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ABSTRACT
When performing time-intensive optimization tasks, such

as those in Topology Optimization or Shape Optimization, re-
searchers have turned to Machine Learned (ML) Inverse De-
sign methods—i.e., algorithms that predict the optimized geome-
try from input conditions—to either replace or warm start tradi-
tional optimizers. Almost exclusively, such methods are trained
and optimized to reduce the Mean Squared Error between a
method’s output and a ground truth training dataset of optimized
designs, this being the obvious choice for traditional supervised
learning. While convenient, we show that this choice may be
myopic. Specifically, we compare two methods of optimizing the
hyper-parameters of both a random forest (RF) and k-nearest
neighbors (KNN) model for predicting the optimal topology in a
2D heat sink example.

We show that under both direct Inverse Design as well as
when warm starting further Topology Optimization (TO), using
typical Mean Squared Error metrics produces less performant
models than a proposed metric that directly evaluates the ob-
jective function, though both methods produce designs that are
almost one order of magnitude better than a control condition
that uses a uniform initialization common in TO. We also illus-
trate how warm starting TO with predicted solutions impacts
both the convergence time, the type of solutions obtained dur-
ing optimization, and the final designs. Sensitivity analyses on
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various model parameters demonstrate that the results are not
dependent on other model hyperparameters. Overall, our ini-
tial results portend that researchers may need to revisit common
choices for evaluating ID methods that subtly trade-off factors
in how an ID method will actually be used. We hope our open-
source dataset and evaluation environment will spur additional
research in those directions

INTRODUCTION
Design optimization, such as in Topology Optimization

(TO) or Shape Optimization, frequently requires expensive (in
both time and computing resource) iterations to converge. For
example, following the implementation of the governing equa-
tions and required parameters in a computational environment,
TO problems typically require the iterative solving of these equa-
tions followed by updates to the problem conditions after each
iteration. These computational expenses become significant, and
sometimes prohibitive, in cases that require large numbers of cal-
culations per iteration, large numbers of iterations, where compu-
tational resources are limited, or where a good solution is needed
in a short duration of time.

In response, researchers have tried to circumvent this itera-
tive process via Inverse Design (ID)—training a Machine Learn-
ing model to directly output an optimal design for a new problem,
given a dataset of past (typically expensive) physics-based opti-
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mizations [1, 2]. In cases where such a dataset is available and
one needs to evaluate many new input conditions or requirements
quickly, ID methods can often provide significant time savings
compared to optimizing a design for each bespoke input condi-
tion [1, 2].

But are ID methods any good? Such models are typically
trained to minimize the Pointwise Mean Square Error (PMSE) of
how well the ID model predicts the optimized geometry for the
input condition. This standard choice results from formulating
ID as a supervised learning problem—input conditions in and
optimized designs out—and measuring the output’s discrepancy
with training or test samples. Researchers typically optimize any
hyper-parameters of such models in similar fashion, prostrating
the entire model upon the alter of the MSE.

However, an ID method’s ultimate goal can differ from the
above aim. Are we using the predictions to capture, as accurately
as possible, the geometry or design itself? Or do we care just
about outputting high performance designs, irrespective of how
closely they match the training set? More importantly, are we
using the predicted designs as-is, or using them to accelerate fur-
ther optimization (i.e., warm starting)? Does warm starting with
ID methods actually help, and if so, how and when? Is Mean
Squared Error always the best thing to optimize? This paper asks
some of these questions and answers (tentatively and perhaps
predictably) “it depends!” It casts doubt on MSE’s monotheism
and begs the impious question “what else might we optimize our
ID models for?”

In this work, we attempt to demonstrate using relatively
simple, fast, and easily reproducible Machine Learning models
(Random Forests and k-Nearest Neighbors) how ID predictions
impact the topology optimization of a 2D conductive heat sink
governed by the Poisson Equation, subject to several parame-
ters and boundary conditions, and optimized using interior point
methods [3]. We examine multiple measures of ID performance,
how the ID predictions modify the optimization process com-
pared to a standard benchmark, and what, if any, effects altering
the simple ML models has on our results. The overall contribu-
tions of this paper are:

1. We formulate an inverse design problem for the design of 2-
dimensional heat sinks based on the problem described in [3]
and shown in Fig. 1. This results in a dataset and ID eval-
uation environment that we make available for the research
community, along with performance diagnostics that shed
light onto how optimizers are affected by ID methods.

2. We compare the performance of k-nearest neighbors and
random forest models on this inverse design problem across
multiple metrics including MSE and objective function
value, both for the initial prediction and as a warm start to
an adjoint optimizer. We provide both aggregated results
(Fig. 2) as well as illustrative examples (Fig. 3) that shed
light on how adjoint optimizers adjust to warm starting by

FIGURE 1: The physical layout of this paper’s TO problem that
we will test ID methods on, adapted from [3, 4]. Note that the
colorbar refers to the value of the mass function at a given point.

ID methods.
3. We compare two methods for optimizing the hyperparame-

ters of those ID models, specifically minimizing the PMSE
and another that minimizes the Objective Function value of
the ID predictions at iteration 0, which we call the Predic-
tion Objective Function Minimization Method (POFMM).
We show in Fig. 2 and Tables 1 and 2 that models optimized
with POFMM outperform those trained using PMSE.

4. We also provide sensitivity analyses of each model’s per-
formance with respect to key hyper-parameters of each ML
model, noting that perturbations from those used in our ex-
periments do not fundamentally alter model performance.

BACKGROUND AND RELATED WORK
In this section, we provide background on ID problems in

general, the specific ID methods we use, and the needed back-
ground on the physical problem the paper addresses.

Inverse Design
Inverse design problems are a subset of inverse problems

in general [5]. Inverse problems are defined by the inference
of model parameters from observed measurements [6]. These
measurements can be obtained via the observation of physical
or simulated systems. This is in contrast with forward model-
ing, wherein one discovers physical principles that allow for the
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forecasting of system behavior [6]. Mathematically, an inverse
problem can be described by

y = F(x)+ e (1)

where y ∈ Y is system observations (data), x ∈ X is a parameter
of interest, F is the mapping between relevant function spaces
(forward operator F: X → Y), and e is observational noise [7].

Unfortunately, in many applications, the attainment of a for-
ward model is often impeded by gaps in understanding of un-
derlying principles governing the system [7]. Furthermore, even
when a forward model offers a high degree of accuracy in de-
scribing the behavior of a physical system, such a model often
incurs a high computational cost to implement [7]. It is therefore
often desirable to develop a mapping between some input pa-
rameter and the response of interest via use of input and output
data without the costly and limited implementation of the for-
ward model [7]. This is the essence of inverse problems and, as
it relates to the engineering of systems, inverse design.

Various machine learning modeling techniques have demon-
strated significant promise in efficiently providing such map-
pings [7].

Currently, in the field of mechanical engineering, a large
amount of work has been done investigating the utility of ID
in efficiently designing and characterizing materials (particularly
nanomaterials and metamaterials) and microstructures [1, 5, 8, 9,
10]. The area of design for electromagnetic wave manipulation
(e.g. nanophotonics) is particularly active [11, 12, 13, 14, 15]. ID
methods have also been applied to problems in areas including
molecular discovery [16], additive manufacturing [17], airfoil
design [5, 18], and imaging [19].

Due to their typically greater efficiencies relative to forward
or surrogate modeling techniques, ID methods have also been ex-
plored as a means of accelerating the optimization process, often
by providing good initialization points [5, 13, 20, 21, 22].

While researchers have studied Inverse Design using a wide
variety of predictive models, in this paper we chose two common,
simple, and fast Machine Learning models: K-Nearest Neigh-
bors (KNN) and Random Forests (RF). We chose these models
since they can provide a readily reproducible benchmark for fu-
ture research in this area while allowing us to rigorously study
the fundamental questions on interest regarding the effects of ID
metrics and warm start behavior. More advanced methods, such
as Convolutional Neural Networks, Graph Neural Network mod-
els, or their variants would likely improve upon the raw numeri-
cal errors we show in later sections and would serve as interest-
ing comparisons in the future. With this in mind, we will now
provide some brief background on KNN and RF models, both
of which have recently been applied to inverse design problems,
and in particular, topology optimization problems [23, 24].

K- Nearest Neighbors K-nearest neighbors is an algorithm
that classifies (or, in the case of regression problems, assigns a
value to) unknown data points based on the characteristics of the
data points in the training set that are closest in proximity to the
unknown data point [25]. The Euclidean distance is often used
to assess proximity between points:

d(a,b) =

√
N

∑
i=1

(ai −bi)2 (2)

wherein a and b are two points, d is the Euclidean distance be-
tween them, and N is the dimensionality of the data [25]. The
selection of k, the number of neighboring points considered, can
have a large affect on model performance [25]. Other param-
eters, such as the weighting of different points considered, can
also have an impact on performance [26]. K-nearest neighbors is
relatively efficient in the training and testing process [25].

Random Forests The random forest technique is an ensemble
method that employs decision trees to classify (or, in the case of
regression, assign a value to) a data point [25]. This method
selects random features to determine the optimal “split point”
via calculating the Gini-index cost function [25]. Once trees are
established, a classification (or regression) is made via passing
a data point to all trees, and for classification, the class with the
greatest number of trees assigning the point to said class is output
as the classification [25].

Background on Our Specific Topology Optimization
Problem

One type of problem that lends itself to inverse design ap-
proaches is that of topology optimization. Via topology opti-
mization, one seeks to determine the distribution of material in a
space that best satisfies certain performance criteria [27].

A particular subset of topology optimization problems are
those in which an optimal distribution of material is sought to
facilitate the transfer of heat through a domain while satisfying
certain criteria. In more sophisticated cases, this can encompass
the optimization of heat exchanger geometry subject to convec-
tive heat transfer in turbulent flow [28].

The problem we consider is a simpler one of the topology
optimization of a 2D heat sink subject to pure conduction derived
from a demonstration provided in [3]. In this problem, we seek
to minimize the thermal compliance

∫
Ω

f T +α

∫
Ω

∇a ·∇a (3)

wherein Ω is the unit square, f is the heat source term, T is the
temperature, α is a regularization term, and a is the mass distri-
bution function (a = 1 for material, a = 0 for no material) [3].
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This problem has constraints “subject to the Poisson equation
with mixed Dirichlet–Neumann conditions” [3]. It is also sub-
ject to the constraints of a ∈ [0,1] and the volume bound V such
that:

∫
Ω

a ≤V (4)

for the entirety of Ω [3]. This problem is described in greater
detail in example 1 of [4]. Following the example in [3], we
employ an interior point optimization method described in [29]
to generate data for model training and evaluation purposes, also
described further later in the paper.

METHODOLOGY
To address the contributions mentioned in the introduction,

our methodology has the following main steps: (1) generating
the Dataset we use for later testing of ID methods and the TO
warm starting, (2) how we train and optimize our specific ID
methods, and (3) how we measure and evaluate the results from
the ID methods.

Dataset Creation via 2D Heat Exchanger Topology Op-
timization

To create realistic but feasible benchmark TO problem upon
which we could conduct our ID experiments, we built upon
a classical thermal compliance example with Poisson Equation
constraints from [4] and described further below.

Specifically, in this optimization problem, we sought to min-
imize the thermal compliance of the geometry given a limit on
the volume of conducting material that can be used, and an adi-
abatic region of a prescribed length on one side of the problem
space, which is a unit square. (See above background section and
Fig. 1).

For our dataset generation, we explored an input space of
two parameters: the upper volume limit on the material present
in the unit square (i.e., Volume Fraction) and the length of the
adiabatic region on one side of the square. We selected values
for the volume limit between 0.3 and 0.6, since the interior point
solver we used (IPOPT) could not reliably produce converged
results outside that range, and values within that range showed
sufficient topological variability. We selected values for the adi-
abatic region length between 0 (corresponding to an absence of
an adiabatic region) to 1 (corresponding to an entire side of the
unit square being adiabatic). We then divided each parameter
range into 20 segments, resulting in 21 values of interest for each
(i.e., the volume bounds sampled were 0.3, 0.315, 0.33, [. . . ],
0.57, 0.585, 0.6, and the lengths sampled were 0.0, 0.05, 0.1,
[. . . ], 0.9, 0.95, 1.0). We then generate optimized topologies for
each combination of volume limit and adiabatic region length by

running the interior point solver to convergence within a small
tolerance with respect to the objective function and design vari-
ables, as is standard.

We used a 70 x 70 mesh as the design domain, since this
was large enough to provide fine details within the design space
typical of topologically optimized solutions to this problem (see
Fig. 1), without requiring a needlessly large increase in compu-
tational running time for the solver.

For each combination of parameters, we ran three consecu-
tive optimization runs wherein IPOPT exited upon the satisfac-
tion of a tolerance of 1.0e-3. The first run was initialized with
a constant mass distribution set to the value of the volume limit.
The two following runs were initialized with the output mass dis-
tribution of the preceding run. We used Dolfin-Adjoint [30, 31]
and IPOPT [29] for finite element optimization.

Upon the completion of the third run for a set of parameters,
the resulting distribution was discretized to convert the data into
a form that is amenable to the simple regression models used in
this paper. This was accomplished by dividing the unit square
into a 70 x 70 grid and taking the mass function value at each
intersection point, resulting in 71*71 = 5,041 points taken per
topology. This was done to capture all of the information con-
tained in the output of the optimizer. Therefore, each sampled
point had five values associated with it: its x-coordinate, its y-
coordinate, the volume bound, the length of the adiabatic region,
and the corresponding value of the mass function.

Model Training and Cross Validation
In our optimization of model hyperparameters, we employed

a methodology wherein for each test-train split, we randomly se-
lected two unique values of volume limit and two unique values
of adiabatic region length to exclude from the training set. In
other words, all data points corresponding to topologies defined
by possessing any of these values for volume limit and adiabatic
region width were excluded from the training set. To find the
Pointwise MSE, a model’s predictive abilities were then tested
on data points corresponding to the topologies defined by hav-
ing a volume limit and an adiabatic region length that were ex-
cluded from the training set. For our Prediction Objective Func-
tion Minimization Method, we followed the same training regime
followed by testing on the four topologies with both adiabatic
region length and volume limit excluded from the training set.
In doing so, the model was tested on its ability to predict mass
distributions simultaneously for values of both volume limit and
adiabatic region width that it had not been trained on. We used
the implementations of KNN and RF models available in the
scikit-learn library [32]. However, each model is defined by its
own set of unique hyperparameters, which we trained and tested
via the above cross validation way ten times.

To select the final models for KNN and RF, however, we
had to select which metric to use on the cross validation results
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to select the best model. Herein lies a major difference between
the standard way of selecting ID model—picking the model that
minimizes the Pointwise MSE—and one that evaluates the model
directly on the objective function of interest—what we refer to
later in the paper as Prediction Objective Function Minimization.
We will describe each approach in turn, and then show in the
results section how they impact ID performance.

Hyperparameter Optimization: PMSEM Our Pointwise
Mean Squared Error Method (PMSEM) for model performance
evaluation employs the following steps for comparing predic-
tions to the corresponding topology within the test set:

1. Divide the experiment volume into a 70 x 70 grid
2. Find the model prediction at each intersection point in the

grid, resulting in a 71 x 71 array of predictions
3. Find the mean squared error between these prediction and

their corresponding points in the topology from the test set

Mathematically, the PMSEM in a given trial can be de-
scribed as a minimization of the PMSEM error measure E with
respect to model hyperparameters H, where E is defined as

E =
1

MN

M

∑
i=1

N

∑
j=1

(Pi, j −Ri, j)
2 (5)

wherein M is the number of images tested, N are the number of
points per topology, i is the index of the topology, j is the index
of the point in a given topology, P is the predicted value of the
mass function at said point, and R is the actual value from the
test set.

Physically, PMSEM compares the similarity of the mass dis-
tributions predicted by a model to the ground truth distributions.

Hyperparameter Optimization: POFMM In contrast to PM-
SEM, our Prediction Objective Function Minimization Method
(POFMM) uses an alternative approach to model hyperparam-
eter optimization. As one intention of using a model in an in-
verse design problem is to produce a prediction that is as close to
an optimal design as possible and is therefore a good initializa-
tion point for future iterations, it is therefore desirable to find hy-
perparameter values which enable the model to yield predictions
with good objective function values at iteration 0. In our prob-
lem, this means minimizing the objective function (thermal com-
pliance) value of the model’s predictions at iteration 0. Rather
than comparing the predictions to the corresponding mass dis-
tributions in the test set, the model hyperparameters H can be
optimized solely with respect to this objective function value F.
Note that unlike PMSE, a model optimized in this way may not
produce designs that are as close in the design space (i.e., have
the same geometry) as the training set compared to the PMSE
method, yet should in principle still be able to produce results

with high performance. In practice, because the primary param-
eters of the model (whether KNN or RF) are trained via MSE,
these differences only affect model choice at the hyper-parameter
level.

Optimized Model Evaluation Process
For a given hyperparameter setting, we can now train the

correspondent models via the train-test split scheme described
above. We then use the optimized KNN and RF models to gener-
ate predictions for each tested combination of volume limit and
adiabatic region length.

For each combination of volume bound, adiabatic region
length, and model type, we initialized the interior point solver
(IPOPT) with the corresponding prediction. To guard against
possible premature convergence, we ran IPOPT four consecutive
times, with the second, third, and fourth runs initialized using the
output of the previous run. The optimizer exited each run upon
the satisfaction of the tolerance of 1.0e-3.

As a control, we used an uniform initialization with a con-
stant mass distribution equal to the volume fraction, since this is
the most common initialization for Solid Isotropic Material with
Penalisation (SIMP)-based density TO methods. Three runs per
combination of volume limit and adiabatic region length were
performed in the same manner as for the warm started run se-
quences.

In total, 200 combinations of volume limit and adiabatic re-
gion width were tested with KNN initializations, 200 were tested
with RF initializations, and 200 were tested with the control ini-
tializations.

Data Postprocessing Following the conclusion of optimized
model evaluation process, thermal compliance trajectory results
were normalized and averaged. This was done to prevent any
individual combinations of volume limit and adiabatic region
length from having a disproportionally large or small effect on
the averaged thermal compliance trajectory. Specifically, the
postprocessing procedure is as follows:

1. Normalize each value in each objective function trajectory
with respect to the optimal (minimum) value obtained in said
trajectory.

2. Find the mean of these normalized values at each itera-
tion number for the PMSEM-optimized KNN models, the
PMSEM-optimized RF models, POFMM-optimized KNN
models, and the POFMM-optimized RF models.

3. Render all trajectories uniform in the number of iterations
considered by extending runs that terminate before the max-
imum number of iterations attained among any runs. This
extension is achieved by conservatively extrapolating the fi-
nal value reached in each run over the remaining iterations.
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RESULTS
Following the above methodology, this section first re-

views the optimal models that we found for our specific 2D
heat sink problem, then presents the main quantitative re-
sults on the impact of the initialization methods on ID per-
formance. Following these, we provide qualitative compar-
isons of the final designs produced under each method, and
an example trajectory that helps shed light how the ID method
influences the warm start behavior of further Topology Op-
timization. For specific experiment details, access to our
dataset, reproducible experiment code, and the simulation en-
vironment see: https://github.com/IDEALLab/ID_
Conduction_IDETC2022.

Note that in all subsequent plots with shaded regions, these
shaded areas depict the 95% confidence intervals of their corre-
sponding plotted functions. We approximated the data as having
a t-distribution given the limited number of samples.

Optimal Model Hyperparameters
For KNN models, we tested combinations of the number of

neighbors and weightings. Specifically, we tested models with 1,
2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 neighbors with
either “uniform” or “distance” weightings.

For RF models, we tested combinations of the number of
estimators and the minimum samples per leaf. Specifically, we
tested models with 1, 5, 10, 15, 20, 25, and 30 estimators with 1,
5, 10, 15, and 20 minimum samples per leaf.

PMSEM Using PMSEM, we found that the optimal hyper-
parameters for KNN models were 50 neighbors and uniform
weighting. Similarly, for RF models we found that 20 estimators
with a minimum of 20 samples per leaf were ideal. We provide
sensitivity analysis plots for these parameters in Appendix A in
Fig. 6 and 7, for the KNN and RF models, respectively.

POFMM Using POFMM, we found that the optimal hyperpa-
rameters for KNN models were 1 neighbor with either “distance”
or “uniform” weighting. We selected “uniform” weighting for
the optimized model evaluations given their equivalent perfor-
mances by the POFMM metric. We found that for RF models,
1 estimator with a minimum of 1 sample per leaf was optimal.
We provide sensitivity analysis plots for these parameters in Ap-
pendix A in Fig. 8 and 9, for the KNN and RF models, respec-
tively.

Impact of Different Initialization Methods on Prediction
Performance and Trajectory Acceleration

Using these optimized models, we can now compare how
they perform at both predicting the optimal geometry as well as
how they act as a warm start to further Topology Optimization,
compared to a control (uniform initialization).

FIGURE 2: Mean normalized optimization trajectories for the
tested initialization techniques

We found that, on average, all model types tested with either
hyperparameter optimization method (POFMM or PMSEM) pro-
duced predictions with thermal compliance values significantly
less than that of the control (Figure 2). We also found that initial-
izing the IPOPT optimization process using these methods also,
on average, offered an acceleration for low evaluation numbers,
despite the fact that the optimizer increases the thermal compli-
ance in early iterations of warm starting (Figure 2)—we show
why this occurs in the next section.

Beyond around 20 interations, the control begins to reach
comparable performance to that of the warm started optimizers.
We note that each of the “bumps” in performance that occur
roughly every 20 iterations correspond to restarting the IPOPT
solver after initial convergence. This does not appear to help any
of the warm started models (see Fig. 2 around iteration 20), how-
ever restarting the solver was needed to help the control method
achieve better performance (otherwise the solver converges to a
solution with significant optimality gap).

Specifically, on average, KNN models optimized using
POFMM generated predictions that, at iteration 0, performed
at 147.2% of the minimum thermal compliance reached in the
corresponding control run, whereas predictions generated using
KNN models optimized using PMSEM averaged at 257.8% (Ta-
ble 1). For RF models, these figures were 139.3% and 209.3%
using POFMM and PMSEM, respectively (Table 1). For compar-
ison, a constant mass distribution set the volume limit (the con-
trol for this experiment) averaged at 1,215% (Table 1), almost an
order of magnitude larger than the ID methods.

Furthermore, on average, the use of ID-generated initial-
ization accelerated the topological optimization process up until
iteration 13 (recall that these iterations and evaluations are 0-
indexed) even despite the initial increase in thermal compliance
values observed for lower iteration numbers. As illustrated in
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TABLE 1: Mean Normalized Thermal Compliance (MNTC) at
the zeroth iteration for tested initialization schemes

Model Type MNTC at Iteration 0

KNN PMSEM 2.578

RF PMSEM 2.093

KNN POFMM 1.472

RF POFMM 1.393

Control 12.15

TABLE 2: Performance of Different Model Types at Iteration 13

Model Type MNTC at Iteration 13

KNN PMSEM 1.254

RF PMSEM 1.382

KNN POFMM 1.277

RF POFMM 1.336

Control 2.627

Table 2, all optimizations using model-generated initializations
on average outperformed the control (Table 2). We observed
that KNN models averaged at 127.7% and 125.4% of the min-
imum thermal compliance attained in the corresponding control
run using POFMM and PMSEM, respectively (Table 2). For RF
models, these values are 133.6% and 138.2% for POFMM and
PMSEM, respectively (Table 2).

Why Does Thermal Compliance Increase After Warm-
starting?

A typical non-normalized optimization trajectory for the
warmstarted optimizations is shown in Figure 3. In particular,
Figure 3 displays the trajectory taken by the optimization of a
mass distribution subjected to a volume limit of 0.315, an adi-
abatic region length of 0.4, and an initialization produced by a
KNN model optimized using POFMM (Figure 3).

In this case for the KNN-initialized trajectory, it appears that
the increase in thermal compliance that peaks at iteration 4 is due
to the mass distribution becoming less defined for iterations at
and around this value. In other words, the optimizer is subtract-

FIGURE 3: The evolution of 2D heat exchanger designs over the
course of the optimization process. Here, the trajectory refer-
enced as “KNN” refers to the trajectory initialized with the pre-
diction of a KNN model optimized using PMSEM. The control
trajectory is initialized with a constant distribution set to the vol-
ume limit.

ing some of the material predicted by the model.
In contrast, the control trajectory is significantly smoother

and lacks this degree of loss of definition in its mass distribution.

A Visual Comparison Between Predictions and Ground
Truths

None of the trained models predicted an identical mass dis-
tribution for an designs in the test set. Nevertheless, as the case
depicted in Figure 4 shows, the model predictions resembled the
“ground truth” test design and illuminate how the different ID
models and hyper-parameter optimization schemes qualitatively
affected the predicted designs.

Impact of Different Initializations on Final Optimized
Designs

We also observed qualitative differences between the 2D
heat sink designs produced from optimization processes run
with different initializations. This is expected due to the non-
convexity of the problem, as in such problems differing initial-
izations are often expected to result in a numerical optimizer ar-
riving at different local minima. Our expectations of the close
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FIGURE 4: There are areas in this example case that all models
tested struggle to predict, as shown by the lighter areas in the
distributions in the “Error” column. This example is for a design
with a volume fraction of 0.315 and an adiabatic region width of
0.9.

similarity of objective function values of these final designs were
also met in numerous instances, including the cases presented in
Figure 5.

Figure 5 displays the results of four consecutive optimiza-
tion runs using different initializations. All runs used a volume
fraction of 0.315 and an adiabatic region length of 0.90. Note
that the optimizer exited upon the satisfaction of the tolerance of
1.0e-3. There are small differences in the structures of the de-
signs that are visible upon inspection. The designs nevertheless
appear to retain their dendritic character in this case, and share
substantial resemblance to each other.

DISCUSSION, LIMITATIONS, AND FUTURE WORK
While the specific ID models we tested were simple, they

nevertheless highlight interesting phenomena that may general-
ize to other problems or ID methods. Here we review possible

FIGURE 5: There are numerous structural differences between
optimized designs that used different initializations.

limitations or areas of future work that may affect our stated con-
tributions.

Alternative training and testing metrics Changing how we
optimized the hyper-parameters of the ID models (from MSE-
driven to Objective Function-driven) affected not only quantita-
tive convergence measures (per Fig. 2), but also qualitative pre-
dictions (per Fig. 5), even though the underlying primary training
measures were identical (i.e., both the KNN and RF models min-
imize the design construction error during training).

This raises questions not only about how we evaluate ID
methods, but also points toward alternative training procedures.
For example, strategies such as training over joint losses that in-
clude both reconstruction-error-type losses as well as objective-
function-derived losses. Moreover, if we know that the goal of
an ID method is to act as a warm start for additional TO, then
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perhaps predicting the “peak“ distribution seen in Fig. 3 may be
faster than either of the PMSEM or POFMM approaches used in
this paper. Understanding under what conditions and ID applica-
tions different methods excel would be a fruitful avenue of future
work.

Limitations in the Chosen Problem Some of these limitations
and potential areas directly involve the physical problem that we
considered—i.e., the 2D heat sink. The results of this work are
limited to this particular physical problem with a volume limit
able to vary between 0.3 and 0.6 and an adiabatic region width
able to vary between 0.0 and 1.0. In addition, we only tested
the models on a mesh size of 70x70; it is certainly possible that
higher or lower dimensional problems may introduce variability
into the phenomena we have observed.

While we have no reason to believe that the fundamental be-
havior seen in our 2D examples would not extend to more com-
plex or 3D SIMP/density-based TO examples, there may well be
differences in other TO respresentations (levels sets, spectral rep-
resentations), and for other shape optimization approaches more
broadly.

Variations in ID methods and dataset size Lastly, using more
advanced ID methods may alter some of our observations, for ex-
ample, by eliminating the need for an adjoint optimizer to “erase
and reoptimize” portions of the ID prediction as seen in Fig. 2
if the ID predictions lie sufficiently close to the global optima.
Likewise, we did not investigate here how ID performance is
modulated with the size of the training data set; uncovering tran-
sition points where ID methods become performant remains an
open question worthy of future study in general.

CONCLUSIONS
We compared several simple Inverse Design models (KNNs

and Random Forests) and two approaches for model hyperpa-
rameter optimization with standard uniform initialization using
the SIMP-based TO on a 2D heat sink problem. We described a
benchmark environment and dataset and showed how those mod-
els affected both the initial predictions from the ID methods as
well as downstream accelerations when warm starting optimiza-
tion.

Our findings indicate that both methods of hyperparameter
optimization yield KNN and RF models that can substantially ac-
celerate the optimization process when their predictions initial-
ize an interior point solver. These predictions also tend to have
thermal compliances close to the minimum obtained in a corre-
sponding control optimization run, and tend to significantly out-
perform initialization with a uniform mass distribution—a com-
mon TO initialization method. Moreover, we showed how op-
timizing ID methods solely with respect to Mean Squared Error
on the reconstruction of the test set designs is not necessarily

the best strategy. Instead optimizing for models that produce
lower objective function values can outperform standard MSE
derived hyper-parameter optimization methods. Although we in-
vestigated a specific physical problem, two model hyperparam-
eter optimization methods, and two ID model types (KNN and
RF), there remains a large space of future work in both differ-
ent physical problems and in different computational approaches
to modeling and model optimization. Overall, our results high-
light the nuances in evaluating ID methods—that your end goal
in Inverse Design, whether that be direct prediction, distribution
matching, or warm starting an optimizer, can affect both your
evaluation approach and how you optimize your models.

Acknowledgements
This research was supported in part by funding from

the U.S. Department of Energy’s Advanced Research Projects
Agency-Energy (ARPA-E) DIFFERENTIATE funding opportu-
nity through award DE-AR0001216.

REFERENCES
[1] Lee, X. Y., Balu, A., Stoecklein, D., Ganapathysubrama-

nian, B., and Sarkar, S., 2019. “A case study of deep re-
inforcement learning for engineering design: Application
to microfluidic devices for flow sculpting”. Journal of Me-
chanical Design, 141(11).

[2] Shi, X., Qiu, T., Wang, J., Zhao, X., and Qu, S., 2020.
“Metasurface inverse design using machine learning ap-
proaches”. Journal of Physics D: Applied Physics, 53(27),
p. 275105.

[3] Topology optimisation of heat conduction prob-
lems governed by the poisson equation. http:
//www.dolfin-adjoint.org/en/latest/
documentation/poisson-topology/
poisson-topology.html. Accessed: 2022-02-
10.

[4] Bendsoe, M. P., and Sigmund, O., 2003. Topology opti-
mization: theory, methods, and applications. Springer Sci-
ence & Business Media.

[5] Chen, Q., Wang, J., Pope, P., Chen, W. W., and Fuge, M.,
2021. “Inverse design of 2d airfoils using conditional gen-
erative models and surrogate log-likelihoods”. Journal of
Mechanical Design, pp. 1–22.

[6] Tarantola, A., 2005. Inverse problem theory and methods
for model parameter estimation. SIAM.
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APPENDIX A: SENSITIVITY ANALYSIS OF KNN AND
RF HYPER-PARAMETERS

Fig. 6 and 7 show how the test MSE changed as a function
of hyper-parameter for variations of the KNN and RF models,
respectively. Fig. 8 and 9 show how the objective function value
minimization changed as a function of hyper-parameter, for the
KNN and RF models, respectively.
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FIGURE 6: The PMSEM-optimized KNN model has 50 estima-
tors using uniform weighting

FIGURE 7: The PMSEM-optimized RF model has 20 estimators
with a minimum of 20 samples per leaf

FIGURE 8: The POFMM-optimized KNN model has 1 neighbor
using either weighting

FIGURE 9: The POFMM-optimized RF model has 1 estimator
with a minimum of 1 sample per leaf
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