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ABSTRACT

Computational design methods provide opportunities to dis-
cover novel and diverse designs that traditional optimization ap-
proaches cannot find or that use physical phenomena in ways
that engineers have overlooked. However, existing methods re-
quire supervised objectives to search or optimize for explicit be-
haviors or functions — e.g., optimizing aerodynamic lift. In con-
trast, this paper unpacks what it means to discover interesting
behaviors or functions we do not know about a priori using data
from experiments or simulation in a fully unsupervised way. Do-
ing so enables computers to invent or re-invent new or existing
mechanical functions given only measurements of physical fields
(e.g., pressure or electromagnetic fields) without directly speci-
fying a set of objectives to optimize.

This paper explores this approach via two related parts.
First, we study clustering algorithms that can detect novel de-
vice families from simulation data. Specifically, we contribute
a modification to the Hierarchical Density-Based Spatial Clus-
tering of Applications with Noise algorithm via the use of the
silhouette score to reduce excessively granular clusters. Second,
we study multiple ways by which we preprocess simulation data
to increase its discriminatory power in the context of clustering
device behavior. This leads to an insight regarding the important
role that a design’s representation has in compactly encoding its
behavior.

We test our contributions via the task of discovering designs
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that function as fluidic logic gates. We generate synthetic data
that mimics fluidic devices and show that our proposed contribu-
tions better discover logic gates, as measured by adjusted Rand
score. Specifically, combining our Resolution Selection prepro-
cessing and principal component analysis resulted in the high-
est and tightest spread of adjusted Rand scores on our tested
datasets. This opens up new avenues of research wherein com-
puters can automatically explore different types of physics and
then derive new device functions, behaviors, and structures with-
out the need for human labels or guidance.

1 Introduction

One output of engineering design is to manipulate geom-
etry and material in space-time (often called a device’s struc-
ture) to modify something about nature’s current state via phys-
ical fields (i.e., a device’s behavior) in service of benefiting hu-
manity in a specific way (i.e., a device’s function). For exam-
ple, devices called logic gates all perform the same useful func-
tion — e.g., performing a Boolean operations (such as AND,
OR, XOR) between one or more inputs. Despite this seemingly
commonplace function, however, logic gates can vary wildly
in their physical behavior. For example, while familiar AND
gates (e.g., using MOSFETs) manipulate electrostatic fields to
alter a material’s conductivity, there are a wide range of other
physical behaviors that can produce this same function: (1) flu-
idic logic gates can use dye flowing into different channels [1],



pressure-activated gates [2], or even bubble-based gates [3] to
create fluidic circuits used in sensor or lab-on-a-chip applica-
tions; (2) photonic gates can guide waves through crystals [4];
(3) chemical diffusion can drive AND behavior in synthetic biol-
ogy circuits [5]; and (4) trapped ions [6] or laser pulses [7] can
combine to form Toffoli gates, useful for higher qubit quantum
circuits.

In principle, all of these devices can have the same func-
tion — performing Boolean operations — though they imple-
ment that function via drastically different physical behaviors.
This paper addresses how one might discover a variety of sim-
ilarly functioning devices automatically. Specifically, we seek
algorithms that can identify “interesting” physical behaviors that
emerge from a set of physics and a given design space, but with-
out requiring human guidance, intervention, or explicit direction
regarding what behaviors or functions to look for. For exam-
ple, put more succinctly, without telling an algorithm that we
want something that acts like a logic gate, can it nevertheless
automatically discover the existence of such devices by only di-
rectly observing the physical behavior of various designs? Can
it derive novel families of devices that perform functions that
the algorithm does not know about a priori? Answering such
questions would enable the automated discovery of engineered
components for new physics regimes where humans have yet to
explore rigorously or even via trial-and-error — e.g., in space-
craft components in extreme environments where existing de-
vices break down such as in landers on Venus [8] or hyper-
sonic flight regimes, or in adapting engineering design methods
to novel domains like synthetic biology or quantum computing.

This paper addresses such concerns by studying two inter-
related questions: (1) how do we discover groups of designs
whose behavior is “similar enough” to constitute a family of re-
lated functions, and (2) how do we compactly represent a de-
sign’s behavior? This paper’s key idea is that by combining
large-scale, automated simulation of different physics across (ap-
propriately randomized) design spaces with new ways of prepro-
cessing and clustering the resulting simulation data, we can auto-
matically identify unique functional families of devices. Specifi-
cally, the key contributions of this paper are:

1. We modify the Hierarchical Density-Based Spatial Cluster-
ing of Applications with Noise (“HDBSCAN”) algorithm’s
persistence measure and use the silhouette score [9] to se-
lect hyperparameters. When combined with the below con-
tribution, this method, called the Silhouette-modified HDB-
SCAN (“SHDBSCAN™), produces clusterings with gener-
ally higher adjusted Rand scores than tested baseline meth-
ods on behavior clustering tasks.

2. We propose two heuristics that produce behavior vectors
that provide better clustering of fluidic components than un-
preprocessed data when applied to synthetic examples that
mimic boundary-sampled simulation solution fields [10].

We identify a subset of preprocessing steps that result in the
highest adjusted Rand scores on our tested data.

To demonstrate the value of these contributions, we show that we
group synthetic fluidic devices with similar logic gate behavior
together without explicitly stating objectives or optimizing for
logic gate behavior. Stated more plainly, interesting logic-gate
behavior “falls out naturally” from our above behavior represen-
tation and clustering, even though we do not explicitly instruct
the algorithm to find those specific behaviors.

2 Related Work

This paper contributes to three main areas: describing be-
havior of components from simulation data, clustering of behav-
ior to discover groups of components with similar behavior, and
furthering our methods of functional discovery. Although we
use fluidic logic gates components as example cases, our con-
tributions are generalizable to other types of simulation data as
well.

2.1 Discretizing Continuous Data

To use the plethora of machine learning (“ML”) methods that
have been studied, it is often necessary to vectorize — or put into
a vector — the data on which the algorithm will train. Although
some applications have very clear ways to vectorize data (e.g.,
setting features for housing price such as number of floors or
square footage), other applications require less obvious set up
(e.g., in text documents, using term frequency and inverse dataset
frequency [11, 12]).

We run into some challenges exemplified by our sample ap-
plication of clustering on fluidic logic gates. In the first, fluid
simulations generally produce discrete data, though they model
continuous fields (i.e., continuous functions). By itself, this is
not necessarily an issue; converting from a continuous field to a
discrete one is reasonably well-studied in the field of functional
data analysis in a process called quantization; Wang et al. [13]
discuss many of the methods used in quantizing data, as well
as several methods for clustering such data. However, although
these approaches are used in a wide range of applications (DNA
in adipose cells [14], time-course gene expression [15], and cran-
iofacial growth of male rats and lung function growth [16], to
name a few), these discretization methods also generate high-
dimensional representations to capture the behavior of the physi-
cal phenomena. This dimensionality poses problems for training
ML algorithms on possibly sparse data, invoking the curse of di-
mensionality [17].

Specifically in this paper, we can quantize continuous phys-
ical phenomena faithfully, i.e. capturing the large-scale behav-
ior and fluctuations of the physical fields, but the resulting dis-
cretization is often too high-dimensional to extract meaning-
ful device clusterings due to redundant or non-discriminatory



dimensions. Our approach explores combinations of dimen-
sion “pruning” — where we heuristically remove redundant
and non-discriminatory dimensions — and dimensionality re-
duction — via Principal Component Analysis (“PCA”) and t-
distributed Stochastic Neighbor Embedding (“TSNE”).

2.2 Clustering

Clustering, a commonly known operation in the field of ML,
has been studied extensively in recent years. The goal of cluster-
ing algorithms is to assign each data point to the group of data
points that are most similar to itself; however, globally optimal
clustering is NP-hard [18]. Because of this, many different al-
gorithms have been proposed, some using meta-heuristics like
Harmony Search [12, 19], while others are based on swarm in-
telligence [20, 21], message passing [22], low-dimensional em-
bedding [23], or crawling through regions of high density [24].
Combined with methods as in [25] and above, clustering can
be extended to the types of data we would see in fluidic logic
gate simulations. However, a straightforward application of
these algorithms produces low correlation between clustering
and device behavior, specifically from similar devices not being
grouped, so we propose a new clustering algorithm — SHDB-
SCAN (§3.1) — to mitigate these issues without compromising
on performance in other clustering applications.

2.3 Functional Discovery

Much of the work in design ideation focuses on human en-
gineers and their processes, though several approaches approach
the use of ML in design ideation as well.

By focusing on the human designer, researchers try to un-
derstand how human designers work, and then how to improve
a human designer’s process in designing a product. This begins
with how designers represent data internally [26] and use analo-
gies to recall useful previous information [27]. With an internal
model in place, designers iterate through solutions until a satis-
factory solution is reached. This iterative process may include
looking at similar and dissimilar examples to improve feasibility
or novelty, respectively [28] or combining previous designs to
improve novelty and quantity [29]. However, these methods all
presume a human designer; non-human designers — i.e., com-
puters — may not necessarily follow the same internal models or
use the same heuristics.

Zhang et al. [30,31] and Camburn et al. [32] compare ex-
pert and non-expert analyses of design ideas against algorithmi-
cally generated analyses, showing that unsupervised ML meth-
ods provide analyses comparable to human-generated analyses
on text-form descriptions of designs. Gyory et al. [33] apply
methods from network analytics to describe a semantically des-
ignated design space, while Fu et al. [34] search for structural
forms in patent texts. Similarly, Mikes et al. [35] mine reposi-
tories for functional decompositions of products in a generalized

way. However, these methods focus on textual descriptions of
designs, taking advantage of human intuition for the aspects of a
design that are important through articulation of these features.
Our work differs from this previous work by using numerical de-
scriptions of devices based solely on their measurable physical
behaviors, without requiring human intuition or description of
what a device does.

Aside from human-centered design methods or intervention
by humans, recent work has applied ML to generate new de-
signs or analyze preexisting ones. Generative adversarial net-
works have been used to increase training datasets for 3-D de-
sign problems [36] and to find diverse, high-quality designs in
airfoils [37]. Grammars and grammatical structures are used to
search for and design tensegrity structures [38], soft robots [39],
and cooling channels in a die-casting mold [40]. Additional
uses of ML and other heuristics include identifying fasteners
(e.g., screws) and non-fasteners [41] and reducing manufactur-
ing costs [42], though these methods are application-specific and
may be difficult to generalize. Dering and Tucker [43] use convo-
lutional neural networks to predict functional quantities, which,
though conceptually similar to the behavior vectors from §3.2,
are generated by hand, while our method is fully automated.
However, even small differences in representing the same devices
can create significant disparities in measurements of design simi-
larities [44]. Our methods differ in that we do not limit ourselves
to the representation space of a grammatical language, nor do
we presume a repository or previous representation of simulation
data. Our proposed methods attempt to minimize redundancy
and improve discriminatory power of our behavior vectors.

3 Methods

This paper contributes two key methods, which this sec-
tion describes in order: (1) SHDBSCAN, a modification to the
HDBSCAN algorithm that improves clustering performance; and
(2) a series of preprocessing methods to generate behavior vec-
tors from simulation data.

3.1 Silhouette-optimized HDBSCAN

We treat function identification as essentially a clustering
problem. That is, we expect that different devices with similar
behaviors exist and that grouping those similar behaviors will
identify the underlying functions those devices perform. Pre-
liminary results with off-the-shelf clustering algorithms either
resulted in clusters of unrelated devices — while related ones
were separated into different clusters — or numerous tiny clus-
ters — some including only single devices. Many of these tiny
clusters included similar behaviors; as such, we posited that
modifying an existing algorithm to force these small clusters to
stay together could improve the clustering results. The density-
based algorithms, such as HDBSCAN, seemed promising from



our initial results. Although it produced many small clusters,
HDBSCAN did not usually cluster together unrelated devices.

The original HDBSCAN algorithm [45] has the following
high-level steps:

1. Compute the mutual reachability metric, in effect spreading
out regions of low density and compressing regions of high
density.

2. Build the minimum spanning tree of the dataset, e.g., using
Prim’s algorithm [46].

3. Build a hierarchy of how clusters are connected, merging
smaller clusters into larger ones as the hierarchy goes up.

4. Condense the cluster tree such that it represents large, per-
sistent clusters that lose points, splitting only when the sub-
sequent clusters are larger than the minimum cluster size.

5. Finally, extract the longest-lived and most persistent clusters
by a stability metric, keeping a cluster when its stability is
greater than that of its children.

We modify the HDBSCAN algorithm in two ways. First,
we change its measure of cluster persistence to a new measure
governed by a hyperparameter called the maximum cluster size.
Secondly, to select this hyperparameter, we select the value that
maximizes the silhouette score, which measures the inter- and
intra-cluster distances to approximate how well-separated and
tightly clustered the resulting clusters are. We call our approach
the Silhouette-optimized HDBSCAN, or SHDBSCAN.

First, we consider some value ¢ that we denote the maximum
cluster size. We start at the root of the cluster tree, representing
a clustering where all points are in one cluster. We can thus step
down through the cluster tree, clustering our data into smaller
and smaller clusters without dropping any data from our clusters.
Figure 1 demonstrates how we step down a single-linkage tree for
a pedagogically illustrative example.

® ©

FIGURE 1: At the root node, all nodes are in the same cluster.
As we set ¢ smaller, we work our way down through the clusters.
By setting ¢ = 8, we end our clustering at the root node. If we
set ¢ = 5, we move down to the next level, where each cluster
includes at most 5 nodes. Setting ¢ = 3, the left-side cluster is
smaller than c, but the right-side cluster must be split once more.

At each node, we calculate the size of that cluster by count-
ing the number of leaves in the subtree rooted at that node; if
that cluster size is less than ¢, we stop at that node and label all
leaves of the subtree to be in the same cluster. We then move onto
the next node with unlabelled leaves and repeat the process. We
continue this process until all points are labeled. This is a differ-
ent measure of “cluster persistence” than is used in HDBSCAN.
However, since our proposed persistence-modified HDBSCAN
depends on an appropriate value for ¢, our algorithm needs to
choose this value.

To choose the appropriate max cluster size ¢, we use the
silhouette score. Specifically, we run the persistence-modified
HDBSCAN for every integer between ¢ = 1 (where every data
point is its own cluster) to ¢ = N (where N is the number of
points in our dataset, representing all points in a single cluster),
calculating the silhouette score for each value of c¢. We then set ¢
to the value that maximizes the silhouette score.

3.2 Generating Behavior Vectors from Physical Sim-
ulations

To identify families of interesting devices, we have to solve
three problems:

1. What is behavior, and how do we represent it?
2. How do we minimize redundancy in our behavior vector?
3. How do we remove non-discriminatory values?

As an illustrative example, we discuss a 2-D two-input-one-
output fluidic logic gate (Fig. 2).

If we consider that the movement of mass, e.g., fluid veloc-
ity, differentiates between fluidic logic gates, then we recognize
that the behavior must be related to the fluid velocity. As such,
our method of representing the behavior must take into account
the fluid velocity. One naive way to represent the behavior of a
device is to sample the velocity throughout the domain — e.g.,
along a grid — and append the velocities into a vector. This
provides a large, high-dimensional vector that contains all of the
information about the behavior. However, this method includes
information that may be unnecessary in representing the device’s
behavior.

To address this inefficiency, we considered what a device’s
behavior means in terms of its function in a system. We, as en-
gineers, usually care how a device behaves in terms of its re-
lations to its surroundings. In other words, does it matter if a
motor spins because of changing magnetic fields or because an
elf inside is riding a small bike? Do we need to know what is
happening everywhere, or can we more compactly — yet com-
prehensively — represent a device’s relationship to its environ-
ment by looking only at its interfaces with its environment? Fol-
lowing this line of thought, we sampled points only along the
boundaries of the device — i.e., where the fluidic logic gate in-
terfaces with the rest of the system. This seemed promising as it
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FIGURE 2: Example four-port device that mimics a two-input-
one-output logic gate. The blue inputs are /; =0 and I, =1,
representing fluid velocities. The red output is O = 1, with the
red miscellaneous (“M”) gate providing a sink for excess mass
in this example. When performing an “OR” operation between
I; and I, we see that O has a positive, if lower, velocity profile.
The addition of the red miscellaneous gate at the top provides
an outlet for any surplus (or shortage) of fluid to conserve mass.
Integrating velocity across all four ports results in 0 net change
in fluid flow.

generated a significantly smaller behavior vector. However, we
now needed to generate these behavior vectors in a consistent and
well-defined manner.

First, we look at the sampling resolution along the border.
Sampling more points — i.e., a higher resolution — would give
more detailed information about the device, but at the cost of
a larger behavior vector. However, we find it is worth looking
at more redundant behavior vectors and later pruning out redun-
dant values from our representation, rather than starting with an
uninformative behavior vector. Second, we wish to minimize
redundancy in the behavior vector we have generated. If a de-
vice’s behavior vector has slowly changing values, then spatially
close points would not provide any additional information about
a device, so we can effectively reduce the sampling resolution by
removing points from the behavior vector. Thirdly, we want to
remove points that, while representative of behavior, may not be
useful to discriminate between devices. By removing points with
a variance below a given threshold, we can shrink the behavior
vector while maintaining its discriminatory value.

This combination of three steps (generating the behav-
ior vector, using a subset of its values, and removing non-
discriminatory values) gives us a method by which we can con-
vert the continuous results of a simulation into a vector of dis-
crete values with which we can apply ML methods. The sections
below go into detail about the implementation of these steps.

3.2.1 |Initial Boundary Resolution To choose
boundary points to include in the behavior vector, we consider
the edges of the spatial domain. In theory, we can sample any
number of points from the simulation data. However, including
too many points increases the dimensionality of the clustering
problem without increasing our ability to differentiate between
clusters. The goal, then, is to include the fewest number of
points (to reduce the curse of dimensionality) that still contain
enough information to differentiate between different devices.

Choosing the initial sampling resolution is not trivial, though
it does correlate strongly with the length scale of phenomena
in the device. If the length scale is unknown, then the initial
sampling resolution is little more than an arbitrary guess. As
a simple heuristic, we suggest a visual inspection of some data
points and choosing a resolution twenty times the frequency of
the shortest “important” phenomenon, as in Fig. 3. If the length
scale is known, we suggest twenty times its minimum frequency
as the initial sampling resolution. The specific choice of initial
sampling frequency is not critical, so long as it is sufficiently
high, since we propose methods to remove redundant and non-
discriminatory values in §3.2.2 and §3.2.3.

3.2.2 Resolution Selection Preprocessing We
want to capture phenomena without knowing ahead of time the
length scale of the phenomena. We estimate the length scale us-
ing differences between adjacent points and use this estimation
to determine the sampling resolution. This Resolution Selection
preprocessing step shortens a current behavior vector by taking
every m*-th point, as defined below.

First, we linearly scale our behavior vectors so each value
is between 0 and 1 such that, for our fluidic logic gate example,
all of the values related to pressure are scaled together, and all of
the values related to velocity are scaled together. If we directly
scale the entire behavior vector together, then if, for example,
the pressure values were significantly higher than the velocity
values, they could dominate the scaling and essentially negate
the discriminatory power of velocity values.

Next, for every pair of adjacent points, we calculate the ab-
solute value of their difference, which is guaranteed to be less
than 1. We take the largest difference — which approximates
the most rapidly changing region — and reciprocate this value,
giving a number greater than 1. We call the floor of this value m.

We find the minimum m across all devices and call this m*.
We take every m*-th point from the original behavior vectors and
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FIGURE 3: A) Phenomena with longer length scales do not re-
quire as fine a sampling resolution. B) Phenomena with shorter
length scales require finer sampling resolution to capture behav-
ior. C) We suggest a simple heuristic of choosing a resolution
that scales with the length scale of “important” phenomena. This
is an example of a long phenomenon, D) long phenomenon with
shorter noise and E) varying length phenomena, where we use
the shortest phenomenon to determine sampling resolution.

use these values as our new behavior vector. This process is ex-
emplified and summarized in Appendix A.

3.2.3 High Variance Filter Preprocessing Though
we can prune the behavior vectors with the Resolution Selec-
tion preprocessing in §3.2.2, some values in the behavior vector
may still be non-discriminatory, e.g., velocity along a plugged-up
port that never has flow going through it. We thus hypothesize
that the values in the behavior vectors broadly fall into two cat-

egories: low-variance, which are non-discriminatory and need
to be removed; and high-variance, which may be discriminatory
and preferable to keep.

To remove these low-variance values, we calculate the vari-
ance of each value in the behavior vector using Eqn. 1 and re-
move those that have variances below a certain threshold.

lN

_ - TV
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Although we do not formally test choices of this cutoff, we
briefly explore how the cutoff value affects the behavior vectors
in Appendix B. We find that a cutoff at 0.02 is effective for our
behavior vectors of fluidic logic gates, though this value would
need to be adjusted for a given dataset.

4 Experiment 1: Testing SHDBSCAN using Synthetic
Clusters
This experiment evaluates our SHDBSCAN algorithm by
comparing its clustering performance with respect to several
classes of baseline clustering algorithms on datasets with known
cluster labels.

4.1 Data Generation

For the first experiment, we compare the clustering perfor-
mance of SHDBSCAN against other well-established clustering
methods. We use several well-known datasets of both synthetic
and experimental data from the Scikit-learn library and UCI ML
repository [47], as discussed in Appendix D.

4.2 Baseline Methods

We explore the Scikit-learn implementations of k-means
clustering (“KMeans”), affinity propagation (“AffProp”), spec-
tral clustering (“SpecClustRBF”), and Density-based Spatial
Clustering of Applications with Noise (‘“DBSCAN™)! [48]. We
also test HDBSCAN [49].

We perform 5-fold cross validation with Scikit-learn and hy-
perparameter optimization using Bayesian Optimization (o =
le — 4, njer = 5+ 30xnumber of parameters) [SO] with the
ranges in Table 2 in Appendix C. We do not expect any sig-
nificant improvements in performance by optimizing the hyper-
parameters further.

To measure performance in the hyperparameter optimiza-
tion, we use the silhouette score from Scikit-learn. We train on
75% of our data, stratified over true labels, and use the remaining
25% for testing. We measure performance on the test data using
the adjusted Rand score [51].

'DBSCAN is the predecessor to HDBSCAN, which inspired SHDBSCAN.



4.3 Results

We take the mean of the several runs for each algorithm (100
runs for KMeans, DBSCAN, HDBSCAN, and SHDBSCAN and
10 runs for AffProp and SpecClustRBF due to their high com-
putational cost) and plot these in Fig. 4. Vertical colored lines
indicate the 95% experimental confidence interval on these indi-
vidual scores except for AffProp and SpecClustRBF, where they
indicate the 80% interval. In addition, we bootstrap on these
scores (1000 trials, pulled with replacement) and mark the 95%
experimental confidence interval on the average performance of
each clusterer with black lines. SHDBSCAN’s performance is
noted with a red dot in the corresponding column. Values below
0 are ignored in this plot; these correspond to algorithms whose
clustering resulted in an undefined silhouette score according to
the Scikit-learn implementation, most often when all points are
put in a single cluster.

In general, SHDBSCAN resulted in adjusted Rand scores
relatively close to the other algorithms. It is in the top three per-
formers in four of the twelve datasets used (2, 3, 5, and 6), in the
bottom three performers for two datasets (1 and 10), and essen-
tially indistinguishable from or comfortably on par with many
of the other algorithms in the remaining six datasets (4, 7, 8, 9,
11, and 12). Although it does not particularly improve on clus-
tering on these benchmark datasets, SHDBSCAN’s clustering re-
turned positive — if sometimes low — silhouette scores for every
benchmark dataset we tested, whereas the other algorithms, most
notably Spectral Clustering, sometimes did not result in positive
scores.

5 Experiment 2: Discovery of Logic Gate Behavior by
Clustering Behaviors
This experiment evaluates the efficacy of describing device
function via the proposed behavior vectors in identifying devices
with self-consistent behavior.

5.1 Data Generation: Synthetic 4-port Devices

First, we generate synthetic data that would mimic the data
we would see in a fluid simulation. We consider only four-port
fluidic logic gates with two inputs, one output, and one open
“miscellaneous” port, as in Fig. 2.

Two-input logic gates have 22 = 4 distinct possible input
conditions 2. With these four input states, we can define 24 =16
possible devices. Some of these devices have familiar behavior,
like the AND gate; others are not particularly useful, like a con-
stant “off”” output. For each device, we:

1. Assign a true label,
2. Set the inlet velocity profiles,
3. Determine the corresponding outlet velocity profile,

2 Assuming inputs and outputs are either “on” or “off” and not “partially on.”

4. Set the inlet and outlet pressure profiles, and
5. Enforce conservation of mass through the miscellaneous
port.

5.1.1 Assigning a True Label Consider the four pos-
sible inlet conditions: {0, 0}, {0, 1}, {1, 0}, and {1, 1}. For
each of these conditions, the outlet can be either O or 1, as de-
termined by the type of device. If we always refer to these inlet
conditions in the same order, we can simplify a device’s output to
a four-digit binary number, consisting only of its outputs (0000,
0001, 0010, and so on). We can then convert this binary number
into a decimal integer — between 0 and 15, inclusive — and use
this number as the true label for each device. This compactly
represents a device’s type while also giving information about its
output behavior.

Converting from the decimal representation to the output be-
havior is simply performing the process in reverse.

5.1.2 Setting Port Values
INLET VELOCITY For each device, we consider the four inlet
conditions. If the condition is 1, we select a polynomial of order
0, 2, 4, or 6. If the polynomial order is not 0, we set its coef-
ficients such that, at the edges of a port, the polynomial equals
0, while in the middle, the polynomial equals 1. We then mul-
tiply this polynomial by a random positive value (absolute value
of a normally distributed value, 4 = 10,6 = 1.5). If the poly-
nomial order is 0, we set a constant input velocity, distributed in
the same way. These velocities are perpendicular to the port’s
orientation (e.g., the left port has velocity purely in the positive
x-direction, and the bottom port has velocity purely in the posi-
tive y-direction).

If the inlet condition is 0, we set the velocity to 0.

OUTLET VELOCITY For each inlet condition, we con-
sider the appropriate outlet condition based on the true label of
the device. If the outlet should be 1, we assume the outlet has a
parabolic velocity profile and determine its maximum velocity as
a random proportion (uniformly distributed, in [0.7,0.99]) of the
mean of the inflow maximum velocities. That this value is below
1 ensures that the miscellaneous port will have some mass flow
and mimics frictional losses in the fluidic device. Similar to the
inlet, the profile is perpendicular to the port’s orientation (e.g.,
since the outlet port is on the right, the velocity is purely in the
positive x-direction).

If the outlet should be 0, we set the velocity to 0.

PRESSURES We set the first inlet pressure to a random
constant value (uniformly distributed, in [1.0, 100.0]) and the sec-
ond inlet to a random proportion of the first inlet’s pressure (ab-
solute value of a normally distributed value, 4 = 1.0,6 = 0.2).

We set the outlet and miscellaneous port pressures to a con-
stant 0.



g 1.0 " * | t  KMeans

3 :T ‘ | I i AffProp

205 || s Lo If] * I Py ¥ SpecClustRBF
o Ml .z oo t : I ﬁ * DBSCAN

= - A ; * HDBSCAN

< 0.0 it Tee el = ol : ¢ SHDBSCAN

1 2 3 4 5 6 7

Dataset (Index)

FIGURE 4: Performance spread of various algorithms on synthetic and benchmark datasets. SHDBSCAN is represented with a red
dot. Algorithms with a performance below O are ignored in this plot. Dataset indices are referenced in Appendix D. Colored markers
represent means of 10-100 train-test-split trials. Vertical bars represent the experimental confidence interval on adjusted Rand scores. We
bootstrap on our dataset (1000 trials, pulled with replacement) and mark the 95% experimental confidence interval of average clusterer

performance with black lines.

CONSERVATION OF MASS We subtract the outflow ve-
locity profile from the sum of the inflow velocities to calculate
the miscellaneous port profile. Since every port has the same
width, this approximates conservation of mass in our device.
This velocity will be perpendicular to the port direction.

We sample each device within the ports at the resolution set
according to our heuristic in §3.2.1; here, this results in twenty
equally spaced points along each port.

We linearly scale our behavior vectors as explained in §3.2.2.
It is possible to scale the data differently — e.g., the X- and Y-
direction velocities as one larger group or by scaling the magni-
tudes of each vector rather than its components — but we do not
explore these methods in this paper or expect significant differ-
ences from our results.

We append the behavior vectors of all four possible input
states to form the behavior vector for a single device. For our
data, this corresponds to:

1. number of ports =4

2. number of dimensions in solution fields = velocity (x and y)
+pressure=2+1=3

3. number of input states = 2> = 4

giving a total of 4 %3 x4 = 48 times the resolution number (as
stated above, 20 in our data) elements in each unmodified behav-
ior vector. Thus, each unmodified behavior vector has a length
of 48 x20 = 960.

5.2 Baseline Methods: Sampling, Dimensionality Re-
duction, and Clustering

We generate behavior vectors using the methods from §3.2

on this data. We also compare PCA [52] (n_components =

4, explaining at least 75% of the variance) and TSNE [53]

(n_components = 2 and perplexity = 40), both implemented
in the Scikit-learn library, to reduce the dimensionality of our
behavior vectors additionally, though at the cost of more ab-
stract/less intuitive behavior vector terms and longer computa-
tional time.

We use the same clustering methods, cross validation, and
hyperparameter optimization as in §4.2.

5.3 Results

Similar to above, we run our clustering algorithms on our
preprocessed synthetic data and aggregate the data by dataset.
We take the mean of the several runs for each algorithm (100 runs
for KMeans and SHDBSCAN, 10 runs for DBSCAN and HDB-
SCAN, 2 runs for AffProp, and 1 run for SpecClustRBF, with the
various algorithms’ high computational costs limiting the num-
ber of feasible runs) and plot these in Fig. 5. Vertical colored
lines indicate the 95% experimental confidence interval on these
individual scores for KMeans and SHDBSCAN, the 80% inter-
val for DBSCAN and HDBSCAN, and both points of AffProp.
AffProp and SpecClustRBF were unable to run in a reasonable
amount of time to generate multiple points to calculate confi-
dence intervals. In addition, we bootstrap on these scores (1000
trials, pulled with replacement, with the exception of AffProp
and SpecClustRBF) and mark the 95% experimental confidence
interval on the average performance of each clusterer with black
lines. SHDBSCAN’s performance is again noted with a red dot
in the corresponding column.

To measure performance, we calculate the adjusted Rand

3TSNE is originally intended for visualizing high-dimensional data [53]. In
this vein, we set n_components = 2 for visualization. Although TSNE does not
preserve distances or density, we decided to benchmark against it due to its preva-
lence as a method for dimensionality reduction. To choose the perplexity value,
we test several values from 2 to 500. From our visualizations, perplexity values
between 25 and 500 do not qualitatively affect the output. However, we do not
quantitatively test this.



score for each algorithm by comparing the returned clustering
and the true labels. These labels correspond to the type of de-
vice, and consequently the fluidic output behavior, as defined in
§5.1. Thus, a high-performing algorithm would cluster all of the
#0 devices together, all of the #1 devices together, all of the #2
devices together, etc. without clustering a #6 device with the #4s,
for example. However, the algorithms do not return the type of
device that constitutes each cluster.

From Fig. 5, we can see three main groups of performance.
In the lowest group, columns 1, 2, 4, and 7 correspond to No Pre-
processing, High Variance Filter, PCA, and High Variance Filter
+ PCA, respectively. These four preprocessing methods, regard-
less of clustering algorithm, have Adjusted Rand scores generally
below 0.3. However, SHDBSCAN performs surprisingly well on
average with No Preprocessing in column 1 and a High Variance
Filter in column 2.

The middle performance group, from columns 3, 5, 6, 8, 10,
11, 13, and 14, correspond to a variety of preprocessing steps,
referenced in Table 1. These eight methods generally fall near an
Adjusted Rand score of 0.8, though the spread is larger, ranging
from around 0.5 to nearly 1.0. Notably, SHDBSCAN performs
well relative to the other clustering algorithms except in column
11 (PCA + TSNE).

The final group of performance are the high-performers.
Columns 9, 12, 15, and 16, corresponding to Resolution Selec-
tion + PCA, High Variance Filter + Resolution Selection + PCA,
Resolution Selection + PCA + TSNE, and High Variance Fil-
ter + Resolution Selection + PCA + TSNE, respectively, almost
always had adjusted Rand scores of greater than 0.9, with the
tightest spread of scores, though with a few outliers. In this
group, SHDBSCAN performs well according to the Adjusted
Rand score.

6 Discussion

From Experiment 1 and shown in Fig. 4, we note that
SHDBSCAN does not perform better in many of the bench-
mark test cases — and sometimes performs significantly
worse — compared to the benchmark algorithms. Our modifi-
cations to the HDBSCAN algorithm seemed fairly conservative,
so this is somewhat surprising. Previous algorithms can already
perform well on the benchmark datasets that we tested, so for
SHDBSCAN to perform similarly at best shows that our modifi-
cations do not improve SHDBSCAN’s performance on datasets
similar to our benchmark data. Datasets 1, 4, 7, 8, and 10 show
SHDBSCAN performing most poorly on an absolute scale; rel-
ative to the remaining algorithms, SHDBSCAN is relatively on
par in Datasets 7 and 8, with the exception of KMeans and HDB-
SCAN, respectively. Five of these six datasets have data that
is not distributed in some circular pattern in our visualization.
The use of silhouette score in SHDBSCAN thus may cause such
datasets not to have as highly rated clusterings. However, we

TABLE 1: Preprocessing steps used by column number, as seen
in Fig. 5.

Column | High Variance | Resolution | PCA | TSNE
1
2 X
3 X
4 X
5 X
6 X X
7 X X
8 X X
9 X X
10 X X
11 X X
12 X X X
13 X X X
14 X X X
15 X X X
16 X X X X

made these modifications intending to improve performance on
behavior vector clustering, which is tested in Experiment 2.

From Experiment 2, seen in Fig. 5, we can interpret how the
different preprocessing methods affect clustering performance
when combined with the various clustering algorithms. We ex-
pect the preprocessing methods to be effective in similar tasks,
though with different data.

We notice that the low-performing group consists of the un-
processed and High Variance Filtered data, with and without
PCA applied. This suggests that High Variance Filtering and
PCA, individually or together, are not enough for clustering al-
gorithms to make meaningful clusters out of behavior vector data
for fluidic logic gates. Howeyver, the addition of either TSNE or
the Resolution Selection preprocessing improves clustering per-
formance. In fact, all of the high-performing methods contain
both the Resolution Selection preprocessing as well as PCA; the
addition of the High Variance Filter to those methods does not
seem to affect performance.

With any preprocessing, SHDBSCAN is generally among
the highest performers of the clustering algorithms and has the
tightest average performance confidence interval. SHBSCAN
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FIGURE 5: Performance spread of various clustering algorithms on preprocessed synthetic data. The first column set is the unprocessed
data. The second column set uses one of the four preprocessing steps. The third column set uses two of the four preprocessing steps.
The fourth column set uses three of the four preprocessing sets. The last column set uses all four preprocessing steps. The specific
preprocessing used are shown in Table 1. SHDBSCAN is represented with a red dot. Colored markers represent means of 10-100
train-test-split trials. Vertical bars represent the experimental confidence interval on adjusted Rand scores. We bootstrap on our dataset
(1000 trials, pulled with replacement) and mark the 95% experimental confidence interval of average clusterer performance with black

lines (except for AffProp and SpecClustRBF).

also does surprisingly well on the unprocessed data. This may be
due to the forced minimum cluster size matching the number of
synthetic data points, though we do not study unbalanced cluster
sizes further in this work. Since the majority of algorithms per-
formed well in the high-performing group, there is little differ-
ence between SHDBSCAN and the other clustering algorithms.
Howeyver, it does seem that SHDBSCAN, when combined with
the Resolution Selection preprocessing and PCA dimensionality
reduction, performs well in this type of problem.

As such, we find that the method of preprocessing the data is
more important than the clustering method used. We find that us-
ing the Resolution Selection preprocessing, combined with PCA,
gives the highest adjusted Rand scores, whereas the addition of
the High Variance Filter or TSNE do not affect the outcome sig-
nificantly. With the appropriate data preprocessing, all of the
tested clustering algorithms perform at a similar level.

Despite the performance of SpecClustRBF and AffProp, the
computational time needed was infeasible. In Experiment 2, we
were only able to run 1-2 iterations of each, as opposed to the
10-100 iterations for the other four clustering algorithms. Based
on wall-clock time, SpecClustRBF and AffProp took between
100 and 1000 times the amount of time needed for KMeans
and SHDBSCAN, with DBSCAN and HDBSCAN falling some-
where in between. Although the wall-clock times were not for-
mally tested or benchmarked, this experiment suggests Spec-
ClustRBF and AffProp do not scale well to larger datasets.

In some cases, the silhouette score is undefined for a given
clustering. For example, when all points are grouped in a single
cluster, the silhouette score function is undefined; in this case,
we return a negative value instead. An alternative situation arises
when every point is put in its own cluster; again, if this is the
case, we return a negative number. These are not included in our
average or confidence interval calculations.
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Although we use the example of fluidic logic gates in our
work, we expect other representations or types of devices to per-
form similarly. We predict that the choice of behavior vector for a
given application will have a stronger impact on the performance
of all downstream algorithms. Identifying methods to define be-
havior vectors most “effectively,” in whatever context it exists,
is an avenue for future work. Choosing an appropriate behavior
vector will likely improve the performance of all algorithms. We
explore only a few basic methods of defining behavior vectors,
but more work is needed.

7 CONCLUSION

Computational design methods show potential to discover
novel and diverse designs that traditional optimization methods
may miss. We explore the performance of several clustering al-
gorithms and preprocessing heuristics in the discovery of syn-
thesized fluidic logic gate devices, leading to the following two
conclusions:

1. Our modifications on the HDBSCAN algorithm, which we
call the SHDBSCAN algorithm, generally perform better via
adjusted Rand scores in clustering behavior vectors than the
clustering algorithms against which we benchmark. How-
ever, this effect is relatively minor compared to the effect of
preprocessing.

. Of the dimensionality reduction and preprocessing methods
we test, the combination of the Resolution Selection pre-
processing and PCA result in clusterings with the highest
adjusted Rand scores. TSNE and the High Variance Filter
have minor effects. The preprocessing effect overshadows
the effect of the clustering algorithm selection.

This work explores a new avenue of computationally dis-



covering groups of devices from unlabelled data, even when the
device’s behavior is not known a priori. Exploring expanded de-
sign spaces computationally can uncover novel and diverse be-
haviors and devices that have been previously unexplored, even
without the need for human guidance. This has the potential to
invent families of devices that have been overlooked by human
designers.

There are several directions in which to expand this work
in the future. For example, applying these methods to differ-
ent types of physics simulations can be explored to ensure the
methods are as effective. In addition, methodologies to generate
behavior vectors and their applications to other design problems
provides an avenue for research — e.g., how can we measure
how well a behavior vector fits, and how can we define “better”
behavior vectors?
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A Sample Calculations for Resolution Selection on
Example Behavior Vectors
We work through two examples of the resolution prepro-
cessing step from §3.2.2: one where the behavior vectors are not
shortened (;m* = 1), and one where they are (m* = 2).

A.1 Example 1: m* =1
Consider the following 3 behavior vectors.

{0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8, 0.9, 1.0}
{0.6,0.4,0.2,0.0,0.1,0.3,0.5,0.7,0.9, 1.0, 0.8}
{0.9,0.8,0.7,0.7, 0.6, 0.7, 0.0, 0.0, 0.3, 0.4, 0.3}

After taking differences between adjacent points, we get:

{0.1,0.1,0.1,0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1}
{0.2,0.2,0.2,0.1,0.2,0.2,0.2,0.2,0.1, 0.2}
{0.1,0.1,0.0,0.1,0.1,0.7,0.0,0.3,0.1, 0.1}

Taking the maximum of each difference vector, we get:

0.1
0.2
0.7

Reciprocating these values, we get:

10
5
~1.43

Taking the floor of these values, we get:

10
5
1

These values correspond to the m values for our three exam-
ple behavior vectors. The minimum of these is m*. For this ex-
ample, we would then take every (1-th) point to form the “short-
ened” behavior vectors.

Thus, the behavior vectors after this preprocessing are:

{0.0,0.1,0.2,0.3,0.4, 0.5, 0.6,0.7,0.8,0.9, 1.0}
{0.6,0.4,0.2,0.0,0.1,0.3,0.5,0.7,0.9, 1.0, 0.8}
{0.9,0.8,0.7,0.7, 0.6, 0.7, 0.0, 0.0, 0.3, 0.4, 0.3}

A.2 Example 2: m* =2

Consider this second example with the following 3 behavior
vectors of length 11. They are similar to the previous example
with a minor change in the third vector.

{0.0,0.1,0.2,0.3,0.4, 0.5, 0.6,0.7,0.8, 0.9, 1.0}
{0.6,0.4,0.2,0.0,0.1,0.3,0.5,0.7,0.9, 1.0, 0.8}
{0.9,0.8,0.7,0.7,0.6, 0.7, 0.2, 0.0, 0.3, 0.4, 0.3}

After taking differences between adjacent points, we get:

{0.1,0.1,0.1,0.1, 0.1, 0.1, 0.1,0.1, 0.1, 0.1}
{0.2,0.2,0.2,0.1,0.2,0.2,0.2,0.2,0.1, 0.2}
{0.1,0.1,0.0,0.1,0.1,0.5,0.2,0.3,0.1, 0.1}

Taking the maximum of each difference vector, reciprocat-
ing these values, and taking the floor, we get:

10
5
2

For this example, m* = 2, so we take every 2nd point to form
the shortened behavior vectors.
Thus, the behavior vectors after this preprocessing are:

{0.0,0.2,0.4,0.6,0.8, 1.0}
{0.6,0.2,0.1,0.5,0.9,0.8}
{0.9,0.7,0.6,0.0,0.3,0.3}



B Exploration of Different Variance Cutoff Values for

Synthetic Fluidic Logic Gates

We applied the High Variance Filter with cutoff values over
the range [0, 1], in intervals of 0.001, and plotted this against
the number of points in the resulting behavior vector. In Fig. 6,
we see two plateaus: the first between 0.015 and 0.035, and the
second above 0.04. These correspond to our expectations of low-
and high-variance points, respectively, as mentioned in §3.2.3.

The second — and more generally, last — plateau can be
interpreted as the trailing off of extremely high-variance points;
these are expected to be the points we want to keep in any case,
so we do not want to choose a cutoff in this region. Considering
the first plateau, we choose a variance cutoff in this range, and
as there is not a significantly large difference between cutoffs of
0.015 and 0.035, we choose a value of 0.02.

600

500 4

400

300 1

200

Number of Points in Behavior Vector

100

0.00 0.02 0.04 0.06 0.08
Variance Cutoff

FIGURE 6: Length of behavior vectors after applying the High
Variance Filter. Cutoff values above 0.09 are not shown as all
behavior vectors are empty.
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D Datasets used in Experiment 1

C Hyperparameter Ranges for Clustering Algorithms

We import well-known datasets from the UCI ML Reposi-

For the synthetically generated data, we use Scikit-learn’s
built-in “datasets” functions for generating classification data.
tory. We use TSNE, with default parameters as implemented in

The datasets for Experiment 1 can be broken into two sub-
groups: synthetically generated and imported experimental data.
We set the number of samples in each dataset to 1500 and ini-

tialize the internal random state to 170. True labels are colored.

These are Figs. 7, 8, 9, and 10.

Scikit-learn, for visualization. These are Figs. 9c, 10a, 10b, and

10c.
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(a) Index 1: Noisy circles. Generated with Scikit-learn’s
make_circles function. Additional parameters: factor = 0.5
and noise = 0.05
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(b) Index 2: Noisy moons. Generated with Scikit-learn’s
make_moons function. Additional parameters: noise = 0.05
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(c) Index 3: Blobs. Generated with Scikit-learn’s
make_blobs function. Additional parameters: none

FIGURE 7: Datasets 1 to 3 used in Exp. 1

16

101 go.
..J
Y3
08] =287
5.
L
o
. 3.
061
IROAEY N
Y) ‘s,
e
0.4
L]
.0
LIS
4 ., -~
02 Rt
A
0.04 T
0.0 0.2 0.4 0.6 0.8 1.0

(a) Index 4: No structure. Generated with NumPy’s [54]
random.rand function in 2 dimensions.
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(b) Index 5: Anisotropically distributed blobs.  Gen-
erated by taking the blobs dataset and applying a
[[0.6,—0.6],[—0.4,0.8]] transformation.

25
(c) Index 6: Blobs with varied variances. Generated with
Scikit-learn’s make_blobs function. Additional parameters:

cluster_std = [1.0,2.5,0.5]

FIGURE 8: Datasets 4 to 6 used in Exp. 1



(a) Index 7: PCA representation of the classification
dataset. Dataset is without PCA. Generated with the
make_classification function from Scikit-learn. Ad-
ditional parameters: none

(b) Index 8: PCA representation of the hastie
dataset. Dataset is without PCA. Generated using the
make_hastie_10_2 function from Scikit-learn. Ad-
justed slightly so all labels are non-negative integers.
Additional parameters: none
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(c) Index 9: TSNE representation of the Breast Can-
cer Wisconsin dataset. Dataset is without TSNE.

FIGURE 9: Datasets 7 to 9 used in Exp. 1
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(a) Index 10: TSNE representation of the Handwritten Digits
dataset. Dataset is without TSNE.
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(b) Index 11: TSNE representation of the Iris dataset.
Dataset is without TSNE.
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(c) Index 12: TSNE representation of the Wine Recognition
dataset. Dataset is without TSNE.

FIGURE 10: Datasets 10 to 12 used in Exp. 1
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