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ABSTRACT
While current neural networks (NNs) are becoming good at

deriving single types of abstractions for a small set of phenom-
ena, for example, using a single NN to predict a flow velocity
field, NNs are not good at composing large systems as compo-
sitions of small phenomena and reasoning about their interac-
tions. We want to study how NNs build both the abstraction and
composition of phenomena when a single NN model cannot suf-
fice. Rather than a single NN that learns one physical or social
phenomenon, we want a group of NNs that learn to abstract,
compose, reason, and correct the behaviors of different parts in
a system. In this paper, we investigate the joint use of Physics-
Informed (Navier-Stokes equations) Deep Neural Networks (i.e.,
Deconvolutional Neural Networks) as well as Geometric Deep
Learning (i.e., Graph Neural Networks) to learn and compose
fluid component behavior. Our models successfully predict the
fluid flows and their composition behaviors (i.e., velocity fields)
with an accuracy of about 99%.

1 INTRODUCTION
Mathematical abstractions are a fundamental tool used by

scientists and engineers to study and predict the world [1]. Cur-
rent neural networks (NNs) are gaining great and increasing suc-
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cess in deriving single types of abstractions for a small set of
phenomena, for example, using a single NN to predict a flow ve-
locity field or structural stress field [2, 3]. As one data-driven
approach, NNs are becoming a prominent alternative to the con-
ventional analysis (e.g., finite-element analysis) by significantly
cutting the computation cost with minimal loss to accuracy, espe-
cially on problems similar to their training data. However, NNs
are not effective and flexible when predicting a large (but differ-
ent) system as a composition of small phenomena and reasoning
about their interactions. For example, to model a fluid pipe flow
system composed of different shapes of pipe components, one
might first abstract the fluid behavior of each pipe component,
then make the composition of these pipe components by reason-
ing about their interactions and correcting the composed fluid
behavior. Instead of training a single NN that models one phys-
ical or social phenomenon, we want to study how multiple NNs
learn to abstract, compose, reason, and correct the behaviors of
different parts in a system.

In the present work, we demonstrate the importance of in-
dependently modeling both abstraction and composition when
learning and predicting system behavior by exploring and dis-
covering the fluid component behavior. Particularly, we ex-
plore building deep neural networks (DNNs) that automatically
abstract (predict) and compose two-dimensional (2D) veloc-
ity fields of pipe flows (Figure 1). Our proposed multi-NN
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FIGURE 1: Two-dimensional pipe flows. In the simulated color maps, blue outlines pipe shapes and red represents fluid flows (deeper
red indicates higher speed). (a) Two types of basis pipes are used in this work. One is a straight pipe and the other one is an L-shape
pipe. (b) The long pipe flow composed by the straight pipe and L-shape pipe.

model consists of two DNNs, a Deconvolutional Neural Network
(DeCNN) [4, 5] and a Graph Neural Network (GNN) [6, 7]. The
DeCNN predicts the 2D velocity fields of short basis pipe flows
(learning-to-abstract), while the GNN connects two consecutive
basis pipe flows to make a smooth long pipe flow by correcting
errors in the velocity fields (especially at the interface) of the two
connected short pipe flows (learn-to-compose). We compare the
prediction and composition accuracy for these two DNN models
with ground-truth results obtained by a partial differential equa-
tion (PDE) solver (FEniCS1) for multi-physics models.

The two contributions of this paper are:

• We propose an approach to composing and reconstructing
the mechanical behavior of multi-component systems. We
do this by separating out the steps of composition and ab-
straction via the use of geometric deep learning (e.g., via
GNNs) and physics-informed neural networks (e.g., DeC-
NNs), respectively. Figure 12 and Table 2 demonstrate that
directly modeling composition using the GNN model re-
duces prediction error by an order of magnitude compared
to just abstracting each part using the DeCNNs (Fig. 10).
We demonstrate this on small laminar flow pipe networks.

• We study the effects of increasing the composition length
(via adding longer chains of parts) and part complexity (via
adding a new pipe element type) on the predictive accuracy
of the above model. Increasing the system composition size
beyond the size of the training set degrades predictive ac-
curacy while adding an additional part type did not signifi-
cantly reduce performance, at least for the two pipe segment
types we used in this limited class of pipe network problems.

In the next section, we outline the related work on NN mod-
els for abstraction and composition. An overview of the whole
framework is given in Section 3. In Section 4, the specific meth-
ods are described in detail. Numerical results are presented in
Section 5. Conclusion and discussions are provided in Section 6.

1https://fenicsproject.org/

2 LITERATURE REVIEW
The techniques pertinent to the (1) FEA-NN-based predic-

tion models, and (2) GNN models for physical system modeling
and image analysis are briefly reviewed in this section.

2.1 FEA-NN-Based Prediction Models
Prediction models based on FEA results and NN have been

applied in computational mechanics as a faster-to-compute alter-
native to time-consuming FE simulations.

2.1.1 Multi-layer perceptron (MLP): First-
generation FEA-NN-based models built upon artificial neural
networks (ANN) with simple MLP architectures. For example,
Shahani et al. [8] used an MLP to predict the behaviors (e.g.,
temperature field, strain field, and forces) of the slab in the hot
rolling process based on the back-propagation (BP) method.
Kazan et al. [9] created a prediction model of springback in a
wipe-bending process of sheet metal using a simple three-layer
ANN. Umbrello et al. [10] proposed a hybrid FE-ANN approach
for predicting residual stresses and the optimal cutting condi-
tions during hard turning of a particular type of bearing steel.
Recently, MLPs have also been used to accelerate prediction of
the separation stresses in the bottom-up stereolithography (SLA)
process of additive manufacturing to assist in an in-situ feedback
system for alleviating the print failure [11].

However, due to its limited hidden layer depth and lack of
built in invariance properties, MLPs are not as effective in learn-
ing more general and complex PDEs or phenonmena. This lim-
itation arises when an input feature vector insufficiently conveys
essential information (e.g., spatial position relationship).

2.1.2 Convolutional nueral networks (CNN):
CNNs [12], aimed at learning data that comes in the form of
arrays (e.g., images), provide the ability to capture the spatial
and temporal dependency relationship within an array (e.g.,
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FIGURE 2: Overview of our DeCNN-GNN computational pipeline for abstraction and composition of fluid pipe flows.

translation invariance). For example, Khadilkar et al. [13]
improved the prediction model of the bottom-up SLA process
by enabling the multi-slice stress field prediction using CNN.
Liang et al. [14] took advantage of convolutional and transposed
convolutional layers to develop an encoder-decoder model for
fast prediction of the aortic wall stress distribution. Sosnovik
et al. [15] introduced a convolutional encoder-decoder archi-
tecture to speed up the topology optimization methods. Nie et
al. [3] realized the prediction of the stress fields in 2D linear
elastic cantilevered structures using CNN. A recent study on
shaping microfluid flow (flow sculpting) using CNN has been
proposed by Stoecklein et al. [16] to solve the inverse problem
of designing a flow sculpting device for a desired fluid flow
shape.

In this paper, we build upon those past efforts by construct-
ing an encoder-decoder to predict the pipe flow velocity fields.
This architecture choice—making full use of convolutional and
deconvolutional (transposed convolutional) layers, as opposed to
just a feedforward network on the boundary conditions—enables
us to explore composition of multiple components in a way that
is not straightforward to do with feedforward networks.

2.2 GNN Models for Physical System Modeling and
Image Analysis

GNNs [17] are connectionist models that capture the de-
pendence of graphs via message passing between the nodes of
graphs. Zhou et al. [7] defined GNN applications in physical
system modeling as a structural scenario where the data has ex-
plicit relational structure and the applications in image analysis
as a non-structural scenario where the relational structure is not
explicit. In this paper, we investigate the physical system com-
position of fluid pipe flows relying on non-structural image data,
thus reviewing the relevant work below.

2.2.1 Physical system modeling: By representing
objects as nodes and relations as edges, a GNN can reason about
objects, relations, and physics in a simplified but effective way.

Inspired by the GNN model [17], Battaglia et al. [18] introduced
an interaction network (IN), which they propose as a general-
purpose, learnable physics engine, and a framework for reason-
ing about object and relations in a wide variety of complex real-
world domains. Sanchez-Gonzalez et al. [19] then extended and
improved the GNN model such that it can support accurate pre-
diction, inference, and control across eight distinct physical sys-
tems. Rather than INs that tackle fully observable systems, Li et
al. [20] further developed propagation networks (PropNet), a dif-
ferentiable, learnable dynamics model that handles partially ob-
servable situations and enables instantaneous propagation of sig-
nals beyond pairwise interactions. The DeepMind AI group has
made available a Graph Nets2 library that enables building GNNs
in TensorFlow3 and Sonnet4 based on the work of Battaglia et
al. [6]. Their library provides the flexibility to design GNNs for
different applications, including the physical system prediction
(e.g., mass-spring systems). Instead of using static and dynamic
parameters of a physical system, Watters et al. [21] proposed a vi-
sual interaction network (VIN) that predicts future physical states
from input image frames (pixels from video data).

In our study, we adopt the Graph Nets library to compose
the fluid pipe flows to construct a GNN model depending on non-
structural images of the pipe flow velocity field. To the best of
our knowledge, GNN models have never been used to reason and
compose physical systems using whole images.

2.2.2 Image analysis: Given that images belong to
non-structural scenarios where the relational structure is not
explicit, GNNs can be leveraged to incorporate, infer, or as-
sume relational structures for improving the performance in
images tasks. GNNs have been used in image classification
[22, 23, 24, 25, 26] by collaborating the implicit knowledge rep-
resentations (e.g., word embedding) with explicit relations (e.g.,
knowledge graph or similarity kernel), where nodes are the ex-

2https://github.com/deepmind/graph nets
3https://www.tensorflow.org/
4https://sonnet.readthedocs.io/en/latest/
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tracted representation features of images, and the edges represent
relations between nodes. GNNs are a natural message passing
tool between objects or humans in an image, and thus provide a
reasonable basis for visual reasoning problems, like social rela-
tionship understanding [27], visual question answering [28, 29],
and interaction detection [30].

To this end, a graph refers to an organization of the correla-
tions between spatial (social) relationships and semantic objects
(humans), with nodes having the extracted feature vectors (em-
bedding) of objects (words), and edge features encoding their
spatial relationships (syntactic dependencies). Another impor-
tant application for GNNs are image semantic segmentation. In
that context, GNNs resolve some shortcomings of traditional
CNNs, which only capture limited local context. GNNs, in con-
trast, can explicitly model semantic part layouts and their inter-
actions with respect to the whole image. GNNs do this by rep-
resenting an image as pixels, patches, or points, and taking each
pixel or point (e.g., superpixel or superpoint) as a semantically
consistent node and their spatial (contextual) relations as edge
features [31, 32, 33].

In these existing image applications, to construct the graphs,
images were processed or encoded into representative feature
vectors for node features. No work has ever taken the whole
original images as node features. In the meantime, image data
has never been used to construct a GNN model for any physical
system modeling problem. In this work, the velocity fields of
the pipe flows are represented as images, and we want to directly
use these images to train a GNN model without losing important
information.

3 OVERVIEW
Figure 2 outlines the computational pipeline for learning the

abstraction and composition using a DeCNN model (learn-to-
abstract) and a GNN model (learn-to-compose). The DeCNN
is designed to create an image-to-image mapping as an encoder-
decoder model (including deconvolutional layers5), which takes
the images of pipe shapes (together with boundary conditions) as
input and the images of 2D velocity fields as output (Figure 2(a)).
The DeCNN model approximates the Navier-Stokes equations to
predict the velocity fields based on the pipe shapes and boundary
conditions (inlet velocity and outlet pressure)—this is what we
refer to as “learning to abstract”.

The predicted velocity fields of two consecutive pipe flows
are then passed to a GNN model consisting of two nodes that are
connected by a directed edge (Figure 2(b)). The velocity field
images of the two consecutive pipe flows are flattened into fea-
ture vectors for the two nodes, and the edge feature is a binary
number indicating how the two pipes are connected. The input

5A deconvolutional layer is more strictly called a transposed convolutional
layer.

of the GNN model is obtained from the DeCNN model’s pre-
diction, and the ground truth is extracted from the simulated ve-
locity field of the connected long pipe flow. The GNN model
provides the ability to correct the composition errors (especially
at the interface) through its message passing mechanism. In the
next section, we describe each component in detail.

4 METHODS
4.1 Data Generation

We used the FEniCS library [34] (a finite-element solver)
to compute the velocity fields of the pipe flows. We simulate
both separated short pipe flows and combined long pipe flows of
various lengths. The shorter segments of pipe flow data are used
to train the DeCNN model (learn-to-abstract), while the longer
composed segments are used to train the GNN model (learn-to-
compose).

Specifically, we compute the 2D fluid flow using a stationary
Navier-Stokes simulation in a laminar flow, with the following
equations:

−ν∆u+(u ·∇)u+∇p = f

div(u) = 0
(1)

where u is the velocity field, p is the pressure field, f is the exter-
nal body force on the domain, and ν is the kinematic viscosity.

To create various pipe flows, we simplify the task by select-
ing two basis (short) pipes (straight and L-shape) that compose
long pipes as shown in Figure 1(a). These two basis pipes can
be rotated or flipped as needed to fit the pipe composition. There
are five unique combinations of this two-pipe composition (Fig-
ure 3). We omit the “Z” formation pipe (Figure 3(e)) in this pa-
per due to length restrictions. It is worth noting that in Figure 3,
we generate the “all-square” (formed by two identical right tri-
angle elements) mesh element (with side length of 0.1) on the
pipes such that the simulated velocity fields can be extracted in a
structured data format, which can then be easily zero-padded as
images.

For every configuration in Figure 3, we simulate the com-
bined two-pipe composition and each basis pipe separately. The
simulations have three different boundary conditions. At the out-
let for every pipe, we set the pressure to 0 to model an open
outlet. On the side walls (i.e., not the inlet or outlet), we set ve-
locity to 0 in every direction to model the no-slip condition. At
the inlet, we can apply four possible polynomial velocity profiles
(Figure 4) with each scaled by a random number R (0≤ R≤ 1).
These polynomials of degrees 0, 2, 4, or 6 are given in Equa-
tion 2:

vx = R[1− (6(y− yc))
d ] (2)

4 Copyright c© 2020 by ASME
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(c) (d) (e)

FIGURE 3: Five unique combinations of two-pipe composition
using the straight and L-shape pipes.

where vx is the x-direction velocity at a mesh grid point of the
inlet, y is the y-coordinate of the point, and d is the degree of the
polynomial. When d = 0, we set vx = R to make a constant inlet
velocity. The constant yc is the y-coordinate of the center point
of the pipe inlet. In this work, yc equals to 0.315 (the padded
square image has a side length of 0.63).

(a) (b) (c) (d)

FIGURE 4: Four polynomial-shape velocity profiles. (a) d = 0.
(b) d = 2. (c) d = 4. (d) d = 6.

These inlet velocity profiles (along with the zero-pressure
and no-slip conditions on the outlet and walls) are first applied
on the two-pipe composition to simulate the ground truth data
for the GNN model. To perform the corresponding short pipe
simulations, we split the two-pipe composition into its two basis
pipes and apply the same inlet velocity profile on the first seg-
ment of the composition. We again apply the zero-pressure and
no-slip conditions but on the interface (”intermediate outlet”) and
walls, as shown in Figure 5. Running this simulation also pro-
vides the velocity profile for the next pipe. We take the velocity
profile at the “intermediate outlet” of the first pipe and apply it

to the “intermediate inlet” of the second pipe to run the second
pipe simulation. These two short pipe simulations generate the
ground truth data for the DeCNN model.

FIGURE 5: Schematic illustration of the database creation for
DeCNN and GNN.

We repeat this entire process on each of the combinations
(Figure 3(a)∼(d)) using all the four inlet velocity profiles with
each one scaled by 2,000 random R values. Therefore, for each
combination, we perform 8,000 simulations and totally collect
32,000 groups of data for GNN model (32,000×80% = 25,600
for training and 32,000×20% = 6,400 for testing). Among the
four combinations, Figure 3(a) and (b) both have the straight
pipe as the first pipe and are thus assigned the same inlet ve-
locities. The same strategy is applied to Figure 3(c) and (d). In
this way, the database creation process is simplified such that the
short split pipe has 8,000 simulation data for each of the first
straight pipe and L-shape pipe, and 16,000 simulation data for
the next straight pipe and L-shape pipe. As a result, we produce
48,000 data in total for DeCNN model (48,000×80% = 38,400
for training and 48,000×20% = 9,600 for testing).

4.2 DeCNN
We use a DeCNN model to learn-to-abstract the flow field

behavior (Figure 2(a)) as a projection into a lower-dimensional
latent space. As illustrated in Figure 6, a two-channel is proposed
to perform the prediction of the 2D velocity field of a pipe flow.
For visualization purposes, the 2D velocity vectors (x,y) occupy
the R- and G-channels, respectively, with B-channel padded with
zeros. The input of the model is a three-channel RGB image that
is stacked by the inlet velocity vector and the pipe shape. Among
the three channels, the 2D inlet velocity vectors (x,y) are filled
in the R- and G-channels, while the B-channel takes the binary
image of the pipe shape. Figure 6 illustrates an example input
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FIGURE 6: The architecture of DeCNN for learn-to-abstract. The stride is 2×2. All kernels are of size 4×4. The number of kernels is
represented by the number at the bottom of the layer. Excluding the reshape output layer, every layer (11 in total) is followed by a batch
normalization layer. The activation function used in DeCNN is tanh.

RGB image. The blue region describes the shape of pipes, while
the red line indicates the inlet velocity vector—i.e., the vector is
assigned to the very first column of pipe pixels at the inlet.

A DeCNN uses multiple convolutional and deconvolutional
(transposed convolutional) layers in an encoder-decoder struc-
ture (convolutional autoencoder). This convolutional autoen-
coder learns to encode the input in a set of simple signals and re-
construct the input from them [35]. The encoder in our DeCNN
model consists of four convolutional layers (E1 ∼ E4). Each
convolutional layer has a filter with a kernel size of 4× 4 and a
stride of 2× 2. The padding scheme is a zero-padding so that
the output in convolution does not differ in size as input. After
two fully connected (FC) layers E5 and E6, the latent feature
representation of the input image is obtained. The latent feature
representation is then fed into the decoder, which is the reverse
of the encoder. After two FC layers (D1 and D2) and a reshape
layer (D3), four deconvolutional layers (D4 ∼ D7) are used for
upsampling the image to the same resolution as the input image.
Excluding the reshape and the output layers, every layer (11 in
total) is followed by a batch normalization layer. The activation
function used in the DeCNN model is tanh (hyperbolic tangent).

The height, width, and depth of the input image vary through
the DeCNN model: 64× 64× 3 (input image) →32 ×32× 32
(E1)→16×16×64 (E2)→8×8×128 (E3)→4×4×256 (E4)
→1024 ×1× 1 (E5) →128 ×1× 1 (E6) →1024 ×1× 1 (D1)
→4096×1×1 (D2)→4×4×256 (D3)→8×8×128 (D4)→16
×16× 64 (D5)→32 ×32× 32 (D6)→64 ×64× 2 (D7: output
layer).

4.3 GNN
The GNN model’s purpose is to learn-to-compose the ab-

straction produced by the DeCNN. Specifically, we use the graph
networks (GN) framework [6], which unifies and extends vari-
ous GNN [36], message-passing neural network (MPNN) [37],
and non-local neural network (NLNN) [38] approaches. It also
supports constructing complex GNN architectures from simple
building blocks (GN blocks). This approach affords the fol-
lowing advantages: (1) flexible representations of the graph at-
tributes and the graph structure, (2) configurable within-block
structure and functions, and (3) composable multi-block archi-
tectures by simply linking GN blocks.

4.3.1 A Graph and GN Block In the GN framework,
a graph, defined as a 3-tuple G = (V,E,u), is referred to as
a directed, attributed multi-graph with a global attribute (Fig-
ure 7(a)). The V = {vi}i=1...Nn is the set of nodes, where each vi
is a node’s attribute (a feature vector). The E = {ek,sk,rk}k=1...Ne

is the set of edges, where each ek is an edge’s attribute (a feature
vector), and rk and sk are the indices of the sender and receiver
nodes, respectively. The u is the global attribute (e.g., u can be
the gravity constant). In this paper, to compose two short pipe
flows into one longer pipe flow, we construct a two-node graph
with the flattened velocity field images fed into the (receiver and
sender) nodes as feature vectors (Figure 7(b)). To distinguish be-
tween horizontal and vertical connections of two pipes, we assign
zero or one as the edge feature. There is no global attribute for
the pipe flow composition. The global feature can be ignored or
fixed as zero. This approach can model longer pipe segments or
more complex pipe networks by expanding the size of the graph.

The main computation unit in the GN framework is a GN
block, a graph-to-graph module that takes a graph as input, per-
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(a) (b)

FIGURE 7: Schematic illustration of a graph. (a) The standard graph defined within GN framework with global, node, and edge
feature vectors. (b) A two-node graph built for the pipe flow composition of two pipes. The velocity field images (64×64×2) of two
consecutive pipe flows are flattened into feature vectors for the (sender and receiver) nodes that are connected by an edge. The edge
feature is assigned zero indicating horizontal connection and one for vertical connection. The global feature can be ignored or fixed as
zero.

forms computations over the structure, and returns a graph with
the same structure but updated edge, node, and global features
as output. A GN block contains three update functions, φ , and
three aggregation functions, ρ:

e′k = φ
e(ek,vsk ,vrk ,u)

v′i = φ
v(ē′i,vi,u)

u′ = φ
u(ē′, v̄′,u)

ē′i = ρ
e→v(E ′i )

ē′ = ρ
e→u(E ′)

v̄′ = ρ
v→u(V ′)

(3)

where E ′i = {e′k,sk,rk}rk=i, k=1...Ne , V ′ = {v′i}i=1...Nn , and E ′ =⋃
i E ′i = {e′k,sk,rk}k=1...Ne . The φ e is mapped across all edges

to compute per-edge updates, the φ v is mapped across all nodes
to compute per-node updates, and the φ u is applied once as the
global update. For vector features, a MLP is often used for φ .
Each ρ function takes a set as input and reduces it to a single ele-
ment that represents the aggregated information. When a graph,
G, is fed as input into a GN block, the computations proceed
from the edge, to the node, and to the global level. Algorithm 1
describes the computation steps in a full GN block (Figure 8).

4.3.2 GN Architecture for Pipe Flow Composition
To compute the two-node graph for the pipe flow composition,
we compose a three-block architecture following an encode-
process-decode configuration [39], where a GNenc encodes an
input graph into a latent representation, which is then processed
M times by a shared core block GNcore. The output of the core
is decoded by a GNdec into an output graph, whose node features
would be the pipe flow composition results. Among the three GN
blocks, the GNenc and GNdec have an independent internal struc-
ture, which independently encodes or decodes the edge, node,
and global features, while the GNcore is a full GN block, which
performs M rounds of message-passing. Given all vector features
in the two-node graph, we adopt an MLP model (with two layers
and a latent layer size of 16) for all the edge (φ e), node (φ v), and

global (φ u) update functions in the three GN blocks. Figure 8
depicts the detail of the GN architecture used for the pipe flow
composition.

Algorithm 1 Computation steps in a full GN block

Input: Graph, G = (V,E,u)
1: for each edge {ek,sk,rk} do
2: Gather sender and receiver nodes, vsk , vrk
3: Compute updated edge features, e′k = φ e(ek,vsk ,vrk ,u)
4: end for
5: for each node {vi} do
6: let E ′i = {e′k,sk,rk}rk=i, k=1...Ne

7: Aggregate edge features e′k per node, ē′i = ρe→v(E ′i )
8: Compute updated node features, v′i = φ v(ē′i,vi,u)
9: end for

10: let V ′ = {v′}i=1...Nn

11: let E ′ =
⋃

i E ′i = {e′k,sk,rk}k=1...Ne

12: Aggregate edge features, ē′ = ρe→u(E ′)
13: Aggregate node features, v̄′ = ρv→u(V ′)
14: Compute global features, u′ = φ u(ē′, v̄′,u)
Output: Graph, G′ = (V ′,E ′,u′)

5 NUMERICAL ILLUSTRATION
Our code is written in TensorFlow and executed on an

NVIDIA Tesla V100 GPU. The hyper-parameters used for train-
ing the DeCNN and GNN models are listed in Table 1. The train-
ing and testing results show that both DeCNN and GNN models
are stable and converged reliably.

5.1 Loss Function and Metrics
Mean squared error (MSE) is selected as the loss function

for the DeCNN and GNN training:

MSE =
1

MN

M

∑
j=1

N

∑
k=1

(η̂ j,k−η j,k)
2 (4)
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FIGURE 8: GN architecture used for the pipe flow composition.

TABLE 1: Hyper-parameters used for training DeCNN and GNN

Hyper-parameter DeCNN GNN

Optimizer Adam Adam

Batch size 32 32

Learning rate 0.001 0.001

Batch normalization (momentum) 0.9 -

Message-passing steps (M) - 1

Training steps 200,000 1,000,000

where N is the number of pixels and M is the batch size. In
each step, the pixel-wise square error between prediction (η̂) and
ground truth (η) is computed and averaged over all pixels (N =
64×64×2) and all samples of a batch (M = 32).

Given that the predicted velocity field is a vector field, to
measure the prediction performance more intuitively, we calcu-
late L2 (Euclidean) norm of the velocity vectors (` =

√
x2 + y2)

to make the velocity field into a scalar field that leads to more
straightforward quantification of the performance measurement.
We also introduce the pixel-wise relative error (PRE) to compare
the velocity norm between the prediction and ground truth:

PRE =
| ˆ̀i− `i|

`i
×100%, i = 0, . . . , Nn (5)

where Nn is the number of pixels (Nn = 64× 64× 1) in the ve-
locity norm field. At the i-th pixel, ˆ̀i is the norm of the predicted
velocity, and `i is the norm of the ground truth.

5.2 Performance of DeCNN
The MSE loss of the DeCNN model as a function of training

steps (200,000 steps) is given in Figure 9, where the training loss
is computed for a batch size (32) of training data, while the test-
ing loss is for the entire testing data (9,600). The visualization of
the testing results are given in Figure 10:

• Input: The input RGB image (64×64×3) for testing.
• Prediction: The RGB image (64×64×2 + zero padding of

B-channel) of the predicted velocity field6.
• Ground truth: The RGB image (64×64×2 + zero padding

of B-channel) of the simulated velocity field.
• Absolute discrepancy: The absolute discrepancy of velocity

fields between the prediction and ground truth at each pixel.
• Scaled discrepancy: The absolute discrepancy is scaled up

to the range [0,1] for better visualization.
• Ground truth norm: L2 Norm of the simulated velocity vec-

tors. Color map is given to visualize the magnitude.
• Discrepancy norm: L2 Norm of the absolute velocity dis-

crepancy between the prediction and ground truth.
• Relative norm: PRE of the velocity norm between the pre-

diction and ground truth.

6For visualization purposes, the velocities are ensured in the positive range
[0,1] for valid RGB values in this paper.
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(a) (b)

FIGURE 9: Training and testing loss of DeCNN model during
the training history. MSE curves in (a) arithmetic coordinates
and (b) logarithmic coordinates.

Key result for the DeCNN: As shown in Figure 10, the pre-
dictions are close to the ground truth. For example, the percent-
age error between the predicted and ground truth velocity norms
(relative norm) is no higher than 3%. If we average the relative

error across all valid sites ( 1
Nvalid

Nvalid

∑
i=1

| ˆ̀i− `i|
`i

, where Nvalid is the

number of pixels in pipe area) on the testing samples, the trained
DeCNN model can achieve an average prediction accuracy of
about 98.6%. As we can see, large errors always occur at the
pipe boundaries.

5.3 Performance of GNN
The MSE loss of the GNN model as a function of training

steps (1,000,000 steps) is given in Figure 11, where the training
loss is computed for a batch size (32) of training data, while the
testing loss is for the entire testing data (6,400). The visualization
of a testing result is given in Figure 13:

• Input composition: Two input RGB images for the two-node
graph. The two input images represent the velocity fields of
two consecutive pipe flows that are naively composed to-
gether. The two consecutive pipe flows are predicted using
the DeCNN model.

• Ground-truth composition: A ground-truth image obtained
directly from the long pipe flow simulation.

• Naive composition discrepancy: The absolute discrepancy
of velocity fields between the input composition and ground-
truth composition. The discrepancy has been scaled up for

(a)

(b)

FIGURE 10: Visualization of learn-to-abstract using DeCNN. (a)
Straight pipe. (b) L-shape pipe.

visualization purposes.
• Naive discrepancy norm: L2 Norm of the naive composi-

tion discrepancy between the input composition and ground-
truth composition.
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• Predicted composition: Two output images corrected by the
GNN model. The velocity fields of two naively composed
consecutive pipe flows are corrected (especially at the inter-
face) to make a smooth long pipe flow via the learning of the
GNN model.

• Predicted composition discrepancy: The absolute discrep-
ancy of velocity fields between predicted composition and
ground-truth composition.

• Predicted discrepancy norm: L2 Norm of the predicted com-
position discrepancy between the predicted composition and
ground-truth composition.

• Ground truth norm: L2 Norm of the simulated velocity field
of the long pipe flow.

• Input relative norm: PRE of the velocity norm between the
input composition and ground-truth composition.

• Predicted relative norm: PRE of the velocity norm between
the predicted composition and ground-truth composition.

(a) (b)

FIGURE 11: Training and testing loss of GNN model during the
training history. MSE curves in (a) arithmetic coordinates and
(b) logarithmic coordinates.

Key result for the GNN: Figure 12 compares the composi-
tion of two L-shape pipes before and after using the GNN model
to demonstrate the efficacy of our learn-to-compose model. As
seen in Figure 12, the naive pipe flow composition predicted by
the DeCNN model has been close to the ground truth but with
discontinuity (high error) at the connection interface of two pipe
segments. Our GNN model targets solving the discontinuity is-
sue by correcting the high error at the connection interface. For
the particular case in Figure 12, our GNN model can effectively

FIGURE 12: Composition comparison before and after using
GNN. Left: Naive composition by DeCNN. Right: Modified
composition after using GNN. The high errors at the connection
interface (highlighted in the red box) are effectively corrected,
and the pipe flow is thus smoothened by the GNN model.

reduce the relative (percentage) error at the interface from 20% to
below 5%. By averaging the relative error across all valid sites,
our GNN model can achieve an average prediction accuracy of
about 98.2% (compared to 97.7% of the naive composition) on
this example. Large errors also occur at the pipe boundaries. Ta-
ble 2 summarizes the percentage errors of all the four types of
compositions before and after using the GNN model. More de-
tailed visualization of the four types of compositions is given in

10 Copyright c© 2020 by ASME



FIGURE 13: Visualization of learn-to-compose using GNN. This two L-shape pipe composition is shown as a representative of the other
examples. Figure 15 in Appendix A displays all the four types of compositions.

Figure 13 and Figure 15 in Appendix A.

5.4 Discussion of Multi-Pipe Composition
We expect to generalize our GNN model for composition

with any number of pipes, that is, the prediction performance
should be unaffected by the composition length. We thus use the
current GNN model to predict longer pipe compositions to see
the effect of composition length on the prediction performance.
For simplicity, We select all straight pipe components to com-
pose longer pipe flows with increasing lengths (from two-pipe to
nine-pipe composition). To enable a fair comparison, each pipe
composition is applied with the same boundary conditions. The

mean predicted discrepancy norm (MPDN = 1
Nvalid

Nvalid

∑
i=1
| ˆ̀i− `i|)

for each adjacent two pipe segments is computed across multiple
samples to measure the prediction performance. Figure 14 plots
the MPDN values that depict the effect of the composition length
on the prediction performance.

As seen in Figure 14, while our GNN model decently pre-
dicts the short-length compositions with lower errors (MPDN),
it does not perform well when the composition length becomes
longer (e.g., when the pipe number is greater than five). The pre-
diction error keeps increasing with the composition length. We
reason that the error increase is due to (1) the limited types of
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TABLE 2: Percentage errors of compositions before and after
using GNN

Combinations
Interface error Average accuracy

Before After Before After

Two straight > 8% < 2% 98.3% 99.8%

Straight+L-shape > 16% < 3% 98.0% 99.7%

L-shape+Straight > 25% < 5% 98.1% 99.1%

Two L-shape > 20% < 5% 97.7% 98.2%

FIGURE 14: Effect of composition length on the prediction per-
formance of GNN model. The x-axis represents each adjacent
two pipes along multi-pipe composition (maximum 9 pipes).
The red squares and blue bars indicate the MPDN and its stan-
dard deviation across multiple samples with different composi-
tion lengths.

inlet velocities for the first pipes in the GNN database, where
the first node of the two-node graph is always fed with designed
inlet velocity (using the polynomial Equation 2), and (2) the ac-
cumulative errors of the DeCNN model when using the predicted
results of the previous pipe to predict the next pipe again. How-
ever, the proposed two models still show the potential for pre-
dicting more general cases. We believe these limitations could
be mitigated by creating a more diverse database.

6 CONCLUSION
We proposed a computational pipeline for prediction of the

fluid pipe flows and their composition behaviors, which can be
used to demonstrate how NNs learn the abstraction and compo-
sition of phenomena when a single NN model cannot suffice in
building different parts of a system. The functional aspects of
the problems focused on the 2D velocity field prediction and
correction for two types of basis pipe flows and their combi-

nations. When pipe shapes (straight or L-shape) and boundary
conditions (inlet velocity and outlet pressure) were fed into the
computational pipeline, the first NN model predicted the velocity
field of each basis pipe flow and the second NN model learned
to compose a long pipe flow system by combining these basis
pipes. This is achieved by developing a DeCNN model (con-
volutional autoencoder) to reconstruct the 2D velocity field and
a GNN model (two-node graph network) to correct two naively
connected velocity fields.

Our approach offered a solution for constructing multiple
NNs that learn one physical phenomenon and also afford compo-
sition and automatic self-tuning of different components in a sys-
tem. Our method demonstrated decent accuracy (around 99%) in
the abstraction and composition of the pipe flow system.

Limitations and future work: Our current work demonstrated
the DeCNN-GNN pipeline by using limited (two) types of pipes,
and thus the possible combinations in pipe flow composition
were limited as well. Besides the two-pipe composition illus-
trated in this work, we want the composition of more pipe flows
to be validated. As future work, including more diverse pipe
shapes and boundary conditions (i.e., more diverse inlet veloc-
ities) in the database, could be an approach to alleviating these
limitations.

A natural extension for this work is to automate the pipe flow
system’s design by setting input parameters or rules to achieve
output designs that meet the desired behaviors. Building upon
AI algorithms, this could provide a set of solutions for generative
design.
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Appendix A: Visualization of Learn-to-Compose

(a) (b)

(c) (d)

FIGURE 15: Visualization of learn-to-compose using GNN. (a) Two straight pipes. (b) Straight pipe + L-shape pipe. (c) L-shape pipe +
straight pipe. (d) Two L-shape pipes.
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