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Abstract

Variable-density cellular structures can overcome connectivity and manufacturability issues of topologically optimized
tructures, particularly those represented as discrete density maps. However, the optimization of such cellular structures is
hallenging due to the multiscale design problem. Past work addressing this problem generally either only optimizes the volume
raction of single-type unit cells but ignoring the effects of unit cell geometry on properties, or considers the geometry–property
elation but builds this relation via heuristics. In contrast, we propose a simple yet more principled way to accurately model
he property to geometry mapping using a conditional deep generative model, named Inverse Homogenization Generative

Adversarial Network (IH-GAN). It learns the conditional distribution of unit cell geometries given properties and can realize
he one-to-many mapping from properties to geometries. We further reduce the complexity of IH-GAN by using the implicit
unction parameterization to represent unit cell geometries. Results show that our method can 1) generate various unit cells
hat satisfy given material properties with high accuracy (R2-scores between target properties and properties of generated unit
ells > 98%) and 2) improve the optimized structural performance over the conventional variable-density single-type structure.
n the minimum compliance example, our IH-GAN generated structure achieves a 79.7% reduction in concentrated stress and
n extra 3.03% reduction in displacement. In the target deformation examples, our IH-GAN generated structure reduces the
arget matching error by 86.4% and 79.6% for two test cases, respectively. We also demonstrated that the connectivity issue
or multi-type unit cells can be solved by transition layer blending.

2022 Elsevier B.V. All rights reserved.

eywords: Inverse design; Cellular structure design; Homogenization; Generative adversarial network; Topology optimization

1. Introduction

Complexity-free manufacturing techniques such as additive manufacturing (AM) have enabled the fabrication
f intricate geometric features. This permits the design of complex structures that fulfill specific functional criteria
hile possessing lower weight. Access to this new design space makes complex structural designs (e.g., cellular

structures) coveted in various engineering applications [1–6]. In this context, topology optimization (TO) plays a
major role in designing light-weight structures that satisfy functional goals [7]. However, the most widely used
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Fig. 1. Variable-density cellular structure. (a) Density map obtained from TO. (b) Replacement with variable-density unit cells.

O algorithms (e.g., solid isotropic material with penalization or SIMP) [8] deliver discrete density maps as the
utcome, leading to poor manufacturability due to (1) connectivity issues within variable-density bulk materials and
2) the limited resolution of the density map.

Conventional bulk material/density-based TO methods alleviated the connectivity issues (e.g., the checkerboard
roblem and intermediate density) by applying filters (e.g., sensitivity and density filters) [9–11]. To enable the
anufacturability of the optimized density-based structure, researchers enhanced the resolution of the density
ap by employing the super-computing power [12,13] and post-processing techniques [14,15], or incorporated
anufacturing constraints directly into the TO methods [16,17]. However, these conventional approaches cannot

undamentally solve the intermediate density (multiple materials) and smoothness (continuity) issues due to their
nherent vice relying on discrete density-based structures.

In recent years, researchers typically replace the density map with variable-density cellular unit cells (Fig. 1),
nabling high-resolution functionally graded structure design and manufacturing with a single material [18].
owever, a naı̈ve one-to-one replacement with unit cells having corresponding densities/volume fractions (without

onsidering the unit cell shape) can break the optimized behavior because, unlike continuum solids, equivalent
ensity alone does not guarantee equivalent mechanical properties for unit cells. The unit cell shape also affects its
echanical properties. To address this issue, researchers commonly homogenize each unit cell by pre-computing

heir effective properties [19,20] such that they can approximate the continuum solid domain with the homogenized
ellular structure, hopefully retaining equivalent properties. By establishing a mapping between densities and
omogenized properties (e.g., elastic tensors) following a scaling law1 [21], TO can generate an optimized density

map for a specific type/shape of cellular unit cells.
However, there are several issues in building such a mapping. First, the scaling law creates a mapping between

the material property space and the unit cell density space. This means the unit cell’s material property is controlled
only by its density (volume fraction), while variable unit cell types are not allowed. Second, being subject to that
setting, the scaling law only allows bijective mapping, whereas the mapping from a material property space to a
unit cell shape space can be one-to-many. Finally, the mapping itself is hard-coded (polynomial) and has limited
flexibility/accuracy under different scenarios.

We solve these issues by constructing an inverse homogenization (IH) mapping—a generalized, direct, and
accurate mapping from properties to multi-type unit cell shapes. The IH mapping allows designers to efficiently
retrieve correct unit cell shapes given the optimized properties. Rather than the previous approaches that were limited
to polynomial scaling and enforced bijectivity (i.e., using the scaling law and level set field [22,23]), we propose
an end-to-end generative model that automatically learns a data-driven one-to-many IH mapping and suggests unit
cell shapes conditioned on the input properties. Fig. 2 illustrates the role of our work in assisting the multi-scale
design synthesis for functionally graded cellular structures.

1 The scaling law hypothesizes the mechanical properties of cellular structures have polynomial law relationships with their relative
densities.
2
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Fig. 2. Multi-scale design synthesis of functionally graded cellular structures.

Our generative model is developed by training a conditional generative adversarial network (GAN) upon a
amily of implicit function-based cellular structures—i.e., triply periodic minimal surfaces (TPMS) [24]. The

implicit function representation (FRep) modeling method represents cellular structures as iso-surfaces that enable
control of unit cell shapes by manipulating the functions’ coefficients and level set constants. Compared to
expensive volumetric representations [25], the FRep minimizes the number of design variables representing unit
cell geometries. We propose a deep generative model, named Inverse Homogenization GAN (IH-GAN), to learn a
mapping from properties to the implicit function describing the cellular unit cell geometry. We demonstrate our
method’s efficacy by rapidly generating various TPMS unit cells with accurate elastic properties (i.e., Young’s
modulus and Poisson’s ratio) and relative density (i.e., volume fraction). To further demonstrate IH-GAN’s practical
usage in designing functionally graded cellular structures, we show a cantilever beam design example where the
structure is assembled by variable types of unit cells generated from IH-GAN. This paper’s primary contributions
are as follows:

1. We describe a conditional generative model, IH-GAN, to enable an accurate (R2-scores > 98%) and efficient
IH mapping. After 38 s of training, IH-GAN can generate corresponding unit cell shapes in less than one
second given feasible ranges of Young’s modulus, Poisson’s ratio, and relative density.

2. We improve the IH mapping learned by the conditional GAN by adding an auxiliary property regressor. We
show through ablation experiments that this additional regressor reduces about half of the average mapping
error.

3. We demonstrate the feasibility and the extremely low computational complexity when using the implicit
function parameterization in deep generative modeling of unit cells while enabling downstream cellular
structure inverse design tasks.

4. We ensure high-quality connections between different types of adjacent unit cells in designing functionally
graded cellular structures by taking advantage of the filtering kernel used in structural optimization, the
continuous shape variation of IH-GAN’s generated unit cells in the property space, and the transition layer
blending technique.

5. We demonstrate that our method can improve the structural performance over the conventional variable-
density single-type structure in both minimum compliance problem (79.7% reduction in concentrated stress
and extra 3.03% reduction in displacement) and target deformation problem (86.4% and 79.6% reductions
of the target matching error for the two case studies).

6. We create a unit cell shape database for future studies on data-driven cellular structure design (available at
https://github.com/IDEALLab/IH-GAN CMAME 2022).

. Related work

Our proposed method constructs the IH mapping from material properties to cellular unit cells using a GAN-based
odel. In this section, we first review prior work in cellular structure modeling. We then review generative models
3
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pertinent to the inverse design of cellular structures. Finally, we introduce conditional GANs (cGANs) [26], which
our proposed IH-GAN builds upon.

2.1. Cellular structure modeling

Main approaches to representing cellular structures include boundary (e.g., NURBS surfaces) representations
(BRep) [27–29], volume (e.g., voxels) representations (VRep) [25,30,31], and FRep (e.g., trigonometric periodic
functions) [32–34]. Given the high complexity of cellular structures, BRep and VRep incur large data size and
processing costs (e.g., in the number of voxels or polygons), limited geometry precision (e.g., cracks in surfaces and
self-intersections of polygons), limited or no support for parameterization (e.g., VRep models need to be regenerated
using a separate, high-level procedure or method), and poor manufacturability (e.g., voxels have aliasing problems
unless they are given at high resolutions requiring large amounts of memory) [35]. FRep is a shape parameterization
that maps a set of parameters to points along the iso-surface of an implicit function. It offers a compact but precise
representation of cellular structures that solves most of the above issues. To enable an accurate and efficient IH
mapping using a deep neural network, we benefit from the compactness of FRep that allows representing cellular
unit cells by a small set of parameters.

2.1.1. FRep of TPMS-based cellular structures
Surfaces whose mean curvature is everywhere zero are minimal surfaces. A triply periodic minimal surface

is infinite and periodic in three independent directions. A TPMS is of special interest because it has no self-
intersections and partitions space into two labyrinthine regions. These regions commonly appear in various natural
and human-made structures, providing a concise description of a wide variety of cellular structures [36–38].
Compared to the other families of periodic surfaces [32,39–41], TPMS are particularly fascinating because a TPMS
derives one of the crystallographic space groups as its symmetry group [42]. Those with cubic symmetry simplify
the homogenization process by having the same properties along three orthogonal axes [23]. Additionally, TPMS-
based cellular structures afford high specific surface area, high porosity, and low relative density while maintaining
outstanding mechanical properties [43,44].

TPMS can be approximated by the periodic implicit surfaces of a sum defined in terms of Fourier series
[24,45,46]:

f (x, y, z) =

∑
hkl

|F(hkl)| cos[2π (hx + ky + lz) − α(hkl)] = 0 (1)

here (h, k, l) are the reciprocal lattice vectors for a given lattice, α(hkl) is a phase shift, and the structure factor
F(hkl) is an amplitude associated with a given vector (h, k, and l).

Other than the concise representation and cubic symmetry, TPMS-based cellular unit cells can also be diversified
y combining several functions and adjusting corresponding coefficients [32,47].

.1.2. Variable-density cellular structures and inverse homogenization mapping
Topology optimization is a computational process that optimizes the material distribution in a design space

y literally removing material within it, intending to reveal the most efficient design given a set of constraints.
onventional TO methods (e.g., SIMP, ESO/BESO,2 and level set) [8,48,49] often output the optimal structural
esign as a discrete field (e.g., SIMP produces discrete densities and BESO generates discrete mesh elements). Thus,
he early-stage TO outputs failed to consider aesthetics, manufacturability, or any other design constraints that one
ould normally need in a design process. To fill the gap between the discrete representation and those practical

onsiderations, researchers have leveraged high-performing computational tools [12,13] and post-processing [14,15]
o increase the representation’s resolution and incorporated the manufacturability constraints [16,17] into the
onventional TO directly. However, these methods still rely on the discrete field, which cannot fully take care of the
moothness and aesthetics considerations with high efficiency and precision. To further overcome these limitations,
ne needs to convert a discrete field into concrete geometries that can be physically realized while maintaining the
ame performance.

2 Evolutionary structural optimization (ESO) and its later version bi-directional ESO (BESO).
4
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Variable-density cellular structures are a promising candidate to replace the density map (generated by SIMP).
hey resolve the geometric connectivity and manufacturability issues and possess unique combinations of physical
roperties (e.g., high strength-to-weight ratio, high energy absorption, and high thermal conductivity) [50–52]. In
ddition, variable-density cellular structures make the density map manufacturable with a single material to avoid
sing costly multi-material techniques [53–56]. First-generation variable-density cellular structures were designed
sing simple repeating elements such as cubic trusses with variable strut thickness [57] or hexagonal cells with
ariable hole diameter [58,59]. Since then, the three main approaches, namely BReps (e.g., B-splines) [60], VReps
e.g., voxels) [61], and FReps [23], have been investigated for topology optimization of more complex cellular
tructures. FReps have become a more versatile representation that can produce miscellaneous cellular structures
s implicit surfaces whose volume fraction can be conveniently controlled by the level set constant to resemble the
iven density map. By forming specific implicit functions like TPMS, one can even mimic complicated real-world
tructures, such as silicates (e.g., Schwartz Diamond structures in diamonds) [62] and biomorphic formations (e.g.,
yroid structures in butterfly wing scales) [63]. These implicit surfaces also take care of geometric continuity and

oherence at the connections or interfaces between variable-density unit cells.
Besides the geometric modeling challenge, we need to ensure that generated variable-density cellular structures

till preserve desired property performance to complete the density map conversion. To do that, one needs to
omogenize the variable-density cellular unit cells to acquire their effective material properties and construct an
H mapping from the homogenized properties to their geometries. Most existing work builds the IH mapping by
ollowing the scaling law—i.e., the mechanical properties of cellular structures have polynomial law relationships
ith their relative densities (Gibson–Ashby model [21,64]). These relationships have been successfully fitted for low
imensional properties like elastic constants and thermal conductivity constants using polynomial and exponential
unctions [23]. For material properties with higher dimensionality, a level set field has been proposed to construct
continuous gamut representation of the material properties [22].
As mentioned previously, the scaling law performs a preliminary and simplified version of IH mapping with

imited data to be fitted. However, it can only be applicable to approximating the low dimensional (e.g., one-
imensional) property space with simple relationships (e.g., one-to-one mapping). Every time the unit cell type
hanges, one needs to repeat that fitting process; this forces the mapping to be bijective and difficult to generalize
cross cell types. The level set method supports the IH mapping for a higher dimensional property space but
uffers from a costly manual process requiring extensive computation. For example, Zhu et al. [22] needed to
erform a series of procedures, including a discrete sampling of the microstructures, a continuous optimization of
he microstructures, and a continuous representation of the material gamut by computing a signed distance field (up
o 93 h computational cost in total) to construct an accurate mapping in their application. Unlike these methods,
ur work eliminates these limitations by training an end-to-end deep generative model (i.e., conditional GAN) to
utomatically learn the IH mapping from two-dimensional elastic properties (i.e., Young’s modulus and Poisson’s
atio) to multiple types of unit cells.

.1.3. Structures assembled by multiple types of cellular unit cells
Rather than using single-type variable-density unit cells that can limit the spectrum of physical properties,

esearchers have explored assembling structures with different types of unit cells to expand the range of physical
ehaviors. The major bottleneck in the assembly is the lack of sufficient interface connection area due to significantly
ifferent geometries at the intersection between two adjacent unit cells. Some existing works have focused on
olving this bottleneck by optimizing geometric compatibility between adjacent unit cells. Zhou and Li [65]
ave summarized three methods (i.e., connective constraint, pseudo load, and unified formulation with nonlinear
iffusion) to ensure the connectivity between adjacent 2D unit cells. Li et al. [66] used a similar kinematic approach
o solve the compatibility issue. Radman et al. [67] performed topology optimization of three adjacent base cells
y considering the connectivity constraints simultaneously: the base unit cells were designed for the target stiffness
hile maintaining smooth connectivity. Garner et al. [68] focused on finding the optimal connectivity between more
iverse topology optimized unit cells while maximizing bulk moduli of the graded structures. Schumacher et al. [25]
recomputed a database of tiled unit cells indexed by the elastic properties and applied a global optimization to
elect the optimal tiling that can best connect adjacent tile. Another approach was to use geometric interpolation to
btain intermediate structures that have no geometric frustration [69]. A similar interpolation strategy was commonly

sed to design variable-density cellular structures to generate a smooth connection between unit cells with different

5
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volumes [23]. Wang et al. [70] tackled the geometric compatibility by proposing non-periodic implicit functions that
can generate two compatible unit cells with good overlap at the intersection face. In this paper, our approach takes
advantage of the integrated TO and IH-GAN framework to generate functionally graded cellular structures with
multiple types of unit cells and address the connectivity bottleneck simultaneously without a need for compatibility
optimization. The generated structures are also precise and manufacturable for AM techniques.

2.1.4. Multiscale topology optimization
Due to the constant increase of computing power and the availability of big data in recent years, the simultaneous

opological design of macroscale structures (i.e., structure) and their underlying microscale structures (i.e., material)
ave allowed researchers to optimize structures with hierarchically fine features for improved performance and
anufacturability [71]. Equipped with data-driven methods, the multiscale TO becomes another important tool for

fficiently overcoming the limitations of mono-scale or homogeneous structures. To more accurately map from
he macroscale to the microscale structures, White et al. [72] developed single layer feedforward Gaussian basis
unction networks as a surrogate model. While Wu et al. [73] constructed the map from the density to super-element
tiffness matrix using a surrogate model built with the assistance of proper orthogonal decomposition and diffuse
pproximation. Patel et al. [74] employed two deep neural networks (i.e., ConnectivityNet and SILONet) to enable
ultiscale TO, with ConnectivityNet improving the connectivity while SILONet [75] accelerating the multiscale
O computations. Wang et al. [76] proposed systematic data-driven methods for the design of metamaterial
icrostructure, graded family, and multiscale system using a variational autoencoder (VAE). Rather than using a

ingle type of underlying microstructures, the multiscale TO can also deal with multiple classes of truss structures to
ccommodate spatially varying desired behaviors with the aid of data-driven models (e.g., interpolation model and
ulti-response latent-variable Gaussian process model) [77,78]. Those multiclass microstructures were not limited

o simple truss structures (to bypass connectivity issues) as they can also be fully non-periodic structures, which need
he consideration of compatibility between adjacent unit cells [79,80]. Instead, to bypass the compatibility challenge,
hu et al. [22] fulfilled the non-periodic structural design by utilizing solid multi-material microstructures as the
uilding blocks. Sanders et al. [81] attempted to make the hierarchical structures by focusing on solving the smooth
nd continuous transitions between truss unit cells without breaking the desired properties. The study manually
nterpolates the truss unit cell geometry and composes the unit cells into a series of hybrid transitional unit cells to
chieve smooth transitions. In contrast, Zheng et al. [82] enables the multi-scale metamaterial structures relying on a
ata-driven topology optimization approach and the parameterized spinodoid unit cells. A conventional feedforward
eural network has been used as a surrogate model to map from shape parameters to elasticity tensor. In this paper,
e use a conditional deep generative model to learn the conditional distribution of microscale unit cell geometries
iven the material properties obtained from the macroscale structural optimization to achieve one-to-many property
o structure mapping and connect the macrostructure with microstructures in a simple yet principled way.

.2. Data-driven models for inverse design of microstructures

Generative modeling, a branch of unsupervised learning techniques in machine learning, has been used to
uild the statistical model of data distributions. In recent years, deep generative models like VAEs or GANs
ave drawn much attention and are used to generate realistic data. These models are primarily applied in
he computer science domain for image synthesis and nature language processing [83]. Unlike these typical
pplications, generative models have been used in the microstructural design, including crystalline porous structures,
anophotonic structures, and metamaterial structures. Kim et al. [84] developed a ZeoGAN model to generate
ealistic zeolite materials and their corresponding energy shapes via training the combined data of three grids
i.e., the energy, silicon atom, and oxygen atom grids). Liu et al. [85] enabled the inverse design of nanophotonic
etasurfaces (2D image data) by adopting a conditional GAN model where a pre-trained simulator was added to

pproximates the transmittance spectrum for a given geometric pattern at its input. Ma et al. [86] revealed the non-
ntuitive and non-unique relationship between metamaterial structures and their optical responses by incorporating a
AE in their generative model, which encodes the designed pattern together with the corresponding optical response

nto a latent space. A VAE model (combined with a regressor of the mechanical properties of interest) was also used
y Wang et al. [76] to generate the pixel-based 2D metamaterial microstructures. Kumar et al. [87] designed the

pinodoid non-periodic cellular structures inversely via the use of two multi-layer perceptron – an inverse network

6
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and a forward network – the former takes a queried stiffness as input and outputs design parameters defining a
cellular unit cell, and the latter takes the predicted design parameters as input and reconstructs the stiffness and
verifies the prediction from the inverse network. In this paper, we use a conditional GAN model to realize the
inverse design of cellular structures by learning the mapping from the material properties (i.e.. Young’s modulus
nd Poisson’s ratio) to the shape parameters that define the implicit surfaces of the cellular unit cells. To the best
f our knowledge, the conditional GAN model has never been used in the inverse design of cellular structures.

Particularly, existing studies have used conventional feedforward neural networks [87] or variational autoencoders
VAEs) [76] to fulfill the inverse design of cellular unit cells. Compared to conventional feedforward neural
etworks, our IH-GAN approach can potentially generate multiple or diverse equally good designs given the same
nput properties. Compared to VAEs, one significant advantage of our IH-GAN approach is that we use a simple
et principled way of deriving a one-to-many mapping rather than using any complicated heuristics. Our IH-GAN
odel can also benefit the geometric compatibility between multiple types of unit cells by taking advantage of the

ature of the continuous shape variation of IH-GAN’s generated unit cells. Some existing studies even simplified
he problems by utilizing 2D data (e.g., 2D images) while we directly take care of 3D models. In addition, another
ig advantage of our approach is the fast training (38 s) but with high prediction accuracy.

.3. Conditional generative adversarial networks

Generative adversarial networks [88] model a game between a generative model (generator) and a discriminative
odel (discriminator). The generative model maps an arbitrary noise distribution to the data distribution (i.e., the

istribution of designs in our scenario), thus can generate new data; while the discriminative model tries to perform
lassification, i.e., to distinguish between real and generated data. The generator G and the discriminator D are
sually built with deep neural networks. As D improves its classification ability, G also improves its ability to
enerate data that fools D. Thus, a vanilla GAN (standard GAN with no bells and whistles) has the following
bjective function:

min
G

max
D

V (D, G) = Ex∼Pdata [log D(x)] + Ez∼Pz [log(1 − D(G(z)))], (2)

here x is sampled from the data distribution Pdata , z is sampled from the noise distribution Pz, and G(z) is the
enerator distribution. A trained generator thus can map from a predefined noise distribution to the distribution of
esigns.

The conditional GAN or cGAN [26] further extends GANs to allow the generator to learn a conditional
istribution. This is done by simply feeding the condition, y, to both D and G. The loss function then becomes:

min
G

max
D

VcGAN(D, G) = Ex∼Pdata [log D(x|y)] + Ez∼Pz [log(1 − D(G(z|y)))]. (3)

herefore, given any conditions, cGAN can generate a set of designs that satisfy the given conditions, by feeding a
et of random noise. In our case, the conditions are material properties (i.e., the Young’s modulus and the Poisson’s
atio).

. TPMS-based cellular structures

Our cellular structures are created as a composition of three different TPMS surfaces that have a cubic
ymmetry, namely Schwarz P (P), Diamond (D), and Schoen’s F-RD [89]. Table 1 lists their implicit functions
nd corresponding geometric models.

The three TPMS surfaces are merged as a weighted sum of their implicit functions using Eq. (5):

fmerge(x, y, z) = α1
(
4 fP (x, y, z)

)
+ α2

(
4 fD(x, y, z)

)
+ α3 fF RD(x, y, z),

α1 + α2 + α3 = 1,

0 ≤ α1, α2, α3 ≤ 1
(5)

here α1, α2, and α3 are randomized with a fixed sum of 1 to generate diverse cellular unit cells. The weights of
and D surfaces are augmented by a multiplier (= 4) to balance the proportion of P and D surfaces when merging

he three basic TMPS surfaces (shown in Table 1). The level set value (t1, t2, and t3) in Eqs. (4a)–(4c) determines

he volume fraction (i.e., relative density) of a unit cell by thickening or thinning the surfaces. By picking different

7
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Table 1
TPMS surfaces with cubic symmetry.

Morphology TPMS function Model

Schwarz P (P) fP (x, y, z) = cos(X ) + cos(Y ) + cos(Z ) + t1 = 0 (4a)

Diamond (D) fD(x, y, z) = cos(X ) cos(Y ) cos(Z ) − sin(X ) sin(Y ) sin(Z ) + t2 = 0 (4b)

Schoen F-RD (F-RD)
fF RD(x, y, z) = 8 cos(X ) cos(Y ) cos(Z ) + cos(2X ) cos(2Y ) cos(2Z )
−

(
cos(2X ) cos(2Y ) + cos(2Y ) cos(2Z ) + cos(2Z ) cos(2X )

)
+ t3 = 0

(4c)

where X = 2πx , Y = 2πy, Z = 2π z.

Fig. 3. Merged unit cells using different shape parameters.

evel set values, we can further increase the variations of these merged unit cells. Fig. 3 displays some merged unit
ells generated by Eq. (5). In addition to the shape variation results from the merging operation, we also briefly
how how the merging works in the property space by combining the three baseline classes of unit cells (i.e., P, D,

and F-RD with t1 = t2 = t3 = 0) in Fig. 4. It should be noted that the proposed methodology is not limited to the
hree classes of TPMS unit cells with cubic symmetry. The method can be generalized to more classes of unit cells
e.g., utilizing more general Fourier series-based or spinodoid unit cells [32,34,87] for tunable anisotropy).

. Effective properties of homogenized cellular structures

In this paper, a voxel-based numerical homogenization method [90] is employed to compute the effective
lasticity tensor of the TPMS unit cells. Both numerical [91–93] and practical experiments [94] elucidate that the
omogenization method could be mechanically admissible to the prediction of the equivalent moduli and validation
or the inverse homogenization design even with a small number of unit cell repetitions. From the homogenized
onstitutive matrix, one can obtain the identical Young’s modulus and Poisson’s ratio along the axial directions (x−,
y−, and z−) due to the cubic symmetry of those TPMS-based cellular structures.

8
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Fig. 4. Property variation based on varying weights of the merged baseline unit cells (P, D, and F-RD with t1 = t2 = t3 = 0). (a)
Property variation of merged P and D (α fP + (1 − α) fD) with the increasing α (∆α = 0.01). (b) Property variation of merged P and F-RD
(α fP + (1 − α) fF RD) with the increasing α (∆α = 0.01). (c) Property variation of merged D and F-RD (α fD + (1 − α) fF RD) with the
ncreasing α (∆α = 0.01). (d) Property variation of merged P, D, and F-RD (Eq. (5)) with 300 samples. The star symbols indicate the
ocations of the three baseline classes.

The finite element used in this homogenization is an eight-node hexahedron. Therefore, each unit cell is voxelized
nto 40 × 40 × 40 cubes (Fig. 5).

The constitutive matrix Ce of the elementary material that is isotropic over each finite element, and thus can be
xpressed by Lamé’s parameters [95] as:

Ce =

⎡⎢⎢⎢⎢⎢⎢⎣
λ + 2µ λ λ 0 0 0

λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0

⎤⎥⎥⎥⎥⎥⎥⎦ (6)
0 0 0 0 0 µ

9



J. Wang, W. Chen, D. Da et al. Computer Methods in Applied Mechanics and Engineering 396 (2022) 115060

w

w
fi

w

T

w
c
s
Y

Fig. 5. Voxelization of a TPMS-based unit cell. (a) Implicit surface. (b) Voxels.

where the Lamé’s first and second parameters λ and µ are:

λ =
νE

(1 + ν)(1 − 2ν)
,

µ =
E

2(1 + ν)

(7)

here E and ν are Young’s modulus and Poisson’s ratio of the elementary material.3 The elemental stiffness matrix
ke and the global stiffness matrix K assembled for the unit cell are:

ke =

∫
Ve

BT
e Ce Be dVe, K =

N∑
e

ke (8)

here N is the number of finite element inside the unit cell. The load f i to be used for calculating the displacement
eld is assembled by:

f i
=

∑
e

∫
Ve

BT
e Ceε

i dVe (9)

here the macroscopic strains are chosen as the unit strains εi :

ε1
= (1, 0, 0, 0, 0, 0)T , ε2

= (0, 1, 0, 0, 0, 0)T , ε3
= (0, 0, 1, 0, 0, 0)T ,

ε4
= (0, 0, 0, 1, 0, 0)T , ε5

= (0, 0, 0, 0, 1, 0)T , ε6
= (0, 0, 0, 0, 0, 1)T (10)

he global displacement fields χ i of the unit cell are achieved by solving the following equation:

Kχ i
= f i (11)

where the displacement vectors χ i are assumed to be V-periodic—i.e., boundary nodes on three opposite faces of
the unit cell will have the same displacement. Finally, each entry in C H can be obtained by using the following
equation:

C H
i j =

1
|V |

∑
e

∫
Ve

(χ0(i)
e − χ (i)

e )T ke(χ0( j)
− χ ( j)

e ) dVe (12)

here χ0(i)
e is the element displacement field that corresponds to the i th unit strain in Eq. (10), and χ (i)

e is the
orresponding displacement field obtained from globally enforcing the unit strains in Eq. (11). After iterating the
ix unit strains, the 6 × 6 homogenized constitutive matrix C H is attained. To achieve the unit cell’s effective
oung’s modulus and Poisson’s ratio, one still needs to find the inverse of C H —i.e., the homogenized compliance

3 In this paper, we assume the material has Young’s modulus of 200 GPa and Poisson’s ratio of 0.3. Using Eq. (7), the Lamé’s first and
second parameters λ and µ are calculated as 115.4 and 76.9, respectively.
10
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Fig. 6. Effective elastic properties and relative density of training data.

matrix SH . From the compliance matrix, the cubic symmetric unit cells have:

E H
= Ex = Ey = Ez =

1
SH

11
=

1
SH

22
=

1
SH

33
,

νH
= −SH

12 E = −SH
13 E = −SH

21 E = −SH
23 E = −SH

31 E = −SH
32 E

(13)

The relative density (ρ) of a unit cell can be computed as a ratio between the number of voxels containing
aterials (voxel = 1) and the total number of voxels (40 × 40 × 40).
Fig. 6 shows the coverage of effective elastic properties and relative density of our training data. Note that

parse or no training data is present in some regions (e.g., the lower right region) of the property space. This means
hat IH-GAN cannot faithfully generate the unit cells with the properties from those regions since it has not seen
ny data there during training. Therefore, in downstream demos like structural optimizations, we need to constrain
he solution space of the properties based on the distribution of our training data. To capture the distribution, we
epresent the property space using a signed distance field, which is visualized as the gray envelope of 0-level set
urface in Fig. 6. We will describe later how we constrain the solution space to the envelope while solving structural
ptimization problems.

. Inverse homogenization GAN

We propose a conditional GAN, Inverse Homogenization GAN (IH-GAN), to learn the IH mapping— a one-to-
any mapping from the property space M in R3 to the shape parameter space S in R6 (Fig. 7). Specifically, M is

efined by the Young’s modulus E , Poisson’s ratio ν, and relative density ρ of a unit cell; while S is defined by the
ix shape parameters α1, α2, α3, t1, t2, and t3 from Eqs. (4a)–(4c) and (5). The generator G has both the properties

and the noise vector z as inputs. The noise is drawn from a predefined prior distribution Pz (e.g., multivariate normal
distribution). Given E , ν, and ρ, we can draw multiple unit cell shapes as the output of G by sampling noise vectors
from Pz as the input to G.

We further improve the IH mapping by ensuring the generated shape parameters can be accurately mapped back
to their corresponding properties. Specifically, we add an Auxiliary Property Regressor (R) to predict each design’s
properties (Fig. 7). This leads to two additional loss terms:
Lr (R) = Ex∼Pdata [|y − R(x)|] , (14)

11
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Fig. 7. Architecture of the IH-GAN. Notations G, D, and R represent the generator, the discriminator, and the auxiliary property regressor,
respectively.

and

Lg(G) = Ez∼Pz [|y − R(G(z|y))|] , (15)

where x = (α1, α2, α3, t1, t2, t3), and y = (E, ν, ρ). Note that we cannot update R in Eq. (15) because, as a regression
model, R requires labeled data during training, but the geometries generated by G do not have pre-existing labels
(i.e., the actual properties4).

Similar architecture is also used in two existing GAN variants: (1) To maximize the mutual information between
the generated sample x and its latent code c, InfoGAN [96] uses an auxiliary network to approximate the conditional
latent code distribution P(c|x); and (2) To improve sample quality, the auxiliary classifier GAN (AC-GAN) [97]
uses an auxiliary classifier to predict the probability distribution P(l|x) over the class labels l.

The overall loss function of IH-GAN thus combines the conditional GAN’s loss, Eq. (15), Eq. (14) with a
hyperparameter γ :

min
G,R

max
D

VIH-GAN(D, G, R) = VcGAN(D, G) + γ
(
Lg(G) + Lr (R)

)
. (16)

There are two ways of training IH-GAN:

1. Fix G when updating D and R, and fix D and R when updating G.
2. Use a pre-trained R. Fix G when updating D, and fix D when updating G (standard GAN training).

We used the first approach in our experiments. As mentioned earlier, we cannot train R together with G because
the geometries generated by G do not have pre-existing labels (i.e., the actual properties), but R as a regression
model requires labeled data during training.

6. IH-GAN for functionally graded cellular structural design

As the proposed IH-GAN model can accurately generate cellular structures possessing the desired properties,
it can be useful in designing functionally graded cellular structures composed of multiple types of cellular unit
cells. Rather than typical TO algorithms (e.g., SIMP) that optimize a density map by assuming an approximate
relation between Young’s modulus (E) and the density (ρ), our IH-GAN model uses a modified version of the
SIMP algorithm that can output all the three maps of E , ν, and ρ. Based on the E , ν, and ρ maps, our IH-GAN
generates corresponding cellular unit cells to replace the three maps and end up with a functionally graded cellular
structure. We use two different elasticity objective functions – i.e., minimum compliance and target deformation –
in our optimization problems.

4 Ideally, we could apply homogenization for each generated geometry during training to obtain the actual material properties, but this
would tremendously increase the training time.
12
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6.1. Minimum compliance

We first use the same objective (C c) as the one used in the standard TO algorithm. With E , ν, and ρ as the
esign variables, our optimization problem is defined as:

minimize
E,ν,ρ

C c = uT K (E, ν)u

subject to K (E, ν)u − f ext = 0
Φ(Ei , νi , ρi ) ≤ 0,i = 1, . . . , Ne
Ne∑

i=1

ρivi ≤ V̂ ,

(17)

here E and ν are the vectors of the element Young’s modulus and Poisson’s ratio, K is the global stiffness matrix,
u is the displacement vector, and f ext represents the external loads applied to the object. The equality constraint
s the static elasticity (Hooke’s law) equilibrium equation.

The first inequality constraint Φ ≤ 0 guarantees each cellular unit cell’s properties have high probability density
n the training data distribution (Fig. 6) so that IH-GAN can faithfully generate shape parameters given E , ν, and
. It can have the following form:

Φ(Ei , νi , ρi ) = τ − Pr(Ei , νi , ρi ; θ ), (18)

here the probability density function Pr(Ei , νi , ρi ; θ ) can be estimated by methods like kernel density estimation
KDE), θ denotes the parameters of the estimated distribution, and τ is a threshold on the probability density. In
his paper, we use the implicit distance function Φ [98] of the training data’s property space M instead to form
onlinear constraints:

Φ(p) = ∥p − p̄∥ − r, p = (Ei , νi , ρi ) ∈ M, (19)

here ∥ · ∥ calculates the Euclidean distance between two points in M, and p̄ is the average position of the
eighboring points of p with a range of 2r , where r is typically the average spacing of the points in M.

The second inequality constraint controls the overall mass V̂ , where vi denotes the i th element volume.

.2. Target deformation

We then take a vector of nodal target displacements and boundary conditions as input. The target deformation
roblem optimizes the material distributions (i.e., E and ν maps) over the design domain to attain the desired linear
eformation assuming a linear elastic behavior. The deformation objective function is defined as:

minimize
E,ν

Cd = (u − û)T D(u − û),

subject to Φ(Ei , νi ) ≤ 0,i = 1, . . . , Ne
(20)

here û is the vector of the target displacements, and D is a diagonal matrix that is used to define the query nodes
f interest. For example, we can focus on a certain portion of the design domain by uniformly defining 31 query
oints at the bottom of the beam (Table 3).

To achieve the desired displacement, we relax the constraints by removing the overall mass constraint, and thus
(Ei , νi ) becomes a 2D distance function. The solutions of the target deformation problem contain two maps (i.e., E

nd ν), which are combined and fed into the IH-GAN model to generate the 6 shape parameters (α1, α2, α3, t1, t2, t3).
he corresponding unit cell shapes are then created using Eq. (5).

. Numerical experiments

In this section, we introduce a new unit cell shape dataset and our experimental settings. We release both our
ataset and code at https://github.com/IDEALLab/IH-GAN CMAME 2022.

7.1. Datasets

To train the IH-GAN, we use a unit cell shape database containing the shape parameters and the properties (i.e.,
ffective elastic properties and relative density) of 924 unit cells.
13
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Fig. 8. Neural network configuration used for experiments.

Shape parameters. Using the design method in Section 3, each cellular unit cell can be represented by six
parameters (α1, α2, α3, t1, t2, t3). To produce a diverse dataset, we first randomly generate N groups of α1, α2, and α3

with a fixed sum of 1. Next, we generated N groups of t1, t2, and t3 through a Latin hypercube sampling [99] strategy
to evenly cover the level set space. In this paper, we have t1, t2, t3 ∈ [−0.4, 0.4] to avoid modeling failures—i.e.,

reaks due to a low density and fully solid due to a high density. We excluded shapes having small cross section
reas or having zero contact areas with neighboring cells. The final dataset contains 924 different unit cells.

roperties. The dataset of effective elastic properties is collected by homogenizing each of the 924 unit cells using
he approach described in Section 4. In our property dataset, each unit cell’s properties are represented as a set of
hree parameters (i.e., E H , νH , and ρ).

The database is then split with a ratio of 8:2 for training (739) and evaluation (185), respectively.

.2. IH-GAN model configuration and training

The generator, the discriminator, and the auxiliary regressor are fully-connected neural networks with the
rchitectures shown in Fig. 8. The unit cell shapes are represented as 6-dimensional vectors. The condition vectors
i.e., properties E , ν, and ρ) are 3-dimensional vectors. We set the noise input z as a 3-dimensional vector drawn
rom a standard multivariate normal distribution. We set λ = 20 in Eq. (16). We used 5000 training iterations during
raining, with each iteration randomly sampling 32 examples as a mini-batch. The same learning rate of 0.0002
s used for optimizing the generator, the discriminator, and the auxiliary regressor. This simple neural network
onfiguration allows a wall-clock training time of 38 s on a GeForce GTX TITAN X. The inference time is less

han one second.
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Fig. 9. Coefficients of determination (R2-scores) showing how well the actual properties (E ′, ν′, and ρ′) of generated unit cells match the
arget (E , ν, and ρ). Unit cells generated by the GAN with an auxiliary regressor show higher R2-scores.

. Results and discussion

.1. Performance of IH-GAN

To evaluate whether the generated unit cells have the exact properties on which the geometries are conditioned,
e compute the property error on the test dataset. Specifically, we use the properties (E, ν, ρ) from the test set

s conditions for IH-GAN to generate corresponding unit cell geometries. Then we evaluate those geometries for
heir actual effective material properties (E ′, ν ′) via homogenization and compute their actual volume fractions
′. We quantify how well the actual properties (E ′, ν ′, ρ ′) match the target (E , ν, and ρ) using the coefficient of
etermination (R2-score):

R2
= 1 −

∑N
i=1 ∥yi − y′

i∥
2∑N

i=1 ∥yi − ȳi∥
2
, (21)

here yi denotes the target property (E , ν, or ρ), y′

i denotes the actual property (E ′, ν ′, or ρ ′) of generated unit
cells, and ȳi denotes the mean of the target property. Results are shown in Figs. 9. To demonstrate the effects of the
auxiliary regressor, we also compute the errors when it is removed. Fig. 9 shows that all the R2-scores are higher
han 0.97, and using an auxiliary regressor improves the R2-scores in general.

On the left of Fig. 10, we visualize the generated shape variation in a continuous 2D material property space,
.e., how the generated unit cell shape changes when varying Young’s modulus E and Poisson’s ratio ν. It shows
hat there is a strong correlation between E and the unit cell’s volume fraction. Meanwhile, as ν increases, mass
ransports from the center of the unit cell to the periphery. These observations are consistent with physical intuition.
ote that the true property space may contain infeasible regions where there are no real-world data (e.g., the lower

eft and lower right regions). In those regions, IH-GAN generates either invalid unit cells (i.e., round-shaped unit
ells at the lower left, which have zero contact areas with neighboring cells, as indicated by the red box) or invariant
hapes (i.e., shapes at the lower right corner). When IH-GAN is used for downstream tasks, we need to exclude those
15
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v

Fig. 10. The effects of material properties (E and ν as conditions) and noise on synthesized unit cells. Left: synthesized unit cells conditioned
on different material properties and fixed noise. Unit cells in the red box are generated in the region of the property space where there are
no real-world property data. Right: each row shows synthesized unit cells by conditioning on certain properties while varying the first noise
ariable.

Fig. 11. Distribution of property errors when randomly perturbing the noise input (points and vertical lines denote mean and standard
deviation, respectively).

infeasible regions by bounding E and ν. On the right of Fig. 10, we show how shape varies with the noise vector
given fixed E and ν as the condition. We obtain different unit cells by perturbing the noise input to the generator.
This results in a one-to-many mapping from the property space to the shape parameter space. The magnitude of
shape variation, however, differs when conditioned on different properties.

Ideally, for an inverse homogenization mapping, given fixed properties (E, ν, ρ) as conditions, the noise input
would only change the geometry of generated unit cells; whereas the properties they actually possess would be fixed
as (E, ν, ρ). In reality, given fixed (E, ν, ρ) as conditions (targets) of generated geometries, their actual properties
(E ′, ν ′, ρ ′) may deviate from (E, ν, ρ) as we perturb the noise input. To test how far (E ′, ν ′, ρ ′) deviates from
(E, ν, ρ), we take 50 sets of (E, ν, ρ) as conditions, under each of which we randomly perturb the noise inputs to
generate 50 unit cells and compute the percentage errors between (E, ν, ρ) and (E ′, ν ′, ρ ′):

ϵi = (y′

i − yi )/yi , (22)

where yi and y′

i are the target and the actual properties, respectively. The results are shown in Fig. 11. The errors for
Young’s modulus have a larger variation caused by noise perturbation than Poisson’s ratio. Despite some outliers,
most percentage errors for E , ν, and ρ have mean values within [-3%, 5%], [-2%, 2%], and [-2%, 3%], respectively;
and standard deviations within 7%, 4%, and 2%, respectively.
16
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Fig. 12. An illustrative example of a cantilever beam built by functionally graded cellular unit cells using IH-GAN. The beam has a
dimension of 30 mm × 10 mm × 1 mm (x × y × z). Left: optimized Young’s modulus map, Poisson’s ratio map, and density map with
boundary conditions indicated. The red triangles ( ) symbolizes a fixed boundary condition along all three coordinates. The red arrows (→)
epresent a point force loading condition and the direction it is applied. Right: the synthesized structure with multiple types of cellular unit
ells. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

.2. Functionally graded cellular structural design

This paper optimizes a cantilever beam as an illustrative example to demonstrate the functionally graded cellular
tructural design using IH-GAN as shown in Fig. 12. We obtain the optimized E , ν, and ρ maps by solving the
ptimization problem described in Section 6 (with the overall mass V̂ = 45%). The resultant three maps of properties
re highlighted as red dots in the property space of the training data in Fig. 13. We then combine the three maps
nd feed them into IH-GAN to generate corresponding cellular unit cells. We finally assemble these cellular unit
ells to make a beam.

.3. Connectivity

The major risk that arises when merging different types of cellular unit cells is the lack of sufficient interface
onnection area [70]. If the geometries at the intersection between two adjacent unit cells are significantly different,
he common face’s potential overlap can be low, leading to poor connectivity. Such poor connectivity can result in a
eak link that makes the entire structure vulnerable to failure (under functional needs) and eliminates any advantage
btained using multi-type cellular structures. In this paper, we validate the quality of interface connectivity by
omputing the percentage of overlap area:

Po =
|AA ∩ AB |

min{|AA|, |AB |}
× 100%, (23)

here AA and AB are sets of pixels of two connecting unit cell faces after discretization. Fig. 14 illustrates the
oundary faces of two different unit cells, A and B, with the faces in contact vertically or horizontally when the
tructure is assembled (i.e., the IH-GAN structure for compliance minimization problem in Section 8.4.1). The face
f unit cell A is represented by red circles, the face of unit cell B is depicted by green crosses, and the overlap
reas are shown in red circles with green crosses infilled. In this paper, we utilize TPMS-based unit cells that have
ubic symmetry. Therefore, each unit cell has six identical boundary faces. The average percentage of overlap areas
ithin the whole structure is 96.43%.
By taking advantage of the material property filter kernel used in TO and the continuous shape variation of IH-

AN’s generated unit cells in the 3D material property space, IH-GAN’s generated unit cells can naturally guarantee
uality connectivity between different unit cells without additional compatibility optimization efforts [25,68]. Most
f the boundary faces have overlap areas close to 100%. There are still some adjacent unit cells that can have
17
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Fig. 13. Optimized properties (highlighted in red dots) in the property space. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 14. Interface boundaries for adjacent unit cells (A and B) at two locations.

relatively low overlap areas. For example, the rightmost subfigure in Fig. 14 shows the lowest overlap between
two unit cells with a percentage of 30.0%. To avoid possible failure due to insufficient interface connection, we can
further mitigate the connectivity issue by blending each pair of two adjacent unit cells via an interpolation operation
similar to the linear interpolation used in the variable-density structure [23]. Fig. 15 illustrates an example of the
smooth transition between two different types of unit cells (i.e., the two unit cells with 30% overlap in Fig. 14).

8.4. Validation of structural performance

To demonstrate the efficacy of IH-GAN in designing functional structures, we validate the cantilever beam’s
structural performance (Fig. 12) by performing an FE simulation5 and comparing it with the single-type cellular

5 In this paper, the finally assembled structures are formed by implicit surfaces (e.g., all-triangular surface mesh). In order to do FE
simulations, we convert the all-triangular surface mesh into an all-tetrahedral volumetric mesh using the iso2mesh 3D volumetric mesh
generator [100]. The generated volumetric mesh consists of 650,000+ tetrahedra and takes a total generation time of 20+ seconds on
18
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Fig. 15. Geometric compatibility and connectivity in cellular structures. (a) The connection between two different types of unit cells without
smoothing the transition layer (i.e., the connection interface). (b) A smooth connection (100% overlap) between the two different types of
unit cells using interpolation.

Table 2
Structural performance comparison for compliance minimization with different design methods.

Design domain IH-GAN Variable-density Uniform

Density (ρ) 45% 45% 45%
Max. displacement (mm) 0.1630 0.1681 0.4831
σmax (MPa) 10,302.0 50,800.8 30,765.7
Compliance (N·mm) 7.3876 7.4155 21.1058

structural designs. Taking Table 2 as an example, the solid beam is also redesigned into a variable-density single-
type cellular structure and a uniform single-type cellular structure. For the variable-density structure, the density of
D surface unit cells is optimized by the state-of-the-art proposed in [23]. In comparison, the uniform structure is
formed by D surface unit cells with identical densities.

8.4.1. Minimum compliance
To enable a fair comparison between different design methods, we apply the same load (a point force of

00 N) and keep the density consistent (45%) for the three structures (Table 2). Our proposed IH-GAN-based
ethod slightly reduces the beam’s maximum displacement by 3.03% (from 0.1681 mm to 0.1630 mm) compared

o the variable-density structure. In contrast, the uniform structure (without optimization) results in a much
arger displacement (0.4831 mm) and compliance (21.1058 N · mm). While maintaining the displacement and

compliance performance, the IH-GAN-based method can lower the maximum von-Mises stress (σmax ) significantly
compared to the other two methods. The IH-GAN structure’s maximum stress is 10,302.0 MPa, which is 79.7%
lower than the maximum stress of the variable-density structure (50,800.8 MPa) and 66.5% lower than the
maximum stress of the uniform structure (30,765.7 MPa). The FE simulated displacement (magnitude) and stress
contours of the three structures are compared in Fig. 16. The FE simulation results show that our IH-GAN
model can successfully generate graded cellular structures with functional performance exceeding current implicit
function-based single-type methods.

average. The generated mesh was then rewritten and saved as an ABAQUS input file for the FE simulation. The FE simulation is performed
using ABAQUS 2017 and takes an average of 80+ seconds to complete a job. The material properties used in the simulation are the same
ones used in the homogenization process with E = 200 GPa and ν = 0.3. A PC with a 2.9 GHz Intel Core i9-8950HK CPU and 32 GB

AM was used for the mesh generation and FE simulation.
19
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Fig. 16. FE simulated displacement (first row: (a), (b), and (c)) and stress (second row: (d), (e), and (f)) contours of the beam redesigned
for minimum compliance. Left: IH-GAN-based multi-type cellular structure, Middle: variable-density single-type cellular structure, and Right:
uniform single-type cellular structure.

8.4.2. Target deformation
For the target deformation objective, we fix the left side of the beam, apply 10 mm displacement along the

negative x-axis, and fix the displacement along y-axis (vertical displacement) on the right side of the beam.
The design domain in Table 3 illustrates the boundary conditions where the red dotted line indicates the target
deformation locations of interest (bottom edge of the beam). We experiment on two target deformations—i.e.,
displacements of a period of full sin curve and a half sin curve. The 31 nodes uniformly located on the bottom
edge are used as the query points for evaluating the deformation performance. In Table 3, the 3D models exhibit
the final designs for the target deformations using our IH-GAN method and the variable-density single-type cellular
structure. The graphs compare the target displacements with the optimized displacements directly from structural
optimization (i.e., scale separation) and the simulated displacements from ABAQUS (i.e., no scale separation). To
quantify the shape similarity between curves, we employ Mean Squared Error (MSE) as the measuring metric.6 A
lower MSE value corresponds to higher similarity. As seen in Table 3, the displacements optimized by structural
optimization (scale separation) are close to the target full sin and half sin curves (with low MSE values), while the
numerical experimental curves show some shifts and discrepancies in the FE simulations of the finally assembled
structures. For both target curves (full sin and half sin), the multi-type functionally graded cellular structures created
by our IH-GAN show higher similarities with lower MSE values (0.00084 and 0.0409 for half sin and full sin,
respectively) compared to the curves generated by the variable-density single-type cellular structure (0.0062 and
0.2001 for half sin and full sin, respectively). The FE simulated (signed) displacement contours along y-axis are
ompared in Fig. 17.

. Discussion

This section discusses the pros and cons of our proposed IH-GAN approach to designing multi-scale cellular
tructures in the present settings and scenarios. We also provided an in-depth vision of the future research directions
nd how we plan to explore and investigate.

.1. Porous unit cells in structural performance

Although the compliance minimization problem is a typical and popular case study that has been commonly used
n the functionally graded porous structural designs [18,23,101,102], it has also been acknowledged that porous

6 M SE =
1
n

n∑
(ui − ûi )2.
i=1
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Table 3
Structural performance comparison for target deformation with different design methods.

Design domain IH-GAN Variable-density

Half sin curve

Full sin curve

Fig. 17. FE simulated y-axis (signed) displacement contours of the beam redesigned for target deformations. Left: IH-GAN-based multi-type
cellular structures for (a) target half sin curve and (c) full sin curve and Right: variable-density single-type cellular structures for (b) target
half sin curve and (d) full sin curve.

design does not bring extra benefits in terms of compliance minimization [79]. Given that our design ends up with
porous unit cells, we further compare our IH-GAN design to the canonical design consisting of solid unit cells
(e.g., topologically optimized solid isotropic materials using SIMP constrained by the same volume fraction). As
illustrated in Fig. 18, compared to the IH-GAN generated porous structure, the canonical design with solid isotropic
materials arrives at a lower maximum displacement (0.1326 mm vs. 0.1630 mm) and a lower compliance (7.1227
N · mm vs. 7.3876 N · mm) in compliance minimization. The solid unit cells also lower the maximum concentrated
stress (σmax ) compared to the IH-GAN porous structure (7,630.4 MPa vs. 10,302.0 MPa). As the concentrated stress
is sensitive to the mesh quality for the FE simulation, to enable a fair comparison, we have standardized the mesh
21
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Fig. 18. FE simulated displacement (first row: (a) and (b)) and stress (second row: (c) and (d)) contours of the beam redesigned for minimum
compliance. Left: Topologically optimized solid unit cells using SIMP and Right: IH-GAN-based multi-type porous unit cells.

quality for each solid and porous unit cell such that each type of design (i.e., the IH-GAN porous design and the
anonical solid design) have the same resolution in both macro- and micro-scales (i.e., a macro-scale resolution
f 30 × 10 × 1, an implicit surface resolution of 20 × 20 × 20, and a volumetric mesh element size of 0.02).
ven though the IH-GAN porous design achieves slightly higher compliance than the canonical design with solid

sotropic materials, it shows decent performance in the minimum compliance problem. Considering other potential
enefits (e.g., design diversity and high-resolution representation) porous structures can offer, porous designs are
till a promising alternative candidate in structural optimization in terms of compliance minimization.

.2. All-space filling structures

Adding the option to remove mass from regions that are not essential for load-bearing is definitely an interesting
irection. Constrained by the envelope (Fig. 6) of our relatively limited dataset of porous unit cells, our approach has
limitation of generating all-space filling porous structures under the present settings. To overcome this limitation,
e need to expand the dataset to a more diverse one (as we will discuss in the next section) that also covers the
rigin in the property space. In that way, our approach can enable the option of mass removal without the need for
dditional steps. Nonetheless, for cases where we prefer structures to have a better heat dissipation (e.g., heat sink
ith load-carrying capability), self-supporting performance, or damage-resistant designs [23,103], porous structures
ith unit cells placed everywhere can be a better option. They can achieve more energy dissipation (due to larger

ontact interface areas), be self-supporting, and be less damage-sensitive compared to solid structures [23]. Although
e did not evaluate the thermal performance or add heat dissipation as an additional objective in this paper, we
ill study such scenarios in our future work.

.3. Dataset diversity

As we indicated above, by expanding the diversity of our dataset, our proposed IH-GAN approach can be used for
roader applications. However, diversity still remains an open question. For almost every data-driven or ML-driven
esearch, one would ask questions like “how diverse is diverse?”, “where are the boundaries of the diverse data?” and
when would the data-driven model fail as the data diversity increases?”. To this end, topics like database expansion,
areto frontier discovery (boundary expansion), and optimal diverse coverage could be covered. Our current database
overs a specific region of the property space by using three classes of baseline unit cells and varying their weights
nd level set values. To expand the database with more diverse properties, we can add more classes of basic unit
22
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cells in the combination (e.g., including the anisotropic unit cells). However, before doing this, we need to find an
ppropriate way to assess or quantify the diversity. Specifically, we need to know if the diversity of a particular
ataset is diverse enough for specific applications. For example, our current dataset has been diverse enough for
ur two case studies. However, the current property space could become limited when more diverse properties are
esired for some other applications. (e.g., thermal, optical, and acoustic or combinations). With relatively limited
ata, a GAN model can be trained to learn a regularized design latent space that discovers the Pareto frontier of
he real property space [104]. By pushing or exploring the learned Pareto frontier, one could expand the diversity
overage of the property space. Additionally, for a massive number of diverse data samples, one would not want 10
illion options. Rather, we want the fewest designs that maximize the diverse coverage. While certainly interesting

nd ultimately valuable, it would be unrealistic for us to complete all these in a feasible time range and be beyond
he scope of a single paper. We believe it will be worthwhile answering such questions using a separate paper that
ould explore them more rigorously.

0. Conclusion

We proposed a GAN model to learn the IH mapping from properties to unit cell shapes that can be used
o optimize functionally graded cellular structures. The cubic symmetric TPMS surfaces (P, D, and F-RD) were
hosen and combined to create the dataset of isotropic cellular structures and represent each cellular unit cell as a
ix-dimensional shape vector (i.e., α1, α2, α3, t1, t2, t3). The unit cell property space consists of effective Young’s

modulus, Poisson’s ratio, and relative density (i.e., E H , νH , and ρ) in which E H and νH were computed using a
voxel-based numerical homogenization method. Our proposed IH-GAN’s one-to-many IH mapping was learned on
the six-dimensional shape parameter space with the three-dimensional property space as the input conditions.

Our approach offers an end-to-end generative model that automatically learns the IH mapping from data without
assuming a bijective polynomial relationship. Except for the unit cell density (volume fraction), we also consider
unit cell types when building the mapping. By including an auxiliary regressor in the IH-GAN, we can accurately
generate the cellular unit cells that possess the desired properties (R2-scores between target properties and properties

f generated unit cells > 98%).
We also demonstrate the IH-GAN model’s efficacy by implementing it on modified structural optimization

roblems to construct multi-scale functionally graded cellular structures (e.g., a cantilever beam in this paper)
using multiple types of cellular unit cells. Our approach addresses the connectivity issue between different types
of unit cells simultaneously without a need for further compatibility optimization. By performing FE simulations,
we validate that the beam constructed by IH-GAN improves the functional performance (e.g., 79.7% reduction in
concentrated stress) compared to the conventional variable-density single-type beam structure. Moreover, the beam
redesigned by IH-GAN can also achieve the target deformations with decent performance.

Limitations and future work: As a data-driven model, the IH-GAN cannot faithfully generate unit cell shapes
given properties outside the training data distribution. This brings the need for constraining the solution space when
performing structural optimization, which in turn may limit the performance of the optimized cellular structure.
Future work could explore how to combine both data-driven and physics models to allow faithful data extrapolation
beyond the training dataset. Another promising extension is to focus on the diversity exploration of the property
space such that the IH-GAN model can be used for more diverse applications. To this end, topics like database
expansion, Pareto frontier discovery (boundary expansion), and optimal diverse coverage could be covered. While
in this paper, we use isotropic material properties to demonstrate the effectiveness of the proposed IH-GAN model,
the model itself is agnostic to the type of properties. We can replace the isotropic material properties with anisotropic
stiffness or other physics properties (e.g., thermal, optical, and acoustic or combinations). In our future work, we
will perform new case studies to demonstrate and validate our proposed method in other application domains.
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