1. In each generation, we chose the 30 best and 10 random individuals for crossover, and produced 5 children for

each pair. We direct interested readers to our code for further implementation specifics. Besides the aforementioned

parameterizations, we also tested the optimization performances of nonuniform rational B-splines (NURBS) [73] and

PARSEC [52]. However, we do not show their results in the figure as their performances were strictly worse than the

SVD, GMDV, FFD, and Bézier-GAN parameterizations. We direct interested readers to Ref. [21] for these results. Each

optimization history was averaged over ten runs.

The results show that the average CL/CD value reached in 200 evaluations by the Bézier-GAN takes other methods

at least 500 evaluations to reach. It indicates that the Bézier-GAN parameterization has much higher compactness so

that fewer resources were wasted in exploring invalid and poor-performance regions. Figure 16 shows the optimal

airfoils for the different parameterizations. It is notable that different from other parameterizations, the variance of the

Bézier-GAN results comes not only from the optimization process but also the trained Bézier-GAN model, since the

training process is stochastic.
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Fig. 15 Optimization history under Bézier-GAN and other parameterizations. The performance reached by
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Fig. 16 Optimal airfoils for different parameterizations.
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VII. Conclusion and Discussion
We use the Bézier-GAN as a new parameterization for aerodynamic designs that possesses high representation

compactness and sufficient representation capacity. The latent codes and noise variables encode major and minor shape

variations, respectively. We then propose using this parameterization as part of a two-stage design optimization method.

Our results show that the Bézier-GAN accelerates convergence and finds optimal designs with higher performance than

those found by other state-of-the-art parameterization methods.

We believe that this phenomenon is induced by the representation capacity and compactness of parameterizations

and is independent of the specific CFD approach used to evaluate the airfoil. That is, a space that better describes airfoil

variation should help during optimization, even if such a space was not directly designed to aid in that task. We agree

though that the simulation environment in this paper is simple and that we are admittedly assuming that one would see

similar optimization improvements under different performance evaluators, such as more advanced CFD. Likewise,

we only demonstrate this for 2D airfoils, and we have not explicitly tested this hypothesis on 3D surfaces or larger

wing segments. We expect that, in 3D with even greater design freedom, representations with better compactness and

coverage would become even more important. However, we have not tested this. We believe that it might be an excellent

area for future research.

In general, having a parameterization that separates major and minor shape deformation is useful for design

optimization. Parameters with larger impact on the geometry can have higher priority during optimization, such that

major features, which are usually the primary cause of the performance change, can be determined first. Although in

this paper we used a two-way partitioning of design parameters, in an ideal case one would have all parameters ordered

with respect to their importance on the geometry. Some linear dimensionality reduction methods like SVD can learn

ordered representations. Efforts have also been made to extend this capability to nonlinear methods [74]. Yet so far, to

the best of our knowledge, there is no equivalent for deep generative models. Related to this, one would need a novel

global optimization method to efficiently optimize the ordered parameters. Future research can fill in these gaps.

While here we only demonstrate the Bézier-GAN’s capability to parameterize airfoils, we can also train this new

generative model to synthesize other smooth geometries such as hydrodynamic shapes.

In this paper, we used EGO and GA in the first-stage and second-stage optimization, respectively. There are other

ways to improve the optimal solution while maintaining fast convergence. For example, the optimum obtained by our

method can be used as a good start point for gradient-based optimization methods (e.g., as in Berguin et al. [12]). For

future research, we can concatenate a trained Bézier-GAN generator and an automatic differentiation solver to obtain the

gradient of the performance with respect to each of the latent codes and noise variables directly. In this way, gradients

can be propagated to the reduced representation and help solve gradient-based optimization problems on the compact

reduced space.

Overall, we hope that this paper highlights the promising directions that learned geometric parameterizations
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can play in shape and design optimization more generally, and how future work in such techniques can complement

traditional optimization methods used by the optimization community.
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