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Abstract

Collaborative Design Informatics: Leveraging Data to Make Design Teams Better
by
Mark Darryl Fuge
Doctor of Philosophy in Engineering — Mechanical Engineering
University of California, Berkeley
Professor Alice Agogino, Chair

Both inside corporations and in self-organized online communities, globally dis-
tributed groups of thousands of people now collaborate together on design projects
over the Internet. This changes the nature of product design, creating potential for
new levels of innovation and product development speed—for example, developing
vehicle designs in less than four months, or implementing new business models for
urban revitalization in less than a year. However, the plethora of information cre-
ated by these communities comes with a price: individuals cannot process all of it
in a reasonable time frame. Without a means of harnessing their collective efforts,
collaborative design communities can never reach their full potential as engines of de-
sign innovation and development. To address this problem, this dissertation applies
techniques from data science and machine learning to answer to the following central
question:

How can online design communities effectively use the design data they
generate to help manage their operations and improve their designs?

Specifically, it presents examples around particular design communities (OpenIDEO
and HCD Connect), and some of the challenges they face: How do you maintain a
sustainable and creative design community without centralized command? How do
designers locate the most relevant or creative inspirations out of thousands of ideas?
How do novice designers use the community to learn what design methods are appro-
priate for a given problem? How can you scaffold novice designers within a community
so that they can meaningfully contribute without requiring full expert knowledge? By
framing these real-world problems through the lens of Network Analysis, the Maxi-
mum Coverage Problem, and Recommender Systems, this dissertation demonstrates
how modern machine learning techniques can ameliorate the issues community mem-
bers face in practice.



From an computational perspective, it finds that the complexity of solving many
distributed design tasks necessitates not only looking at a design itself, but also how
it is situated in a human community; human relationships play as big a part in
predicting a design’s success as the content of the design itself. From a human per-
spective, data-assisted techniques can adapt to human behavior in ways that improve
the collaborative structure of large teams, the relevance of methods used for design
problems, and the number and variety of ideas that need to be explored by a designer.

The dissertation’s findings imply that customizing data science techniques to take
advantage of the socially embedded nature of design benefits designers and scientists
alike, not only by making design teams more effective but also by providing deeper
insight into how humans design the way they do. They point to a future where data-
driven design tools are not just a means to an end, but a critical part of how we
understand our own needs and creations; where science can be applied, not just to
the creation, but to the process of creation.



Acknowledgements

With thanks to those who blew the wind,
And those who sailed the ship,

We sailed it tight against the tide,
And I shall be forever in your debt.

- Kirk Jones

This poem reminds me of the varied roles people have played in bringing this thesis
to the light of day:

With thanks to those who blew the wind,

I would never have set sail, nor come as far as I have, without the unwavering support
of those who have pushed me along. My advisor, Alice, as brilliant a tactician as ever
I have met, taught me how to look beyond my research, to seize the trade winds when
luck turned my way and make the most of them. You were just the kind of mentor that
I needed. 1 am also grateful to my committee members: Sara, whose unparalleled
clarity of mind was the best compass for navigating the mists of the dissertation
that I could have hoped for; Bjorn, whose tenacity for exploration into uncharted,
intersecting fields inspires me to stay at the wheel; and Paul, whose willingness to
support all my last-minute requests was an absolute godsend. As my guide into the
waters of industrial research, Tolga Kurtoglu showed me how Design Theory folks
can make a place for ourselves in the applied world and opened my eyes to whole
fields of research. I am indebted to the Department of Defense’s National Defense
Science and Engineering Graduate (NDSEG) Fellowship program, which gave me the
financial resources necessary to complete my Ph.D., and also to the National Science
Foundation (through grant IIS-0856098) which supported me during my first two
years at Berkeley.

Much of what I know about effective research, I owe to Burak Kara, without
whose training I would not have succeeded at Berkeley. You have an uncanny way
of raising my spirits from unfathomable depths to soaring heights, and were it not
for your many kind words and seemingly endless faith in me, I would have turned
back long ago. Likewise with Susan Finger, who called me to the harbor in the first
place: your vision over the horizon is either lucky or grounded in wisdom I don’t yet
understand (thus far all signs point to the latter). Most of all, to my parents, Dennis
and Alyson Fuge, who have propelled me as far and as steadfastly as they were able
to. If I ever aspire to do anything great in the world, it is in effort that I may give as
great as I have received.



And those who sailed the ship,

All the wind in the world would mean little without the brave and merry band of
heroes that have stood by me all these years. First of all, to the many undergrad
researchers who have taken to the oars and sails in pursuit of my many research
directions: without you it would have been a slow moving journey indeed, and working
with you has been the highlight of my graduate career. In particular, I want to thank
Josh Stroud, Bud Peters, and Kevin Tee, whose blood, sweat, and tears lies embedded
in many of the coming pages.

And beneath deck, I was grateful to have had the company of unforgettable men
and women to share stories and commiserate with during stormy times: the members
of the Berkeley Institute of Design; the BEST Lab; Edwin, Boris, and the rest of the
ChemEs; Orianna and the EECS crew; and Jen Lawrence. Thank you for making
the journey better than the destination. To Mike C., Shy, and the rest of the crew at
Kitchen On Fire, thank you for showing me the light of a great hobby and keeping
me sane over the past few years—of all the skills I have learned during my Ph.D., I
have a sneaking suspicion that the ones you showed me will ultimately be the most
useful.

A large part of chapter 3 came out of collaborations with Nathan Maton at IDEO.
[ am grateful to him for sharing his time and efforts to make my research as relevant
to real-world problems as possible. In addition, thanks go to the many OpenIDEO
community members whose actions laid the groundwork for that chapter, as well as
the HCD Connect user community who I study in chapter 4.

Lastly, thanks go to Celeste, who was both the wind and the sail. At times, a
muse, guiding the bow of the ship. At others, a well-timed gust, carrying me out of
the doldrums. Even sometimes a ruthless storm, jettisoning the flotsam and jetsam
that weighed down my thoughts and writing so that I might emerge lighter, faster,
and with a clearer sense of direction. You have made me a better person.

I wouldn’t have reached this distant shore without the tireless help of all these
wonderful people, and the remain lines sum up what my own words cannot:

We sailed it tight against the tide,
And I shall be forever in your debt.

1



For my parents,
Dennis and Alyson Fuge,
in memory of Harold Fuge,
the original Fuge engineer.

1l



Contents

List of Figures

List of Tables

1 Introduction

1.1
1.2
1.3
1.4

The Rise of Online Design Communities . . . . ... ... ... ...
A Wealth of Design Data: Promise or Peril? . . . . .. .. ... ...
Thesis Overview . . . . . . . . . . . . .
How to Use This Dissertation . . . . . ... ... ... .. ......

2 Background

2.1
2.2
2.3

Design, Crowdsourcing, and Online Communities . . . . . ... ...
Design and Machine Learning . . . . . . .. .. ... ... ... ...
Crowds and Machine Learning . . . . . . . . ... ... ... .. ...

3 Managing Online Design Communities

3.1
3.2
3.3
3.4
3.5

Background on Network Analysis . . . . . ... ... ... ......
Analysis of OpenIDEO’s Design Network . . . . . .. ... ... ...
The Growth and Evolution of OpenIDEO . . . . . .. ... ... ..
Implications for Design Communities . . . . . . . ... .. ... ...
SUmMmMary . . . ...

4 Extracting Design Processes

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Background on Design Methods and Recommender Systems . . . . .
Overview of HCD Connect . . . . . . . . ... ... ... .......
Using Data to Reveal Design Processes . . . . . ... ... ... ...
Using Data to Group Design Methods . . . . . . . ... ... ... ..
Using Data to Recommend Design Methods . . . . .. . ... . ...
Implications for Design Processes . . . . . . .. ... ... ... ...
SUMMATY . . . o v o v e e e e

v

vi

viii

T W =

11
15

17
19
25
35
44
47



5 Evaluating Design Ideas

5.1 Related Work . . . . . . . .
5.2 Variety Model . . . . . . . . ..
5.3 Experimental Results . . . . . . ... ... ... ... ... .. ...
5.4 Implications for Evaluating Design Ideas . . . . . .. ... ... ...
5.5 SUMMATY . . . o v v e e e

6 Conclusion
6.1 Dissertation Summary .
6.2 Broader Implications . .
6.3 Future Research Avenues

Bibliography

81
82
86
91
95
99

101
101
103
104

107



1.1

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8

List of Figures

Overall dissertation structure . . . . . . .. ... ... ... ..... 4
Research fields used in the dissertation. . . . . . . . . ... ... ... 7
Dissertation within the taxonomy of Quinn and Bederson . . . . . . . 8
Role of present chapter in dissertation structure. . . . . . . .. . ... 17
Examples of theoretical networks. . . . . . . . .. ... .. ... ... 20
Examples of OpenIDEO networks. . . . . . .. ... ... ... .... 22
Global network properties of OpenIDEO. . . . . . .. ... ... ... 28
OpenIDEO complementary cumulative degree distributions. . . . . . 30
OpenlDEOQO assortativity. . . . . . . . . . .. ... ... 32
Distribution of k-Cliques in OpenIDEO. . . . . ... ... ... ... 33
k-Cliques in OpenIDEO. . . . . . ... .. .. ... ... ... .... 34
Effect of community managers on OpenlDEO properties. . . . . . .. 35
OpenIDEOQO’s global properties over time. . . . . . ... ... ..... 37
OpenIDEO’s community structure over time. . . . . . . . .. ... .. 39
OpenIDEO community snapshots over time. . . . . .. .. ... ... 40
OpenlIDEO user lifetimes. . . . . . ... .. ... ... ... ..... 41
OpenIDEO user actions over time. . . . . . ... .. ... ...... 42
OpenlIDEO user actions over time, sorted by activity. . . . . . . . .. 43
Comparing the actions of single- and multi-challenge users. . . . . . . 45
Role of present chapter in dissertation structure. . . . . . . . . . . .. 49
An example of an HCD Connect case study. . . . . . ... ... ... 55
Percent method usage by case. . . . . . . ... ... ... ... ... 59
HCD Connect method correlation matrix. . . . . ... ... .. ... 60
Normal probably plot of focus area t-statistics. . . . . . . . ... ... 64
Method usage grouped by organizational affiliation. . . . . . . . . .. 67
Differences in particular method usage between IDEO and non-IDEO

members. . ... e e 68
Method groups obtained using Spectral Clustering. . . . . . .. . .. 71

vi



4.9 Precision-Recall curve for method recommendation systems. . . . . . 75

4.10 Precision-Recall Area Under the Curve. . . . . . . . . ... ... ... 76
5.1 Role of present chapter in dissertation structure. . . . . . . . ... .. 81
5.2 Overview of creativity evaluation system. . . . . . . .. ... ... .. 87
5.3 How different types of metrics can be encoded as linear features. . . . 90
5.4 Covergence of Shah variety metric. . . . . ... ... ... ... ... 93
5.5 Covergence of Verhaegen variety metric. . . . . . . .. .. ... ... 94
5.6 The effect of submodular function choice on convergence behavior. . . 96

vil



1.1

3.1
3.2

4.1
4.2
4.3
4.4
4.5

5.1

List of Tables

Comparison of selected online design communities . . . . . . . . . ..

Summary of OpenIDEO Corpus Statistics . . . . . .. ... .. ...
Comparison of Assortativity Across Networks . . . . ... ... ...

Breakdown of the 809 cases by Focus Area. . . . . . ... ... ....
Examples of the 886 design method case studies from HCD Connect.
Highly correlated pairs of methods. . . . . . . ... ... ... ....
Highly correlated pairs of methods in cases used in all design phases.
Methods that varied significantly by different focus areas. . . . . . . .

Comparison of model accuracy. . . . . . .. ... ... ... .. ...

viil



Chapter 1

Introduction

On January 14th, 2013, the U.S. Department of Defense offered up an unlikely chal-
lenge to the American public: design the next generation Amphibious Combat Ve-
hicle—entirely over the internet. Over 200 teams and 1,000 participants, many of
whom had never met, signed up and competed together for a chance at a $1,000,000
prize. When the competition closed, three months later on April 22nd, there were
several complete chassis designs that fully satisfied all of the Marine Corps’ stringent
requirements.

Now, to be fair, these teams had a bit of help: DARPA provided advanced, web-
based Computer-Aided Design (CAD) tools [28] and a multi-university-developed
modeling language called META [75, 66] to help teams test different designs and
collaborate in real time. However, the designs themselves were never the end goal;
DARPA wanted to prove a point that freelance crowds, given the right tools, could
produce viable designs at a fraction of the time and cost that it typically takes a
defense contractor.

1.1 The Rise of Online Design Communities

DARPA is not the only organization to invest in these online communities. Others
(including those in table 1.1) have used online communities to design solutions that
address large-scale, pandemic problems, such as climate change, poverty, and public
health—complex problems that benefit from a design process that can scale to that
scope. Starting around 2002, ThinkCycle, one of the earliest product-focused, crowd-
design platforms by Sawhney et al. [114] at MIT, appropriated web technologies
such as messages boards to bring together designers interested in creating sustainable
technologies. In the decade that followed, thanks to enhanced software, availability
of rapid manufacturing, and the burgeoning “Maker Movement,” society has seen
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Name Goal Local/Global ~ Nowvice/Expert
Design For America  Social Impact Local Novice
OpenIDEO  Social Impact Global Mixed
VehicleForge Defense Global Expert
Instructables Education Global Novice
99Designs  Graphic Design Global Expert
Local Motors Automotive Mixed Expert
Challenge.gov Policy National Mixed
Marblar Technology Global Mixed

Table 1.1: Present day online design communities operate across a broad range of spec-
trums: from hyper-local to completely global; from physical products to policy; from
novices to experts

an explosion of online design communities in all shapes and sizes (e.g., Table 1.1).
They now range across a spectrum of industries, expanding the breadth of existing
companies as well as defining new non-profit services for social impact.

On one end of the spectrum, Marblar first partners with existing patent-holders,
such as NASA and the University of Pennsylvania. They then encourage their online
design community to create new product ideas using the provided patents. Once Mar-
blar selects the most promising ideas, they pass the ideas over to Samsung, who gives
members of the online design community a portion of the profits once Samsung takes
the product to market. In this case, both patent holders and product manufacturers
can use online design communities to expand existing offerings or capabilities.

On the other end of the spectrum, OpenIDEO partners with sponsors (typically
non-profits, such as USAID or Amnesty International) to post challenges around social
problems (e.g., reducing malnutrition or improving maternal health). Participants in
their online design community then share collected user stories, prior work, and other
inspirations, to come up with thousands of solutions that address the challenge. These
solutions range from products to services to business models, and even to government-
level policy agendas. In many cases, OpenlDEOQO participants, with or without the help
of the sponsors, have successfully taken these solutions into the real-world, creating
new businesses, mobile applications, or community programs.

So why would these companies and organizations chose to invest in online design
communities? Proponents cite several reasons:

Cost: hosting a temporary online design challenge with a thousand participants costs
significantly less than paying for the same number of man-hours within a com-

pany.

Time: thousands of people can parallel process ideas, reducing lead-time compared
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to smaller teams.

Diversity: the internet can reach a more diverse set of people across a variety of
dimensions—cultures, locations, ages, and industries—widening the potential
variety of solutions produced.

Scale: with appropriate software infrastructure, companies can tackle projects much
larger in scope by using online communities that scale to sizes unheard of in
traditional corporate design teams.

Online design communities are not always the answer for certain types of indus-
tries. For example, those with tightly controlled intellectual property or regulatory
environments (e.g., medical devices), or those where highly specialized engineering
and R&D departments need to be efficiently integrated (e.g., aircraft jet engine de-
velopment). However, when appropriate, these communities can provide a wealth of
useful designs beyond what any individual or company could muster on their own.
Will these online design communities eventually become product development behe-
moths, supplanting corporations like GE or Apple? Probably not. However, they are
changing how companies view the role of crowds in product development: companies
like Proctor and Gamble, General Electric, IDEO, and Samsung have partnered with
online design communities to maximize the value of new ideas, (e.g., Innocentive or
P&G Connect+Develop) as well as companies’ existing products and services.

1.2 A Wealth of Design Data: Promise or Peril?

An online design community’s strength lies in its numbers: thousands of partici-
pants can together create thousands of ideas that build upon one another. As with
Innovation Tournaments [129], these communities might not generate better ideas
than traditional design teams, on average, but the higher number and variance allows
members to occasionally generate truly exceptional ideas.

However, their strength is also their Achilles” heel: a single member no longer
has the bandwidth to collaborate with or build upon the thousands of ideas that the
community generates. Moreover, without efficient ways to search through or filter the
community, members cannot even make smart choices about what subset of ideas they
should focus on. Essentially, they are searching for a needle in a haystack, slowing
the community’s potential to develop more innovative designs. This leads to the key
question addressed in this dissertation:

How can online design communities effectively use the design data they
generate to help manage their operations and improve their designs?
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Chapter 35 .
Communities

Chapter 4:
Processes

Chapter 5:
ldeas

Figure 1.1: The structure of this dissertation breaks down the role of design community
data into nested parts: at the broadest level, it studies design communities, how they
form, and what makes them effective; within communities, it studies how individuals and
teams use and learn design processes; within processes, it studies how particular ideas are
formed and evaluated.

1.3 Thesis Overview

To address the question of how to support individuals in locating appropriate design
data, the dissertation focuses on two particular real-world communities, OpenIDEO
and HCD Connect, and breaks down the issues they face into three units of analysis,
moving from largest to smallest in scale (Fig. 1.1): Community-level, Process-level,
and Idea-level. For each of those units, the chapters identify the problems that
OpenIDEO and HCD Connect face when the volume of available design data goes
beyond what participants can handle themselves. They then present algorithms de-
signed to overcome those problems, and provide some insight into how to use that
volume of data to benefit the community. Moreover, they demonstrate how different
data analysis techniques can be taken beyond analyzing existing designs, to helping
individuals generate new ones. Specifically, each chapter covers the following:

Chapter 2: Background reviews prior literature from a variety of relevant areas,
including: Crowdsourcing, Machine Learning, Information Retrieval, Network
Analysis, Design Theory, and Creativity. It places the subsequent chapters in
the context of previous research and demonstrates the gaps in knowledge that
this dissertation fills.
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Chapter 3: Design Communities studies the structure and operation of design
communities themselves, specifically: what keeps members engaged in a com-
munity, how do these communities grow over time, and what incentives or inter-
ventions enable better collaboration for idea generation? It covers OpenIDEO,
an online design community that addresses large social issues such as malnutri-
tion or maternal health. Specifically, it applies tools from Network Analysis and
Graph Theory to study OpenIDEQ’s evolution over time and how that affected
attributes such as their idea generation potential or user engagement.

Chapter 4: Design Processes studies the design processes that individuals use as
they participate within a community, specifically: how does one identify the
general design process used by community members, without requiring them
to explicitly encode their design process? It shifts focus to a different design
community, HCD Connect, which operates a repository of design case studies
for design process communication and education. The problem facing this com-
munity is that the number and complexity of the stored design cases exceeds
the amount that an individual member can reasonably read, limiting its useful-
ness at sharing knowledge. The chapter demonstrates how techniques such as
Spectral Clustering, False Discovery Rate Control algorithms, and Collaborative
Filtering can alleviate many of those concerns.

Chapter 5: Design Ideas studies how to evaluate the ideas that design communi-
ties produce, specifically: how does one evaluate the creativity in a way that
scales to tens of thousands of ideas? The chapter casts this problem as a type of
non-linear function approximation task using a connection to a class of mathe-
matical objects called submodular functions.

1.4 How to Use This Dissertation

This dissertation is structured as a story around design communities and the prob-
lems that they face. If reading the entire dissertation, one should read each chapter
sequentially. However, certain subsets of the dissertation may interest particular au-
diences:

Computer Scientists looking to apply their algorithms to new domains. Sec-
tions 2.1 and 2.2 present relevant background information on applying crowdsourcing
and machine learning to design domains, respectively. Chapters 3 and 4 provide actual
design datasets for Network Analysis and Recommender Systems, respectively, which
could serve as possible benchmarks. Researchers working in Active Learning would be
particularly interested in chapter 5, as it deals with a situation where human-labeled



Chapter 1. Introduction

data is expensive and highlights many future research avenues between the Design
and Active Learning communities.

Those looking to understand how to manage or influence design communities.
Chapter 3 deals specifically with managing online communities, particularly from
the viewpoint of Social Network Analysis. The material in 3.1 and 2.1 covers prior
work on Network Analysis and Crowdsourcing, respectively—essential areas when
managing large online design communities.

Design Educators looking to incorporate data-driven strategies in their teaching.
Chapter 4 discusses how to extract design patterns from human behavior for educa-
tional purposes. This includes a description of a design method case study repository,
along with a link! to download any code you would need to visualize how different
design methods from IDEO’s HCD Toolkit relate to one another. For evaluating
design creativity in a classroom setting with many submissions, you would also find
chapter 5 and the accompanying code useful, as it specifically addresses how to scale
up creativity evaluation with limited expert input.

Designers looking to increase their toolkit and creativity by understanding crowd-
sourcing and algorithms that might help them. Chapter 5 addresses tools for
evaluating new ideas. Sections 2.1 and 5.1.1 provide relevant background material on
crowdsourcing and creativity, respectively, which both play a role in idea generation
within online design communities.

Researchers looking to reproduce or build off the results of the dissertation.
Each chapter has links to download any datasets or experiment code, or you can go
to the dissertation companion site to download the set.? Everything necessary to
reproduce the experimental results is open source or otherwise freely available.

lhttp://www.markfuge . com/hcdconnect
Zhttp://www.markfuge.com/dissertation
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Chapter 2

Background

This
Dissertation

Design

Machine
Learning

Crowds and
Communities

Figure 2.1: This chapter reviews background work in three areas: Design, Crowds and
Communities, and Machine Learning. The dissertation fills a gap of knowledge at the

intersection of these areas.

Before this dissertation can dive into how to help online design communities deal
with the data they generate, it first needs to delineate how it fits into what past
research has accomplished. Each of the remaining chapters covers more specific re-
lated work relevant to itself (such as Network Analysis, Recommender Systems, or
Creativity), but this chapter shows which major research areas this dissertation sits
between, to provide some context and demonstrate related fields that might bene-
fit from the remainder of the dissertation. This chapter breaks relevant background

7
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down into three broad categories: Design, Crowdsourcing and Communities, and Ma-
chine Learning. Since each of those areas is massive, in and of itself, this chapter will
cover their intersecting pieces (see Fig. 2.1), and show how this dissertation fills a gap
of knowledge at the intersection of all three areas.

2.1 Design, Crowdsourcing, and Online Communities

While this dissertation covers online design communities focused on product and
service design, entire fields of research have evolved around utilizing crowds for other
forms of productive and creative work (e.g., the Human Computation Conference),
as well as in methods by which computers can support them (e.g., the Computer
Supported Collaborative Work conference). Quinn and Bederson [102] provide a
taxonomy (adapted in Fig. 2.2) that categorizes some of the different ways that groups
of people can collectively create value. They dissect crowd-based research into several
overlapping areas, aggregating several definitions from a variety of past literature:

Human
Computation

Crowd- Social
sourcing Computing

This
Dissertation

Collective
Data Mining Intelligence

Figure 2.2: Within the taxonomy of Quinn and Bederson [102], this dissertation applies
research from across data mining, crowdsourcing, and social computing, depending on the
specific purpose of a design community.
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Collective Intelligence: “groups of individuals doing things collectively that seem
intelligent.”

Human Computation: “a paradigm for utilizing human processing power to solve
problems that computers cannot yet solve.”

Crowdsourcing: “the act of taking a job traditionally performed by a designated
agent (usually an employee) and outsourcing it to an undefined, generally large
group of people in the form of an open call.”

Social Computing: “applications and services that facilitate collective action and
social interaction online with rich exchange of multimedia information and evo-
lution of aggregate knowledge.”

Data Mining: “the application of specific algorithms for extracting patterns from
data.”

One interesting thing to note about Fig. 2.2 is that Quinn and Bederson posit
no overlap between Data Mining and Crowdsourcing, Social Computing, or Human
Computation. They view the purpose of data mining as philosophically separate since
data mining does not refer to the collection of data, only the subsequent processing
(102, pg. 3]. Within their taxonomy, this dissertation bridges across data mining,
crowdsourcing, and social computing, depending on the specific design community
and the purpose of a particular algorithm. In chapter 3, it focuses on the intersection
of social computing and crowdsourcing within design communities, while chapter 4
applies concepts primarily from data mining to extract patterns in design method use,
and chapter 5 uses both crowdsourcing and data mining toward creativity evaluation.

The rest of this section reviews prior research in two sub-areas particularly relevant
to this dissertation: crowds for specific creative tasks and crowds as members of a
community.

2.1.1 Crowds for Specific Creative Tasks

Many of the typical examples of crowdsourcing systems focus on fairly analytical
(though computationally complex) tasks: labeling images, translating text from one
language to another, extracting information from scanned forms. In contrast, design is
a highly creative and generative activity. This section will review past crowdsourcing
efforts focused on other generative tasks such as writing and creating visualizations
that are more informative.

Writing is a skill that requires both deep analysis as well as delicate synthesis.
Bernstein et al. created a crowdsourcing system called Soylent, which helps crowd
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workers take a piece of writing and edit or re-write the piece to a desired length [10].
They scaffold workers by splitting a complex task (writing correctly and concisely)
into a series of smaller tasks (finding passages, fixing those passages, and verifying
that the edits are correct) that are distributed across many people. In doing so, they
are able to avoid many pitfalls of using crowd workers, such as lazy or inaccurate
workers and high variance in work quality. In the context of composing customer
reviews, Dow et al. [31] demonstrate that the quality of crowd work can be improved
by a “sheparding” process, wherein the original worker (self-assessment) or other
members of the community (external assessment) could provide feedback, with the
possibility of reviewing and editing the review afterwards. They find that in both
the self-assessment and external assessment cases, the quality of work improves, with
external assessments leading to a greater amount of revision. In this dissertation,
chapter 3 describes how OpenIDEQ also breaks their design process into stages to
segment an otherwise difficult design activity, and uses a formal feedback process to
help community members improve their designs.

Like with writing, composing accurate visualizations is a difficult task. Heer and
Bostock [56] use crowd workers to evaluate graphical perception. They replicate a
series of seminal experiments in graphical perception by using members of Amazon’s
Mechanical Turk platform to rate various diagrams. For example, they compare
bubble charts with tree maps by asking workers to estimate relative areas using
each diagram and record which diagram leads to more accurate estimates. Their
work is similar to that of Horton et al. [62], who show that Amazon’s platform can
reliably replicate several economic and psychological experiments that were previously
observed during in-person lab studies. In the area of visual design, Xu et al. [133]
demonstrate that crowds can generate more structured crowd feedback around a
design (e.g., specific feedback on visual elements, or asking which parts of a design
one notices first) that is more useful than simply whether they “like” or “dislike” a
design. Chapter 5 describes how these kinds of approaches allow distributed experts
to be combined to assess design creativity.

2.1.2 Crowds as Members of a Community

In many of the examples above, crowd members worked largely independently; when
they did receive external feedback, it was anonymous and without a means of further
collaboration. However, design is inherently a team sport. Most crowd-based design
takes place in a more social and collaborative setting, where one is not only concerned
about the work, but also the social interactions among individuals.

Dow and Settles [32] study music collaborations at an event called “February Al-
bum Writing Month” (FAWM) . In FAWM, songwriters from around the world can
come together in the month of February to produce “14 songs in 28 days.” Song-

10
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writers can post song snippets, comment on each others” music, and even set up live
collaborations over the internet with each other to try out different ideas and co-
compose songs. They also [116] create a path-based logistic regression model that
can predict which particular artists might collaborate together, using factors such as
how well-connected an artist is, their message history, and the music genre. They
found that communication pathways within the community and complementary skill
sets, such as different instruments, were important predictors of future collaboration.

Designing a product or service often requires a special set of skills, and thus the
people who participate in the community can be particularly important. In certain
instances, the desired participants may be spatially localized: for locating people
with computer science expertise, Heirmerl et al. [57] retrofitted a vending machine
with a computer interface for grading computer science exams, and placed it in the
computer science building at U.C. Berkeley. By placing the interface where content
experts were more populous, they avoided problems associated with online platforms,
such as Mechanical Turk, where the vast number of members might not be qualified
for the task.

Once an operating community is established, the mechanism for transferring
knowledge between members must still be worked out. Within the crowdfunding
domain, Hui et al. [63] study how more experienced community members provide
mentorship to less experienced members to help them successfully run Kickstarter
campaigns. They find that community members assist at various points through
the creation and execution of the fund-raising campaign: from providing example
campaign materials to publicizing the campaign within their social network to pro-
viding manufacturing support or expertise. A vast majority of this communication
is done through separate channels (e.g., Skype, Email), and Hui et al. call for better
integrated support systems for promoting this kind of mentorship.

In this dissertation, chapter 3 tackles how OpenIDEO establishes their online com-
munity, while chapter 4 introduces data-driven mechanisms for supporting knowledge
sharing among community members.

2.2 Design and Machine Learning

Design, as a field, stretches across a wide variety of domains, and Finger and Dixon
provide an early review of the beginnings of the field with respect to Mechanical
Engineering [36, 37]. Machine Learning is likewise diverse, and those looking for a
thorough introduction should see the comprehensive reviews in textbooks by Murphy
[86] and Bishop [11]. This section focuses on their intersection: machine learning
approaches to the design of new products and services, since that is the intersection
that relates to this dissertation. To review the appropriate literature, it will first
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review some basic concepts from machine learning (such as classification, regression,
clustering, etc.) to provide some common context and background before diving into
the major machine learning approaches from two fields relevant to this dissertation:
Mechanical Engineering Design and Computer Graphics.

2.2.1 Overview of Machine Learning Strategies and How They
Apply to Design Problems

In general, most researchers divide machine learning problems into one of two types:
supervised or unsupervised. Supervised learning refers to a problem where there
are pre-known labels for the data and the algorithm’s task is to correctly predict the
label for a new data point. It is typically broken down into two types: classifica-
tion and regression. Classification would include problems with a discrete number of
options, like email spam filtering where an incoming email is either spam (e.g., an
advertisement) or ham (e.g., an email from your friend). Regression would include
problems with a continuous scale like temperature prediction where the goal is to pre-
dict what the temperature will be next Tuesday. In either classification or regression,
there is a correct answer provided to the algorithm, and its goal is to maximize its
correctness on future data. Applied to design problems, supervised learning can be
used for scalable design creativity evaluation (Chapter 5) and recommending design
methods (Section 4.5).

In contrast, in unsupervised learning the goal is not to predict a particular
label, but rather to group or cluster the data into categories. The purpose of these
groups is to discover new knowledge by locating categorizations within the data that
might have been unknown previously. For example, Walmart might use data about
which items were purchased together to segment its customers or find complementary
product lines. Applied to design problems, section 4.5 demonstrates how unsupervised
learning can be used to group related design methods (Section 4.4).

Given a type of problem (i.e., supervised vs unsupervised), there are two broad
classes of approaches that can solve that problem: generative or discriminative mod-
els. Typically, generative models are used for unsupervised problems, whereas either
generative or discriminative models would be used for supervised problems. Genera-
tive models describe the joint probability between the object of interest (y) and the
data (x) (i.e., p(y,z) = p(y|z) - p(x)), while discriminative models only describe
the conditional probability between the object and the data (i.e., p(y|z)).

In this dissertation, chapter 4 uses unsupervised generative models for cluster-
ing design methods and supervised generative and discriminative models for method
recommendation. Chapter 5 demonstrates how supervised generative models can
approximate design creativity evaluation.

12
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2.2.2 Machine Learning within Mechanical Engineering Design

Within Mechanical Engineering Design, algorithms that help generate new products
and services typically fall under the umbrella of “Computational Design Synthesis.”
They decompose into three main approaches: agent-based systems, grammar-based
systems, and evolutionary systems. Representative work from agent-based design
systems is the work of Campbell et al. [19] which gives hundreds of different software
agents different tasks and constraints, and then proposes a two-stage iteration proce-
dure whereby some of the agents create a design and then passes it off to a different
set of agents that modify the design and passes that design on, and so forth. For
example, they present an electro-mechanical design problem in which a set of agents
need to design different configurations of a bathroom scale. One type of agent is
responsible for interpreting the user requirements and selecting a possible set of com-
ponents. These components are then passed to a different type of agent who selects
and sizes components, based on costs or other constraints. Simulating this back and
forth between many agents results in a set of usable designs.

In contrast to constantly simulating and tweaking designs using agents, grammar-
based approaches attempt to define a design grammar, similarly to the way the
English language uses a grammar. For example, English is made up of certain phrases,
such as noun phrases (e.g., “The cat”), and verb phrases (e.g., “slept on the bed”),
and if you know that noun phrases always come before verb phrases, then you can
correctly generate an English language sentence by randomly selecting phrases and
putting them in the correct position (e.g., “The cat slept on the bed”). This idea
extends to design languages as well: if you can define a single set of relationships
and phrases that describes a design, you can generate as many valid designs as you
want by simply selecting phrases from that language. For example, McCormack
et al. devised a shape grammar (relations between geometric objects) that emulated
the style of the Chevy Buick automobile [85]. With this grammar, they could simulate
different kinds of cars that had the same design style as the Chevy Buick: small SUVs,
sports cars, etc. Many of these grammar systems derive from earlier work in pattern
languages from architecture [3], which assumes that a design is structured in terms
of formal patterns that one can derive and then use to reproduce new designs. These
grammars can be deterministic (certain rules are always followed), or stochastic (rules
follow others with certain probabilities), such as in Campbell et al. [20] where it is
necessary to traverse a tree of possible design rules and learn which rules are more
likely to follow each other.

Lastly, evolutionary algorithms have been adapted for design, where initial
designs are mutated and bred together in order to eventually produce better designs.
The way evolutionary algorithms work, is by first defining the “DNA” of a design
(e.g., a vector of numbers that controls the shape of a car profile), and then that
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DNA is changed slightly (e.g., adding a few inches to the roof of the car), and bred
with a different design, producing many new designs that share different copies of their
parent’s DNA. New designs are then evaluated by some measure of fitness (e.g., their
aerodynamic drag, or how many people said they liked it), and only the top performing
designs are allowed to reproduce in the next round. Evolutionary algorithms are a
popular choice when a human has to make a decision regarding which design to choose.
In these cases, a human selects the designs that get bred, and slowly, over time,
the designs shift toward what the human likes. This approach is called Interactive
Genetic Algorithms (IGA), and you can see examples of it in the work of Cho [25]
and Poirson [100]. Gu et al. instead train an Artificial Neural Network using some
human feedback, and then use that network as a means to evaluate possible designs

[55].

2.2.3 Machine Learning within Computer Graphics

Within Computer Science, computer graphics and interface design are the two rele-
vant areas that use machine learning to aid in design tasks most familiar to Mechan-
ical Product Design—chiefly computational geometry. The ability to quickly model
physical objects using computational geometry has become increasingly important as
direct digital manufacturing equipment (3D printers) has reached mass-market ap-
peal. As in Mechanical Engineering, shape grammars are one popular solution for
geometries that can be procedurally generated. For example, Talton et al. [124] de-
fine a grammar-based modeling technique based on a reversible Metropolis-Hastings
sampling technique, essentially allowing them to sample different designs from nor-
mally incompatible grammars. Teboul et al. [128] demonstrate how shape grammars
can be inferred by example using Reinforcement Learning, while Talton et al. [125]
demonstrate grammar induction using Markov Chain Monte Carlo (MCMC). They
show examples of generating building facade and architecture, respectively. In the
domain of webpage design, Kumar et al. [72] demonstrate that by inferring design
grammars over web page designs, you can determine common patterns that novice
designers can use to create new webpages or search for creative inspiration.

Aside from grammars, researchers have also used properties of the geometry itself
to help explore and generate new designs. Chaudhuri et al. [24] compute shape his-
tograms and density functions for different shapes and compare them to one another.
By calculating which portions of the shape are similar and different, they can segment
different parts of a shape and mix-and-match parts across objects. For example, given
different airplane designs, they are able to take the wings of a fighter jet, and place
it on the body of a jumbo jet, without having the user manually edit the geometry.
Similarly, Orbay et al. [94] use a spectral decomposition of a geometry to determine
“high-frequency,” or rapidly changing geometry, from “low-frequency” geometry. This
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allows them to isolate the basic shape of an object from its detailed features, per-
mitting recombination and brand identification; for example, they demonstrate that
users identify a Ford mustang through its front bumper, rather than other features.

The above applications from both Mechanical Design and Computer Graphics are
similar to this dissertation in that all of them use large collections of user-submitted
data as a basis to ultimately help novice designers create better designs. Specifically,
some of the spectral decomposition techniques described above will be revisited in
chapter 4 for design method clustering.

2.3 Crowds and Machine Learning

Researchers have explored various ways of using both crowds of humans and machines
to complement each others’ strengths, reducing human effort and cost as well as
improving algorithm performance. This dissertation covers that same fundamental
goal when applying this intersection to design communities.

Quinn et al. [103] proposed the CrowdFlow computation model, wherein a user can
choose with what speed and level of accuracy they want a task performed. If a user
wants high accuracy, then their system relies more on additional human verification,
but if they want fast speed, then it lets automated machine learning algorithms do
the bulk of the work (even if their accuracy is less). This reduces cost and leverages
the comparative strengths of the human and computer.

In addition to using humans alongside of a machine learning algorithm, researchers
have used humans inside learning algorithms. In Sorokin et al. [121] machines can
elect to ask a human to label a certain picture for them, thus receiving a new piece
of labeled data. This gives the algorithm the option of asking for help on difficult
cases. Embedding humans even further, Gomes et al. [50] uses the crowd to classify
images as similar or dissimilar to one another (e.g., these images are both bags, or
these images are dissimilar because this was taken in a forest and this other one inside
a building). They then compare the human evaluations with a generative statistical
model to predict clusters of objects, and are able to find hierarchical classifications
within the images. Likewise, Tamuz et al. [127] uses pairwise similarity triplets (e.g.,
is object A more similar to B or C?7) to construct a similarity matrix, or “Crowd
Kernel” that can then be used by any number of machine learning classifiers, such as
a Support Vector Machine.

In this dissertation, chapter 5 returns to the trade-offs between human and ma-
chine computation when translating preferences into design creativity ratings.

The following chapter starts at the community scale, with an extensive study of
OpenIDEO. It uncovers what a design community is, how it forms, and what its
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structure means for generating ideas.
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Figure 3.1: This chapter addresses the role of data at the design communities level: how
communities form, and what makes them effective.

This chapter studies the structure and operation of design communities them-
selves, specifically: what keeps members engaged in a community, how do these
communities grow over time, and what incentives or interventions enable better col-

Portions of this chapter appear previously in [46, 42]
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laboration for idea generation? As a particular example, it focuses on OpenIDEQO,
an online design community that addresses large social issues such as malnutrition
or maternal health by using collaborative design and user research. Specifically, it
demonstrates how to apply tools from the field of Network Analysis and Graph The-
ory to study the origins of OpenIDEO as well as attributes such as its idea generation
potential or user engagement.

In relation to other collaborative design networks, OpenIDEO differs in the follow-
ing ways: it focuses on applying human-centered design to both product and service
design; the users come from a variety of design backgrounds, including industrial de-
sign, engineering, business, and arts; and the challenges focus on large-scale social
problems, rather than specific technical challenges seen in engineering-centric compe-
titions (7.e., DARPA’s FANG challenges). This chapter uses OpenIDEO from among
other possible online design collaboration platforms (e.g., Napkin Labs, frogMob, Ve-
hicleForge, etc.) due to the breadth of project types, the large user community, and
availability of collaboration meta-data (such as explicit links between concept ideas).
The review by Lakhani et al. [74] contains additional information about OpenIDEQO’s
governance, such as how it runs the challenges, the type of design challenges it hosts,
how it operates within IDEQO, and the type of participants using the platform.

The first half of the chapter conducts the largest network analysis of an on-
line design community in the literature to date, and several findings emerge. First,
OpenIDEOQO’s social structure differs markedly from other online social communities
in a key factor: it has negative assortativity (i.e., the tendency for the most collab-
orative people to work with the least collaborative people, called disassortativity).
This unexpected behavior leads to properties that benefit idea generation, such as
high network efficiency and low clustering. The chapter identifies possible interven-
tions that might be at cause for this, and makes some recommendations for design
managers.

The second half of the chapter views OpenlDEO as a dynamic network, and fo-
cuses on how its community structure and communication within the larger network
evolve over time. This provides insight into how users participate, and what role their
actions play in developing OpenIDEQ’s network properties. The chapter finds that
a persistent core of users in OpenIDEO has developed over time, and that their dis-
assortative connections to transient members within the network seem to be driving
the observed network. The vast majority of users actively participate after joining
the site, but their participation drops significantly on subsequent challenges, particu-
larly when those challenges do not overlap in time (i.e., when there are gaps between
challenges). An analysis of usage patterns across users shows that commenting be-
havior differentiates the high-activity users from the low-activity users; this suggests
implementing commenting incentive strategies to increase engagement.
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3.1 Background on Network Analysis

Researchers from many disciplines, from sociology to computer science, to business,
have studied online communities, using both qualitative and quantitative research
techniques. They apply qualitative techniques when the specific behaviors by a
small number of particular individuals are the topic of the research; for example,
trying to understand the collaborative strategies or background of users who win
the OpenIDEO challenges. To determine community-wide behavior in groups such
as OpenIDEOQ, researchers prefer quantitative techniques because they can be cost-
effectively used on larger networks and provide a complementary picture of the com-
munity structure compared to that gained by qualitative studies. These quantitative
methods are typically based on graph theory and are referred to as Network Anal-
ysis. This section first reviews the basics of Network Analysis, and then breaks down
prior studies into two types: Theoretical (i.e., mathematical) and Empirical. These
aspects provide the background necessary to discuss the main results of this chapter,
which center around the network properties of OpenIDEO and its effects on ideation.

3.1.1 Basics of Network Analysis

Network Analysis is a class of mathematical techniques that studies particular
types of complex phenomena. Its primary assumption is that a phenomenon can
be reasonably modeled as a mathematical graph consisting of nodes (or wertices)
connected to each other by links (or edges). For example, in a social network such as
Facebook, a node might be a person, a link might be the strength of a relationship, and
the phenomenon of interest might be how a viral video propagates among people over
time. By representing phenomena as graphs, network analysis can adapt measures
from graph theory in order to explain or predict certain behaviors, ranging from
disease transmission to scientific co-authorship to protein interactions. Researchers
have used Network Analysis for decades, and the textbooks by Newman [90] and
Scott [115] provide an exhaustive review.

The most critical assumption in any network analysis study comes from how the
network nodes and links are defined. However, once the nodes and links have been
defined, one can compare several graph properties, both on a global (whole network)
level, and at a local (node-centric) level that provide insight into the behavior of
the network. For example, graph properties can be used to predict qualities like the
social power of individuals, weak-points in information flow within networks, or the
likelihood of co-authorship between researchers.

The below alphabetical list defines some commonly used terms from Network
Analysis that appear in later explanations:

Assortativity (also called assortative mizing or homophily) is the propensity for
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(a) Cycle Graph (b) Star Graph

Figure 3.2: Directed links are represented by a thicker segment indicating the direction
(e.g., in (a) 2 points to 3, and 3 points to 4).

nodes in a network to create links with similar nodes, and to avoid creating
links with dissimilar nodes. For example, engineers might be more likely to be
friends with other engineers than with dentists, and vice versa.

Degree assortativity, means that nodes with high degree (those who communi-
cate with many people) are more likely to communicate with other nodes with
high degree, instead of nodes with low degree (those who communicate infre-
quently). Social networks are known for being positively degree assortative [90,
Sec. 7.13].

Centralization refers to how well the graph is centered around a single focal point on
a scale from zero to one. High centralization would imply a deeply hierarchical
structure, such as a star graph (e.g., Fig 3.2b), while low centralization would
imply that all nodes are equally central, such as a cycle graph (e.g., Fig 3.2a).

Clustering Coefficient is a measure of how tightly connected nodes are in a graph,
specifically measuring the ratio of number of triangles between a node and any
two neighbors and the number of possible triangles (e.g., how many of your
friends are also friends with each other) [90]. Node-wise clustering coefficients
can be averaged to characterize how clustered a graph is as a whole.

Connected Component is a subset of the nodes in a graph that can be reached by
following links between them. For example, if two nodes are connected to each
other, but not to any other nodes, then they form their own connected compo-
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nent. Real-world networks typically have one large connected component which
contains most of the nodes (e.g., the center component of Fig. 3.3b contains
around 95% of the nodes), followed by some smaller components with only a
few nodes each (e.g., the single nodes on the outside of Fig. 3.3b) [90].

Degree of a node measures the number of incoming and outgoing links to that node.
For example, in Fig. 3.2(b), node one has a degree of four because it connects
to four other nodes.

Degree Distribution refers to the fact that different nodes have different degrees.
The distribution of these degrees follows different patterns depending on the
type of network structure. In many real-world networks, this distribution is
power-law distributed (or scale-free), which means that it exhibits a rel-
atively linear plot when plotted on a log-log scale. This corresponds to many
nodes having a few links, and only a few nodes having many links.

Density is the ratio between the number of links that exist between nodes and the
maximum number of possible links that could exist (i.e., a complete graph). In
large real-world networks, the density is typically low [90].

Diameter is the length of the shortest path between the two farthest nodes in the
graph. It provides a sense of how spread out the graph is and provides one
measure of the resistance to the flow of information.

Efficiency measures how easily and quickly information is transferred across a net-
work. It is inversely related to the average shortest path length required to
go between all pairs of nodes on the graph; if efficiency is high, all nodes are
within a few links of one another, and if efficiency is zero then no node can
communicate with any other node (i.e., there are no links between nodes).

k-Clique is a set of k nodes that are all connected to one another (i.e., they form a
complete sub-graph). For example, if A knows B and C, and B also knows C,
then A, B, and C are a 3-clique.

Link (also called an edge) is a connection between two nodes on the graph. It can
have a direction as well as a weight (e.g., if person A sent person B ten emails,
that would correspond to a link directed from A to B with weight ten).

Size is the total number of nodes in a graph.
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Figure 3.3:  (a) is a concept graph, where red nodes represent inspirations and the
green nodes represent concepts. (b) is a social graph, where redder nodes indicate more
comments are received than given, whereas bluer indicates the opposite. In both cases,
the size of the nodes represent the degree (number of incoming and outgoing links) of
the node.
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3.1.2 Theoretical Network Models

While there has been limited empirical work on actual design networks, prior research
has proposed different theoretical models for how design networks might operate. The
vast majority of available theoretical models for collaborative design networks are
either: 1) simulation studies using agents with predefined collaboration rules, or 2)
studies that compare common mathematical models, such as Preferential Attachment
[90, Ch. 14.1] or Design Structure Matrices [35] to real-world data.

Agent-based simulations typically define a computational model of a product, and
then create a series of software agents who can choose what portion of the product
to work on. For example, Panchal [97] simulates a product architecture (he does
not mention an actual product) that has 9 different modules, each of which depends
on a subset of the other modules. This simulation then tracks the product and
communication between the agents, building a simulated collaboration network that
can then be analyzed for structural properties [136, 97, 76]. The typical applications
for this line of work are in identifying potential strategies for managing complex
system design, under the assumption that the agents behave similarly to real people.

In contrast, other studies attempt to take real network data and fit mathematical
network models to that data [117]. The key assumption behind that line of work
is that if actual networks obey certain properties, such as power-law distributions,
one should be able to match a power-law distributed mathematical model to that
data. Upon doing so, insights are often gained about why the network does or does
not conform to theoretical expectations. For theory behind time-varying theoretical
models, Csermely et al. [27] and Castellano et al. [23] provide good reviews.

3.1.3 Empirical Network Studies

Within collaborative design networks, prior research by Le et al. [77] studies the net-
work structure of both Open Source Software and Hardware networks. In particular,
they model the RepRap Fused Deposition Modeling (FDM) project as a network of
hardware components. They differ from this chapter in that they only address tech-
nological networks, while this chapter also address the social evolution of the design
community. Panchal considers social factors [97, 98], but bases the findings primarily
on computer-simulation studies addressed above in section 3.1.2. In contrast, this dis-
sertation provides empirical evidence from a large, real-world design community. As
a complementary qualitative study for OpenIDEO, Gordon et al. [53] demonstrates
how ideas that leverage Human-Centered Design techniques have a higher chance of
winning the design challenges.

In terms of how a network’s structure affects idea generation, both Mason
et al. [84] and Stephen et al. [123] independently found that higher local clustering
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around a node (i.e., when all your neighbors are also neighbors with each other)
reduces their idea generation ability, due to “complex contagion”—the tendency to
copy your neighbors when they all say similar things. Essentially, they demonstrate
via human experiments that if your immediate collaborators are also connected to
each other (high clustering), bad ideas can fixate the entire group on a poor solution.
In contrast, networks with high efficiency (low average distance between all nodes)
but low clustering do not suffer from this “group think,” while still being able to
spread good ideas rapidly throughout the network.

Outside of design networks, three types of previously studied empirical networks
are similar to those considered in this dissertation: social networks, open source soft-
ware development networks, and scientific co-authorship networks. They each have
elements one would expect to find in a collaborative design network, and therefore
serve as a meaningful basis for comparison.

Social networks, such as social media or email networks, are similar to OpenIDEO
in that a traceable process of social communication occurs between participants
through actions such as providing feedback on ideas. Social networks tend to be
highly positively assortative with multiple smaller communities of people interacting
together [90, 112, 130], and Kossinets and Watts [69] observe that this behavior grows
over time. Social networks tend to possess power-law distributed degree distributions,
though there are notable exceptions (e.g., Facebook [130]).

Open Source Software (OSS) is similar to open design networks in that the
members are typically decentralized, can choose which projects they want to work on,
and are creating some artifact that will be used by people; it is different in both the
kind of project as well as the specific mechanisms of collaboration. In most studies
of OSS, the node unit of analysis is a particular developer and a link exists between
developers if they have worked on the same project together [80]. These networks
display high assortativity and often generate many smaller communities, particularly
around programming languages. They also possess standard power-law distributed
degree distributions that are typical of many social networks [134]. Looking at OSS
development over time, Saraf et al. [110] demonstrate how assortative mixing—where
developers form new links with those most similar to them—increases over time.

Research co-authorship is another type of network where there is formal in-
teraction and the goal is to generate new ideas in collaboration with others. It
differs from OpenIDEO in that the barriers to collaboration in OpenIDEQO’s case
are smaller than for research co-authorship, and the online social interactions in
OpenIDEO are traceable in a way that is not feasible in research networks. Like
OSS networks, co-authorship networks are also positively assortative, tend to form
communities within the larger network, and have a low average clustering coefficient
[90]. Barabasi et al. [7] present a representative empirical analysis of how scientific
collaborations evolve over time; they note how collaborations follow a familiar power-
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law distribution and that the clustering of the community tends to decrease over
time.

3.2 Analysis of OpenlDEQO’s Design Network

To understand both the general properties of the OpenlDEO network as well as the
properties of any sub-communities, this section divides its analysis into three parts:
1) Structural measures that address information flow within the network; 2) Commu-
nity measures that address the network’s robustness and community structure; and
3) Effects of certain members that address the specific role of possible OpenIDEO
interventions.

3.2.1 Data Collection and Pre-processing

The data consist of the 22 OpenIDEO challenges that were completed by November,
2013.! Most design challenges start with a question, for example “How might we
restore vibrancy in cities and regions facing economic decline?” Each challenge con-
sists of a series of sequential phases: Inspiration, Concepting, Applause, Evaluation,
Selection of Winners, and Realization. During Inspiration, contributers can submit
“insights, examples, stories, or comments”? designed to provoke possible solutions
from the community. During Concepting, contributors submit concepts designed to
solve the challenge. Inspirations and concepts are typically a few paragraphs long
with accompanying figures.

In either stage, contributors can link to other people’s inspirations or concepts by
clicking a “build off of this idea” button in the web interface (similar to the “forking”
behavior on software repositories such as GitHub [78]). This creates an explicit link
used to model interrelations between the submissions by constructing a graph where
nodes represent a submission in the particular design challenge, and a link exists from
node A to B if concept B builds upon concept A (e.g., Fig. 3.3). This section refer to
this as the concept graph, with separate concept graphs for each of the 22 challenges.

During all stages of the challenge, people may post comments on other people’s
concepts as well as reply to comments on their own concepts. To model this social
interaction, a separate graph (the social graph) represents an OpenIDEO user as a
node, and adds a weighted directed link from user A to user B if user A comments on
user B’s concept for that particular design challenge or if user A replies to a comment
given by user B. The content of these comments can be positive, negative, or neutral
in tone, and does not have to relate strictly to submitted designs, since the goal here

http://www.openideo.com/open
2http://wuw.openideo.com/how-it-works/full.html
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Quantity Min. Mean Maz.

Avg. # of participants per challenge 119 372 820
Avg. # concepts per challenge 189 506 1220

Avg. # of actions per user 1.41 4.09 7.24

Avg. # of concepts per user 1.00 1.41  2.29

Table 3.1: A summary of the OpenlDEO corpus statistics averaged across each of the 22
challenges.

is to model the social transactions between individuals (though a more qualitative
study of the comment content would be an interesting extension of this work). Every
additional interaction from A to B adds an additional unit of weight to the link
between A and B. There are separate social graphs for each of the 22 challenges.

Table 3.1 lists some basic statistics averaged across the 22 challenges in corpus.
The average number of users and concepts are both of an order between 100 and
1000. The average number of actions per user and the average number of concepts
submitted per user are both of an order between 1 and 10. Later in the chapter,
section 3.3.3 provides more detail on the specific actions of these users.

There are particular users, who this section refers to as OpenIDEO community
managers, that have specific roles on the platform: they help facilitate the challenge
by reaching out to many concepts and commenting on them to promote interaction.
There are usually two of these managers per challenge, one who is a member of IDEO
staff and another who is an active member of the larger community.

3.2.2 Structural Measures

The measures in this section are designed primarily to address the ease with which
information flows through each network. Greater size and diameter imply that infor-
mation has farther to travel, while greater clustering, centralization, efficiency, and
density imply greater ease of information transfer.

Comparing the concept and social graphs across challenges reveals certain key
structural similarities and differences: Despite similar network sizes, the two networks
have drastically different link structures, diameters, densities, and average clustering.
Figures 3.3a and b illustrate representative concept and social graphs, respectively,
positioned using a Fruchterman—Reingold force directed layout algorithm; immediate
inspection reveals the tightly clustered core-periphery structure of the social graph
(Fig. 3.3b) as well as the sparser, more community clustered concept graph (Fig. 3.3a).
To make the differences between these structures clearer, Fig. 3.4 highlights several
key similarities and differences:
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Size (Figure 3.4a): Within each challenge, both the concept and social graphs
have approximately between 200-800 nodes, with two concept graphs reaching into
the low 1,000s—these sizes are fairly small compared to social internet communication
networks, but large compared to the size of typical collaborative design groups. Par-
ticularly for the concept graphs, this size indicates that it would be time-prohibitive
for any individual to actually read through all available ideas in a challenge.

Diameter (Figure 3.4b): Since both types of networks in OpenIDEO have discon-
nected components (thus infinite graph diameters), it is more reasonable to mea-
sure the diameter of the largest connected component of the graph. For that case,
OpenIDEOQO’s social graph has a significantly smaller component diameter than that
of the concept graph, despite their being of roughly equal size. Part of the reason for
this smaller diameter is the fairly efficient center of the social graph (Fig. 3.3b) which
bridges many nodes, decreasing the distance information needs to travel and making
communication and feedback easier to transmit.

It is notable, though not unexpected, that both the concept and social graph have
disconnected components. This indicates that there are concepts that are never being
built off of and users who are not participating in the social community, both of which
are losses of potential information.

Density (Figure 3.4c): The social graph is approximately four times as dense as
the concept graph. This means that there are a higher proportion of connections
(and thus less disconnections) between most users, whereas, on average, 42% of the
inspirations or concepts that get submitted are never built off of (or at least tagged as
such on the website). The concept graph’s low density is possibly due to the number
of available concepts and the effort required to build off of an idea.

Average Clustering Coefficient (Figure 3.4d): As expected, the sparsely con-
nected and spread out concept graph has low average clustering, while the social
graph has higher clustering, roughly comparable to other social networks. In the con-
cept graph, higher clustering would mean several ideas are similarly related, whereas
in the social graph higher clustering would mean groups of similar social connections
and communication.

Centralization (Figure 3.4e): Figure 3.4e demonstrates that both the concept
graphs and social graphs are decentralized, with the concept graphs having signif-
icantly less centralization. Both of these results match what one would expect from
an open innovation platform: many users should have access to different parts of
the graph in order to have exposure to diverse groups of ideas and people. Part
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Figure 3.4: The concept graphs have higher diameter(3.4b) and lower density (3.4c) than
the social graphs, despite roughly equivalent network sizes(3.4a). This is possible due to
small levels of clustering within the concept graph, and the fact that the social graph has
certain mechanisms built in that reduce the graph diameter. The concept graph exhibits
low centralization(3.4e) and low global efficiency(3.4f), while the social graph exhibits
medium centralization and low efficiency. In both cases, higher efficiency would be more
advantageous in order to ease transfer of ideas and feedback, respectively. Figure 3.3
provides some visual intuition behind these results.
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of the increased centralization in the social graph comes from the presence of the
OpenIDEO community managers who are well connected to many members of the
social community—a point section 3.2.4 explores in depth.

Efficiency (Figure 3.4f): Figure 3.4f illustrates the global network efficiency of both
the concept and social graph. The low efficiencies in the graphs come with both ad-
vantages and disadvantages: on the one hand, lower efficiencies mean higher network
redundancy and robustness at a given density—the concept graph has both low den-
sity and low efficiency, so it doesn’t gain the redundancy benefit, while the social
graph’s central core structure does. However, at a given density, higher efficiencies
create better information transfer across the network and also correlate to lower clus-
tering—this is a useful structure when groups of people have to collaboratively solve
uncertain problems together without getting stuck [84]. Section 3.4 returns to these
ramifications after the next section discusses the role that community structure plays
in these two types of networks.

3.2.3 Community Measures

To understand the type of community structures inherent in the OpenIDEO network,
this section conducts three types of analysis: (1) degree distribution, (2) assortativity,
and (3) community detection using the k-clique percolation method [96]. The results
were unexpectedly different than other networks of their type: the social graph is
highly disassortative with only a single, large core structure, while the concept graph
has many small communities. For the social graph, this unique structure gives it
higher robustness under node removal than standard social networks, and its disas-
sortativity likely helps it maintain that structure. Both of these are advantageous
properties for an open innovation network where participation is voluntary because
one would like the design collaboration network to continue to transfer information
when someone stops participating (node removal), and to maintain connections with
the larger number of users who are on the periphery and only participate occasionally
(disassortativity).

Degree Distribution (Figure 3.5): Both the concept and social graphs appear
power-law distributed, due to the linear nature of the degree distributions in Fig. 3.5
(power-law distributions appear linear when plotted on a log-log scale, as in Figure
3.5). In terms of robustness, power-law distributed networks are robust (i.e., do not
change much) under random node removal (i.e., random people leaving the network),
but are particularly susceptible to targeted node removal (i.e., removing the high-
est degree or most important individuals) [90]. However, as demonstrated below,
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Figure 3.5: Degree complementary cumulative distribution functions (CCDF) for the
largest connected component of different types of Open IDEO networks. Each line corre-
sponds to a different challenge. Both types of networks are generally power-law distributed.

OpenIDEO possesses a core-periphery structure that mitigates this robustness con-
cern [27, 106]; even removing several of OpenIDEQO’s highest degree members (the
OpenIDEO community managers) does not significantly alter the network properties.

Assortativity (Figure 3.6): One possible reason for the social graph’s robust core-
periphery structure lies in the network’s lack of assortativity. Figure 3.6 compares the
assortativity of the OpenIDEO concept and social graphs, where assortativity ranges
from 1 (completely assortative) to -1 (completely disassortative).

Unlike other social networks (see Table 3.2), the OpenIDEO social graph is ac-
tually disassortative, meaning that those members who communicate frequently are
actually communicating more often with infrequent members of the group rather than
frequent members, and vice versa. Indeed the directed links in Fig. 3.3b display a
balance between outsiders commenting on concepts generated by members within
the core, as well as core members reaching out to those on the periphery. This bal-
ance is one hypothesis for the disassortative, core-periphery structure seen in the
social graph. Other possible reasons include: OpenIDEQ’s reputation system, which
awards “collaboration points” for commenting with other people’s concepts; commu-
nity managers who reach out to less active users; specific stages of the design process
for commenting, viewing, and evaluating the work of others; and soft incentives from
IDEO that reward active users through possible job opportunities within the larger
company.

While these features undoubtedly improve participation, collaboration, and disas-
sortativity, they may not be present in other design networks. These results suggest
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Type of Network Assortativity

OpenIDEO —0.413

Student Relationships —0.029
Email address books 0.092
Mathematics Co-authorship 0.120
Biology Co-authorship 0.127
Film Actor Collaborations 0.208
Company Directors 0.276

Physics Co-authorship 0.363

Table 3.2: A comparison of Assortativity between OpenlDEO and other typical networks.
All numbers for non-OpenlDEO social networks are reproduced from [89, Table Il]. Assor-
tativity is measured on a [-1,1] scale. The only other disassortative network is in student
dating relationships (where students reported dating members of the opposite gender more
than their own gender).

encouraging this disassortative behavior as a means to increase network efficiency,
decrease clustering, and improve idea generation—a recommendation that section 3.4
returns to in greater depth.

K-Clique Percolation (Figures 3.7 & 3.8): To uncover any possible community
structures, this section uses the Clique Percolation Method [38] to detect communi-
ties of different sizes and overlap. It is a widely-used community detection method
that can identify an unspecified number of communities where k specifies how in-
terconnected the community should be—higher k values mean smaller, more densely
connected communities, while lower k values would create larger more loosely con-
nected communities. It works by constructing k-cliques and then merges k-cliques
together if they share k-1 nodes in common, identifying larger communities. For ex-
ample, a 2-clique would be any 2 connected node pair, and a 2-clique community
would merge any pairs which shared at least 1 node in common—this special case
would be the same as finding the connected components of the graph. By increasing
k, one can uncover increasingly connected communities within the graph.

Figure 3.7 compares the number of k-clique communities for each type of graph
as k is increased. The concept graph contains many 3 and 4-clique communities,
but none larger than 5. The social graph contains, on average, 1-2 communities, but
becomes a well-connected central community as k increases.

To characterize what these communities look like, Fig. 3.8 plots a representative
example from challenge 10 that compares the identified k-clique communities as k
is increased. In the concept graph, as k increases, several mostly non-overlapping
communities form throughout different parts of the graph—this demonstrates patches
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Figure 3.6: Unlike most social networks, the OpenIDEO social graph appears negatively
assortative (disassortative) by degree, rather than positively assortative. This means that
members with high degree (lots of communication) talk more with those with low degree,
rather than with others of high degree. This style of communication is highly atypical of
most social networks. It reduces the diameter of the network and increases the fraction
of the members in the largest graph component. The concept graph appears neither
assortative nor disassortative.
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Figure 3.7:  Boxplots of the number of communities detected using the k-Clique
Percolation Method, for different values of k in both the concept(3.7a) and social
graphs(3.7b)[96]. The concept graphs have a high number of small communities, while
the social graphs have only a few communities that are significantly more connected. This
reinforces the visual data in Fig. 3.8.

of interrelation between small collections of different concepts. In contrast, the social
graph starts with a large, central community incorporating most of the network core.
As k increases, the core remains, decreasing somewhat in size. Any new communities
that form have substantial overlap with the existing central core, rather than forming
on a different portion of the graph—this is again consistent with the notion of the
social graph maintaining a core-periphery structure.

3.2.4 Effect of OpenlDEO Community Managers

One hypothesis for some of the observed behavior is that the OpenIDEO community
managers could be purposefully acting within the network to produce these structures,
and that removing them from the graph would better resemble a standard social
network model. Removing those users, and any of their links, from the social graphs
across all challenges and repeating all of the above analyses does not change the most
of the results.

Figure 3.9 compares the two most substantive changes: (3.9a) demonstrates that
removing the OpenIDEO community managers increases the assortativity of the social
graph, though it still remains significantly disassortative; (3.9b) demonstrates that
the centralization of the network decreases substantially. Given that the role of the
OpenIDEO community managers is to reach out and involve different members, it is
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Figure 3.8: Visualizing the communities created using the k-Clique Percolation Method,
for different values of k in both the social and concept graphs [96]. This uses the networks
from challenge 10 as a representative example. The colored sub-graphs represent nodes
within a given community, and red nodes represent nodes in multiple communities. As
k -increases (i.e., right to left above), the “tightness” or cohesiveness of the community
increases. For the concept graphs (3.8a-3.8c), multiple, non-overlapping communities
are present at different community scales (k=[3,5]). This signifies different “clusters”
of related ideas that are mostly separate from one another (i.e., only a small number of
the nodes in a-c are red). In contrast, the social graphs have a single core community
that is tightly connected (i.e., still present at higher k-values). Any additional social
communities tend to be heavily overlapping (i.e., many red nodes in 3.8f relative to the
number of separate communities).
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Figure 3.9: Removing OpenlDEO community managers from the social graph (“Social
w/o CM"), there are some noticeable, but small changes: the centralization of the network
decreases and the assortativity increases. The general behaviors described above are
unlikely to be caused exclusively by existing OpenIDEO community managers.

not surprising that their actions change both assortativity and centralization. What s
surprising is that, even devoid of the community managers’ comments, OpenIDEQO’s
social graph remains disassortative and still somewhat centralized. Section 3.4 returns
to the implications of this behavior after looking at how OpenIDEQ’s network as
evolved over time.

One caveat with the results in Fig. 3.9 is that it does not eliminate the possible
indirect effects of community managers. For example, even if we remove all direct
communication links by community managers, they may still have instigated com-
munications between two other users. Even though Fig. 3.9 cannot remove all effects
of the community managers, the main takeaway remains clear: the dissassortative
behavior in the network links is not solely a function of the community managers’
direct actions.

3.3 The Growth and Evolution of OpenIDEQO

With an understanding of what the OpenIDEO network looks like and how it operates,
this half of the chapter studies how it evolved from its inception to present day. This
provides insights into the user behaviors and events that shaped the structure of the
community. Analyzing OpenlDEQ’s evolution requires one addition methodological
choice beyond those in section 3.2: how does one model time-dependent quantities,
like link strength, using only discrete time events?

To handle temporal events in the OpenIDEO network, this section uses the ap-
proach of Palla et al. [96], who model each edge weight as having a decay factor:

wa p(t) = Zw exp (= AJt — t;| Jw;) (3.1)
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where 7 indexes an event between user A and user B. Essentially, this treats the edge
weight as a sum of exponentially decaying functions—if the users interact regularly,
they will have high edge weight, but if they go months without interacting, their edge
weight approaches zero. This section treats all events as equally important by setting
w; = 1, and sets the decay rate A such that w; is 1% of its original strength after 100
days of inactivity.

With this added temporal model, one can represent the OpenlDEO network at
any given timepoint by summing up all prior user events, and using Eqn. (3.1) to
appropriately decay the edge weights. The same k-Clique Percolation Method [38]
used above in section 3.2.3 can be used to detect communities within the temporal
network.

To set k and the edge weight cutoff in the k-Clique Percolation Method, this
section takes the approach described in Palla et al. [96] of finding the highest k such
that large communities are still able to form, and then reducing the cutoff threshold
until it is barely above the value needed to preserve community structure. In physical
terms, this cutoff procedure defines a minimum communication frequency that two
individuals must overcome to still be considered “connected” to each other. Much like
in other social communities, if two individuals stop collaborating the strength of their
connection decays over time and an individual would leave a former community once
his or her existing ties to that community atrophy. This minimum level of atrophy and
the tightness of the resulting community are what the cutoff and k values represent,
respectively.

With a temporal version of the OpenIDEO collaboration network, the next sec-
tion can now present the results, starting at the whole-network level, moving down
to community level, and finally to the level of individual users. The results highlight
when the network-level disassortative mixing, efficiency, and clustering behavior ob-
served in section 3.2 above started to occur; how community structure develops over
time; how users enter and participate in the system; and what particular actions users
take.

3.3.1 How the Entire Network Evolves

Figure 3.10 plots the assortativity (3.10a), efficiency (3.10b), and clustering (3.10c) of
the OpenIDEOQO network over time. All three properties varied over the entire lifetime
of the network, with the biggest variations occurring during the first nine months of
OpenIDEQO’s growth. The network starts and remains disassortative over its lifetime,
which means that frequent users collaborate more often with infrequent users than
with each other.
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Figure 3.10: It took about about 9 months to a year for the system properties to equili-
brate.
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3.3.2 How the Community Structure Changes Over Time

To visualize how OpenIDEQ’s community structure has changed over time, Fig. 3.11
summarizes the size and number of communities, and Fig. 3.12 provides visual snap-
shots of the community structures at various timepoints.

Figure 3.11 plots a point for each community on the x-axis with its corresponding
size on the y-axis. For example, early in OpenlDEQ’s development, only a few small
communities existed (Fig. 3.12a: Dec. 10th, 2010). However, around the start of
Challenge 3, the user base grew, expanding the communities (Fig. 3.12b: Mar. 23rd,
2011) until they eventually merged into a singe, core community (Fig. 3.12c: Feb. Tth,
2012). After a year, the size of the largest community began to decrease and split
into several smaller communities who share some common nodes (the red nodes in
Fig. 3.12). As Fig. 3.12g demonstrates, the decrease in community size is not due to
lack of membership or partcipation—the core is still actively participating, but has
started developing smaller communities within the core, as evidenced by Fig. 3.12h
(Jul. 2nd, 2013).

3.3.3 The Lifetime of Community Members

Having looked at the network and community levels, the frame of reference now fo-
cuses on the individual users: How long do they stay with the site? How do they spend
their time when participating? What makes long-term, multi-challenge participants
different than single-challenge participants?

To answer the first question about user lifetimes in OpenIDEO, Fig. 3.13a records
the difference between the date a user joins the site and their last date of activity on
the site (i.e., when they last submitted a concept or left a comment). Aggregating
the data for all 5753 users, it shows a log-scaled histogram of the number of days
between joining and last activity; it demonstrates the long-tail of participation, with
only a small number of users remaining through several challenges. Figure 3.13a does
not account for the fact that certain users joined later than other users, biasing the
histogram towards lower participation times. To address this, Fig. 3.13b divides the
number of days a user has been active by the total number they could have been
active, based on their join date. The story remains the same: the vast majority of
participants are transitory visitors, with a central core of committed members.

To further explore how users participate in the design community, Fig. 3.14 shows
the three different possible user actions (joining, submitting a concept, or giving a
comment to someone) for each user as a function of time. The y-axis represents a par-
ticular user id, where the users have been sorted by the date they joined OpenlDEOQO. It
demonstrates not only the user growth pattern over time, but also the general behav-
ior of most users: after joining, the users partake in a frenzy of activity that includes

38



Chapter 3. Managing Online Design Communities

Community size with k=6, cutoff=0.010

160
= ™
=2 120 v
- . !“ !
% 100 . f\
O . " P .
£ 80 1.7 W™
n Y iy -
q_) Vel T\
g 60 ° l\
@ 40 ’,'VJ "‘f'\
z 'b’. ' v °
* 20| —e d e
.-—}.-o‘.-& - -GJ*J‘.‘ h::o
0 4+ i — -_ +J N — - -+ m — - +J
@] — o 2 @] — o 2 (@] — o 2‘ (@]
O P < O P < @) P < @)
N N N

Figure 3.11: OpenlDEQO’s community structure changes over time, with a single large
community emerging from 2011-2013, eventually splitting into several smaller communities

all clustered around the central core (Figs. 3.12e-3.12h).
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(e) Oct. 18th 2012 (f) Jan. 10th, 2013 (g) Apr. 21th 2013 (h) Jul. 2nd, 2013

Figure 3.12: A series of community snapshots of the OpenIDEO collaboration network
over time. The colored polygons and nodes represent different communities, with the
bright red nodes representing nodes that straddle different communities. Grey nodes are
not part of any community.

both concept submissions and feedback. Once the challenge ends, user participation
drops dramatically, with reduced participation in subsequent challenges. Challenges
that begin on or before a previous challenge ends correlate with higher user retention
in the subsequent challenge; cases where there is a significant gap between challenges
(e.g., mid-May to July, 2011) did not see much return participation.

Figure 3.15 normalizes Fig. 3.14, by shifting everyone by their join date, making
the x-axis equivalent to the number of days a user has been on the site. This figure
presents a clearer picture of the exact user progression, showing the concentration of
activity around the initial challenge followed by a sharp drop-off in participation for
most users. Since the y-axis is ordered in time, it also shows that users have behaved
similarly since around June, 2011 to present—there is little difference in activity level
or distribution of activities after around user 750 and later.

Figure 3.15 shows an identical plot to that of Fig. 3.14, except that all the users
have been sorted on the y-axis by the total number of actions they have performed on
the site (essentially ranking them by activity level). This provides a sense of relative
size and activity level: there are many more single-challenge participants compared
to multi-challenge participants, and only a small fraction of the participants heavily
contribute. This long-tailed activity distribution is common across a wide variety of
social systems [90].
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Figure 3.13: User lifetimes show a highly transient user population with a common core
of long-term participants.
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Figure 3.14: This figure captures user actions over time, including when they joined,
when they submitted concepts, and when they commented on the concepts of others.
Two things are evident: 1) Unsurprisingly, most activity takes place during challenges:
user joins, submissions, and commenting activity all increase during challenges; and 2)
user retention and participation across multiple challenges was higher when consecutive
or simultaneous challenges were available
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Figure 3.15: This figure captures user actions over days since joining the community,
when they submitted concepts, and when they commented on the concepts of others.
Users are sorted by their total number of actions on the site, where the most frequent
users are towards the bottom. Several things are evident: 1) Only a small portion of users
participate regularly across many challenges—most users only temporarily participate. 2)
Users initially start out with a flurry of activity that tempers in later challenges. 3) Among
more frequent members, giving comments is more popular than submitting new concepts.
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The differences in user activities become more pronounced when grouping users
by those who have partcipated in only one challenge (2897 users = 73% of active
users) and those who have participated in multiple challenges (1062 users = 27% of
active users). Figure 3.16 records what happens next to the users after they per-
form a particular activity—essentially it is a “transition matrix” between activities.
Comparing Fig. 3.16a and 3.16b, those participants who participated in multiple chal-
lenges spent more time giving comments to others than they did submitting concepts
or getting comments from others. In both cases, commenting formed a reinforcing
cycle of giving and getting comments.

3.4 Implications for Design Communities

The results from the static analysis in section 3.2 and the dynamic analysis in sec-
tion 3.3 lead to implications for both managing online design communities and for
modeling design communities computationally,

3.4.1 Implications for Managing Online Design Communities

Low efficiency and high diameter reduce information flow in the concept graphs.
Since concept nodes represent ideas and links represent information flow in the form
of building off of ideas, the way concept graphs are evolving into distributed, low
efficiency networks leads to a couple of possible conjectures: (1) the vast majority
of concepts lack useful information, and thus are not worth building off of; (2) it is
difficult to find and connect disparate concepts, leading to only minor local clustering
and limited global structure; or (3) the time frame or format of concept submission
is such that it does not provide sufficient time to review, connect, and cycle through
iterations of concepts on the network.

Addressing (1) is outside of the data’s scope, but (2) and (3) could be addressed by
employing many of the techniques used in the above network analysis: locating ideas
from distant parts of the graph to present to participants as possible idea “mash-ups”
or using community detection techniques to identify or create common idea groupings.
This would increase efficiency within the concept graph and has the potential to
combine distinct features from different parts or “idea communities.”

Encourage core users to collaborate with periphery users to increase network
robustness, centralization, and efficiency. While the core-periphery social struc-
ture was different than expected, it carries with it several advantages and trade-offs
that help make the design network more robust and stable:

44



Chapter 3. Managing Online Design Communities
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(a) Users who only participated in a single challenge submitted around 1-1.5 concepts on average,
and gave about 4 comments. They received around twice as many comments as they gave to
others.
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(b) Users who participated in multiple challenges submitted between 5-6 concepts on average
over their lifetime, but gave a substantially higher percentage of comments to others.

Figure 3.16: A comparison of the transition states between single- and multi-challenge
users. The numbers in the boxes represent the average number of times a user went from
one activity to the next activity. Those users who participate in multiple challenges put

more emphasis on giving comments.
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1. Core-periphery networks are more robust to random or targeted node loss than
other power-law distributed network types of similar efficiency [27, 106, 90].
This is good since open innovation networks are reliant on voluntary participa-
tion by individual nodes, any of which could stop participating at any moment.

2. The core-periphery structure is conducive to high centralization and network
efficiency, which helps transfer information among collaborators.

3. The disassortative mixing creates an inclusive environment for periphery users
to get involved and move towards the core.

As a proactive strategy for strengthening design networks, one could incentivize dis-
assortative behavior by asking high-degree core members to comment or collabo-
rate with periphery members more regularly (a practice currently employed by the
OpenIDEO community managers).

However, a highly clustered central core may harm ideation potential. The pri-
mary concern with highly clustered core networks is that, when used to communicate
ideas or concepts, it may impede idea generation. Highly clustered, inefficient net-
works facilitate forms of complex contagion, or multiple repeated exposure, that can
cause people to prematurely cease exploring ideas [84]. Essentially, if all your neigh-
bors are exploring similar ideas, you are more likely to produce something similar to
that idea—fixating on it in place of exploring other options. In a highly clustered
network this effect feeds on itself since many people have common neighbors, creating
false confidence about the strength of an idea and premature fixation on a portion of
the design space. Two means to counteracting high clustering are to: 1) expand the
diversity of the contributors, as this improves the overall variety ideas being discussed;
and 2) encourage the idea generation practice of first doing individual idea generation
before viewing the ideas of others. (This limits initial exposure to potentially fixating
ideas, after which members can take better advantage of the core-periphery network
regardless of its efficiency or clustering.)

Promote continuous challenge involvement and commenting to increase use
engagement. The transient nature of the user population is both a blessing and
curse. On the one hand, having new members constantly joining increases idea di-
versity (and possibly novelty), but on the other hand having users leave after one
challenge does not foster a strong sense of community feedback or knowledge reten-
tion across challenges. One can employ two complementary strategies here: increase
user retention and make better use of the transient population. For the first, one
can space challenges so that they are consecutive—the continuity of involvement ap-
peared to correlate with participation in the subsequent challenges. While this link
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is not necessarily causal, social momentum and continuous engagement in the site
should positively affect retention. For the second, OpenIDEQ’s two strategies of us-
ing community managers to “cross-pollinate” between new users’ ideas, along with
providing incentives for giving comments, facilitates the disassortative, efficient, and
lightly clustered network structure that Mason et al. [84] and Stephen et al. [123]
recommend for product ideation. Further incentives for building off of existing ideas,
rather than just commenting, would increase this benefit.

For establishing community, Fig. 3.11 and 3.12 both demonstrate the dynamic
nature of how design communities evolve. Research has not yet investigated whether
having a single larger community or several smaller connected communities provides
a more conducive idea generation environment, so it remains to be seen what specific
level of community a design network should strive towards. Despite the changes
in community structure, the general structure of OpenlDEO remains similar over
time: a central core of users collaborates heavily with temporary periphery members.
This overarching structure is the more likely cause of the beneficial disassortativity,
efficiency, and clustering seen in Fig. 3.10.

3.4.2 Implications for Modeling Design Communities

Consider explicitly modeling disassortativity in collaboration networks. The dis-
assortative nature of the collaboration social graph is non-standard in current social
collaboration models, and does not appear in datasets from nearby domains like Open
Source Software. Those working on theoretical or simulation models of design team
collaboration should consider including disassortativity characteristics as part of their
modeling strategy.

More research is needed to understand and model of core-periphery structures.
Research in core-periphery structures is still an active area of research [27, 106]—there
is much to be gained by collaborating with other researchers working in network
analysis. As an example, section 3.2.4 presented an initial exploration of the role of the
community managers—much more work could be done to explore the possibilities for
network interventions in design collaborations. A natural extension of this work would
be exploring the structural effect of pairing new periphery members with existing core
members or recommending concepts from different parts of the concept graph.

3.5 Summary

This chapter presented an empirical network analysis of OpenIDEO, a real-world on-
line design community, and tracked its evolution over time. OpenIDEQ’s social graph
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is disassortative (i.e., Table 3.2) and lacks the multiple community structure found
in typical social networks (e.g., citation co-authorship [51] and social communication
networks [130] of similar size frequently display sub-communities of 4 and higher).
Moreover, it took several design challenges to stabilize, with its community structure
becoming a mildly clustered core-periphery network. This could be caused by multi-
ple factors, including: size, presence of community member leads, and collaboration
incentives, though further study would be necessary to determine causal relationships.
Community members that participated in multiple challenges were more likely to give
design feedback to others, with consecutive challenges engendering higher retention.

While the efficiency and robustness benefits of the social graphs’ structure are ad-
vantageous, there is the possibility for design fixation through complex contagion if the
core network becomes too clustered. Section 3.4 discussed possible counter-strategies
including increasing community involvement with periphery nodes, increasing partic-
ipant diversity, spacing challenges sequentially or with overlap to promote continuous
involvement, and using incentive structures to encourage giving feedback within com-
munities. It also addressed how these structures might impact theoretical models of
design networks, specifically the need to model disassortative collaboration behavior
and core-periphery structures. For researchers, it provides a benchmark with which
to compare the growth of other design communities.

Several new questions arise for future quantitative or qualitative investigation:
At what point do transitions occur between single- and multi-community network
structures? How does one balance network efficiency with the desire to help members
exploit the good ideas of others? What are the range of factors that convince users
to regularly participate? How could interventions, such as targeted collaboration re-
minders, alter the network’s evolution over time to promote better ideation? What
causes an individual to continue participating in the network when a challenge ends?
What are appropriate computational methods for modeling this social interaction
(e.g., Markov Reward Networks, as in Fig. 3.16)?7 Answering many of these ques-
tions requires a more controlled environment than the present observational dataset
allows, and would be a fruitful area of future research. Ultimately, understanding
how these design communities grow, evolve, and (eventually) die out allows managers
of online design communities to foster environments that better support distributed
idea generation.

Thus far, the dissertation has looked at overall design communities and how they
form. The next chapter introspects within these communities, looking at specific
design processes used by HCD Connect, another online design community, and how
user behaviors can be used to extract design processes from data.
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Extracting Design Processes

Chapter 33 .
Communities

Chapter 4:
Processes

Chapter 5:
ldeas

Figure 4.1: This chapter addresses the role of data at the design process level: how
individuals and teams learn and use design methods within a design process.

Once one has set up a design community, the next task is to structure their inter-
actions through some kind of design process, so that they can produce new designs.
This process typically involves the application of a variety of design methods, each of
which is an activity that furthers the completion of a design. These methods can be
applied across different stages of a design process. For example, when starting out

Portions of this chapter appear previously in [43, 44]

49



Chapter 4. Extracting Design Processes

designers would leverage user research methods, such as interviews or observations
to define what a product or service should accomplish. Once this is done, a designer
might shift to methods that help them generate and then evaluate ideas, such as
TRIZ [4] or prototyping. The methods a designer uses, and the order in which she
uses them, would be her particular design process. This process might vary across
teams or individuals, as well as across the specific type of problem being solved.
Selecting an appropriate design process is one hallmark of an experienced designer.
The largest current design method database lists over 300 different methods [108]—a
conservative estimate that easily exceeds any designer’s ability to learn.

This chapter studies how online design communities learn about and act upon
design processes, specifically: How do the actions of community members shed light
on design methods and how they can be used? How do you identify the design process
used by community members, without requiring them to explicitly encode it? How
do you use the data created by community members to help them improve their
design process in the future? To answer these questions, the chapter shifts focus
to a different design community, HCD Connect, which focuses on design process
communication and education.

HCD Connect stores design case studies using IDEO’s Human-Centered Design
(HCD) Toolkit, a collection of 39 user research methods intended to be used at the
beginning portion of a design process. It uses these case studies as a community-
created education resource; the idea being that new members can read through the
case studies, learn about different design methods, and start to understand which
methods work well together in practice. The main problem facing this community
is that the number and complexity of the stored design cases exceeds the amount
that an individual member can reasonably read, limiting its usefulness at sharing
knowledge; for example, as of this writing, HCD Connect lists over 1500 case studies,
each of which contains pages of text and multi-media content.

To address this problem, the chapter casts HCD Connect in the context of Recom-
mender Systems, a sub-field of Information Retrieval. By doing so, it demonstrates
how information about design methods can be automatically reused to aid in search
and knowledge discovery, while limiting the number of cases a designer needs to man-
ually search through. For example, it will show how using cases to calculate the
covariance between different design methods leads to three useful outcomes:

1. False Discovery Rate Control algorithms [9] from large scale statistical hypothe-
sis testing can illuminate which particular methods are appropriate for different
kinds of design problems, such as Agriculture or Healthcare.

2. Using Spectral Clustering [91] on the covariance between design methods (method
covariance) allows you capture which methods group together. These automatic
groupings agree with human expert groupings to 92% accuracy.
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3. Collaborative Filtering techniques [68] can combine method covariance with
attributes of a given problem to help designers select better methods than they
would be able to using method popularity alone.

In each of these areas, the chapter demonstrates how the wealth of data that previ-
ously impeded the analysis of design methods instead now acts as an asset, providing
knowledge regarding how methods are used and improving the quality of design pro-
cesses over time. It ends with discussing implications for studying design methods,
recommending design methods, and how the results of this chapter generalize beyond
HCD Connect.

4.1 Background on Design Methods and Recommender
Systems

This chapter builds off of two primary research areas: categorizations of user research
methods and recommender systems.

4.1.1 Categorizations of User Research and Design Methods

Researchers have been developing and discussing appropriate user research methods
for decades, with yearly conferences devoted to the topic (e.g., EPIC'). Many au-
thors have written books cataloging or otherwise classifying design and user research
methods [73, 14, 15, 67, 83]. Recently, seperate websites[58, 107] Coming from the
field of architecture, Geoffrey Broadbent’s work [14, 15] seeks to understand design
methods through the lens of how the designed artifact interacts with various stake-
holders, such as the humans who use the design or the environment the design will be
situated in. Others view design as a temporal process, and organize design methods
according to which stage of a design process a method is most appropriate. For ex-
ample, Christopher Jones [67] divides the design process into three sequential stages
(Divergence, Transformation, and Convergence), and allocates methods according to
each stage. IDEO’s HCD Toolkit is most similar to Jones’ organization, in that its
Hear, Connect, and Deliver stages follow each other in time.

Design and user research methods vary along many factors, and their widespread
proliferation and expansion has been recently addressed by websites that collect and
categorize methods along multiple dimensions. For example, the Helen Hamlyn Cen-
tre for Design at the Royal College of Art operates “Designing with People” [58],
a collection of user research and design methods that categorizes research methods
by their inputs and outputs, the stage of the design process, the relationship of the

'http://epiconference.com/
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method to the people who will use the design, and the type of interaction afforded
by the method. Roschuni et al. [108] use ontologies to not only categorize method
dimensions, but to understand how those dimensions interact with one another.

The work in this dissertation contrasts with prior research in several ways. First,
almost no prior research on categorizing design methods validates their categorizations
in any formal or quantifiable way, such as using inter-rater reliability across multiple
raters. In contrast, this chapter demonstrates how tools from Spectral Clustering can
use eigen-decompositions of method similarities to quantify the differences between
groups of methods, matching expert-given groupings with high accuracy. Second,
this chapter provides quantifiable means for differentiating how methods differ from
each other along different problem-specific dimensions, such as the type of design
problem (e.g., Healthcare vs Agriculture problems). It does this by leveraging large-
scale statistical hypothesis testing techniques, such as False Discovery Rate Control
algorithms. This computational viewpoint proposed in this paper can inform current
research in categorizing user research methods, by providing a set of quantitative
techniques that complements existing qualitative approaches.

4.1.2 Recommender systems

Recommender systems refer to a class of algorithms that recommend content to a user.
Some popular applications include Netflix, which uses a person’s movie watching
habits to recommend new movies, or Google, which uses keywords as well as past
browsing behavior to recommend web-pages. There is a vast amount of research
on this topic, including yearly conferences such as ACM’s RecSys?, and two recent
review papers by Resnick and Varian [105] and Adomavicius and Tuzhilin [1] provide
a more complete overview. For the purposes of this chapter, related efforts can be
broken down into three camps depending on the type of data they use to produce
their recommendations: Content-based Filtering, Collaborative Filtering, and Hybrid
Filtering.

Content-based Filtering bases its recommendation solely on the content of the
item itself. For example, if a user says they like comedic movies, Netflix might recom-
mend movies tagged with “comedy” more frequently than those tagged with “drama.”
This was one of the earliest approaches to recommending content, with its roots in
the Information Retrieval community [82]. Popular examples include Google’s Page-
Rank algorithm [95] as well as text-modeling approaches such as Latent Semantic
Analysis [29] and Latent Dirichlet Allocation [12], which build content features by
summarizing text content. In the context of design methods, these content features
might include the method’s textual description or the time required to execute the

2http://recsys.acm.org/
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method.

A related field of research which is gaining popularity is the field of “Learning
to Rank,” which formulates item ranking as a statistical learning problem and uses
classification and regression techniques from machine learning to solve ordinal ranking
problems. For example, RankNet [17] and ListNet [21] both utilize Artificial Neural
Network architectures to determine ranking functions over content features. For a
comprehensive overview of Learning to Rank methods, Liu [79] provides an excellent
review. Over the past decade, solely content-based approaches have fallen out of
favor for either Collaborative Filtering models or hybrid models that combine both
approaches.

In contrast to Content-based Filtering, Collaborative Filtering bases its rec-
ommendation solely on the covariance between users and items. For example, if user
A likes the movies “Titantic” and “Caddyshack”, and user B likes “Titantic,” then
the algorithm might conclude that user A and user B are similar, and thus user B
might also like “Caddyshack,” regardless of the content of the movie itself. For de-
sign methods, this might be which design cases use which methods—if case study A
uses methods 5 and 17, then the algorithm learns something about the relationship
between 5 and 17 that it can leverage for future predictions, despite not knowing
anything in particular about method 5 or 17. The earliest collaborative filtering
methods were Neighborhood methods, such as that of Herlocker et al. [59], which
used weighted averages of scores from similar users to estimate a new item score.

Neighborhood techniques have been largely replaced by matrix factorization ap-
proaches, which are generative unsupervised models that uncover a latent set of user
and item features, representing the score as a cross-product between the two. Their
wide-spread usage and popularity is due in part to their independence from content
features and in part to the “Netflix Prize” competition, which spurred research from
academia and industry alike. Notable examples that emerged from that area include
the Bell-Kor system [8], which won the Netflix Prize, as well as techniques such as
Bayesian Probabilistic Matrix Factorization [109], variants of which are currently
under active research.

Hybrid Filtering mixes the above two models by using both content and col-
laborative features to inform the recommendation, often at the cost of additional
computation and complexity. For example, if user A likes “Titantic”, “Caddyshack”,
and “The Shawshank Redemption”; user B likes “Titantic”; and “Titantic” is con-
sidered a drama, then a Hybrid Filtering algorithm might conclude that user A and
user B are similar and enjoy dramas, and thus user B might prefer “The Shawshank
Redemption” over “Caddyshack” since it is both similar to what user A selected, but
also within the “drama” category. This hybrid approach ameliorates some of the dis-
advantages of the above two models: for new items which do not have collaborative
features (referred to as the “cold-start” problem), hybrid models can use content in-
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formation to improve recommendations; likewise, hybrid models can use collaborative
information when item content is not available or informative. Most modern, success-
ful recommender systems use some form of Hybrid Filtering [105, 1, 8]. For example,
Badaro et al. [6] utilize weighted combinations of Content- and Collaborative-Filtering
approaches, while Ghazanfar and Prugel-Bennett [49] use neighborhood-based content
and collaborative features that are combined using Boosting [40]. Hybrid approaches
are not without their own problems, however; Yujie and Licai [135] highlight the fact
that the increased number of parameters and data sparsity among those parameters
can make it difficult to accurately train hybrid methods without sufficient data.

4.2 Overview of HCD Connect

This chapter analyzes the design methods and processes in the Human-Centered
Design (HCD) Toolkit developed by IDEO, an award-winning global design firm. In
particular, it looks at HCD Connect, an online platform run by IDEO.org, IDEO’s
non-profit branch that deals with design for development projects. HCD Connect
distributes a user research method toolkit and provides a forum where designers
can post case studies of different developing world problems. These cases describe
the user research methods a designer used to address a particular design problem
(64, 61]. Specifically, the user research methods the designers discuss come from
the 39 methods included in the HCD Toolkit. HCD Connect categorizes these user
research methods into three different design stages:

“Hear: Determine who to talk to, how to gather stories, and how to document your
observations.

Create: Generate opportunities and solutions that are applicable to the whole com-
munity.

Deliver: Take your top solutions, make them better, and move them toward imple-
mentation.” 3

A summary of each of the 39 methods can be found on IDEQO’s online version of the
HCD Toolkit.

The dataset used in this chapter consists of 809 case studies posted to HCD
Connect between June 2nd, 2011 to September 13th, 2013. Figure 4.2 shows an
example of what a case study contains: (a) text and pictures describing the problem,
(b) information regarding the user who submitted the case, (c) a list of development
“focus areas” which categorize what type of problem the case was solving, and (d) a
list of the HCD Toolkit methods that the case used to address the problem.

3http://www.hcdconnect.org/toolkit/en
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Figure 4.2: An example of an HCD case. Some common elements include: (a) A title
and description discussing the problem and methods used, (b) information about the user
submitting the case study, (c) a list of focus areas applicable to the case, and (d) a list
of HCD Toolkit methods that the case used.
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# Cases % Cases Focus Area
506 62.5 Community Development
480 59.3 Agriculture
317 39.2 Education
281 34.7 Environment
225 27.8 Health
140 17.3 Water
124 15.3 Gender Equity
97 12.0 Energy
92 11.4 Financial Services

Table 4.1: Breakdown of the 809 cases by Focus Area. A case could have multiple focus
areas.

For the information regarding the user who submitted the case(Fig. 4.2b), the
organizational affiliation of the person who submitted the case is classified as a mem-
ber of “IDEQO” if their organizational affiliation contained the string “IDEO” and
classified as “non-IDEQO” otherwise. IDEO members are typically industrial design-
ers within IDEO, organizers within IDEO.org (IDEO’s non-profit arm that operates
HCD Connect), or IDEO.org fellows (who are designers that specifically work with
IDEO.org). Non-IDEO members come from almost every continent and have occupa-
tions that range from directors and managers at non-profit organizations to freelance
designers to design graduate students to Entrepreneurs/CEOs to development con-
sultants. The common factor across most members is that their work focuses on
development or social programs.

For the list of development “focus areas” (Fig. 4.2c), Table 4.1 lists all the nine
possible focus areas, along with how frequently each area occurs in the cases. Focus
areas are not mutually exclusive; a case study can include multiple focus areas.

The list of HCD Toolkit methods that the case used (Fig. 4.2d), is encoded in
a 809 x 39 binary matrix, where each row is a case, each column is method, and a
cell is one if that method was used in that case study and zero otherwise. As is evi-
dent in Fig. 4.2, a case study in HCD Connect can utilize multiple methods. As the
next section demonstrates, this is because different methods complement each other;
for example, a project evaluating mobile phone applications for healthcare might use
interviewing methods to gather user feedback on a prototype, while a storyboard-
ing method could evaluate a user’s workflow. In such situations, methods would be
positively correlated with one another. In other situations, one might expect meth-
ods to substitute for one another; for example, if someone has already conducted an
individual interview then they might be less likely to perform other types of inter-
views. In that case, methods would be negatively correlated with one another. For
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HCD Connect
Example Problem Statements: Methods Used in

Case Study:

Individual Interview,

As we worked side by side with small-holder farmers in
Peru to harvest coffee, we learned there were many things
we could improve to make our device easier to use.
Focus Area: Agriculture.

In-Context Immersion,
Community-Driven
Discovery, Capabilities
Quick Sheet, Participa-
tory Co-Design.

Butcher block furniture is popular in the United States.
However, in India there is a whole market for recycling
waste wood. This recycling can be better if the wooden
pieces are adhered together and then made into furniture.
As in butcher block furniture, here also pieces of wood are
put together to for a plank for furniture.

Focus Areas: Environment; Community Development.

Storytelling With
Purpose, Try Out A
Model, Individual In-
terview, Inspiration In

New Places, Innovation
2x2.

In collaboration with the American Refugee Committee
(ARC) and IDEO.org design team, IDEO.org co-lead, Jo-
celyn Wyatt, shares her experiences facilitating co-design
sessions with women in the Democratic Republic of Congo
in order to gain insights on bringing health, water, and
nutrition solutions to the community.

Focus Areas: Water; Community Development; Health.

Storyboards, Role-
Play, Track Indicators,
Evaluate Outcomes.

Table 4.2: Examples of the 886 design method case studies from HCD Connect. They
contain problem descriptions, as well as the human-selected methods used to solve that
problem and the tagged “Focus Area” of the problem.

the 39 methods in IDEO’s HCD Toolkit, there was almost no incidence of methods
being negatively correlated with one another, meaning that the methods in the HCD
Connect Toolkit did not frequently substitute for one another. Table 4.2 lists some
respresentative examples of the kind of case studies contained in the dataset.

4.3 Using Data to Reveal Design Processes

This section demonstrates how to use the above case studies to answer several ques-
tions about design methods that would be difficult for a novice designer to answer by
just reading a few case studies:

1. How does method usage vary across the entire case study corpus?

57



Chapter 4. Extracting Design Processes

2. Which methods complement one another?
3. Which methods are more or less useful for different kinds of problems?

4. How does method usage compare between professional designers at IDEO and
the rest of the HCD Connect community?

This chapter users one major assumption throughout all sections: that the self-
reported methods used were both accurate and appropriate. (An assumption that
Section 6.2 will address with respect to all chapters of the dissertation.)

Using statistical techniques such as the Bootstrap [33] and False Discovery Rate
Control algorithms [9], the analysis finds that: methods from earlier in the design
process are more frequently used; that certain methods correlate well with others,
primarily within design stages, and to a lesser extent across design stages; that a
select few methods are significantly more common for certain types of development
problems than they are in general; and that IDEO designers use fewer methods overall
than non-IDEO counterparts and tend to focus on earlier design stages. In general,
the algorithms find method pairs that are expected, even though those algorithms
have no knowledge of the content of the design method itself.

For the first question, “How does method usage vary across the entire case study
corpus?”, Figure 4.3 demonstrates the percent of cases that contain a particular
method. From this, one can immediately discern the popularity of methods in the
initial phase of the HCD toolkit (Hear): members use many of these methods in up
to one quarter to one third of all cases. As one moves later in the design process,
method usage decreases.

4.3.1 Finding Complementary Methods

For the second question, “Which methods complement one another?”, Figure 4.4
visualizes the Pearson product-moment correlation coefficients between each pair of
methods across all cases; this correlation ranges between 1 (always used together) and
-1 (never used together). Notably, there are no cases of strong negative correlation;
methods were either positively correlated or uncorrelated. The figure groups the rows
and columns such that each design stage remains together, with the green, orange,
and purple labels corresponding to the Hear, Create, and Deliver stages, respectively.

To dig into these correlations further, this subsection will consider two sets of
data. First, it looks at correlations across all 809 case studies, regardless of which
methods they use. This provides an overall picture of the full corpus and assumes
all case studies are equally valuable. Second, it restricts the corpus to only those
case studies that use methods from across all three phases (“Hear”, “Create”, and
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Figure 4.3: Percent method usage by case. Overall, users use methods from earlier design
stages more frequently.

“Deliver”). This restricted corpus provides a different interpretation of how methods
are related by studying only case studies that covered the entire process.

4.3.1.1 Method comparisons across entire corpus

To highlight which methods are most complementary to one another across the entire
corpus, Table 4.3 rank orders the top 20 method pairs by correlation coefficient—i.e.,
they are the 20 methods most likely to co-occur together. (A full ranked list of all
correlations can be downloaded from the dissertation’s companion website.) This
approach locates many pairs of methods one would expect to be complementary. For
example, the methods Individual Interview, Group Interview, Expert Interview, In-
terview Guide, and Interview Techniques all highly correlate with one another—they
all leverage a type of interviewing. Highly visual methods that involve drawing ab-
stractions or clustering also highly correlate with each other: Create Framework,
Diagrams, Storyboards, Find Themes, and Extract Key Insights. Methods concerned
with assessing the end result of the process correlated together: Evaluate Outcomes,
Track Indicators, Implementation Timeline, and The Learning Loop. Community-
centered methods, such as Build on the Idea and Participatory Co-Design, correlate
with one another. The vast majority of the top-ranked correlations have methods
from the same design stage; this is expected, since methods from the same stage
would have a higher likelihood of complementing one another, as well as being more
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Figure 4.4: Certain methods more positively correlate with other methods, however there
is almost no negative correlation between methods. The shaded boxes indicate the corre-
lation coefficient between methods—darker indicates increasing positive correlation. The
diagonal is thresholded to 0.4 for clarity of presentation, since it always has correlation
of one. Methods from later stages (Create and Deliver) have higher correlation within
each category, as well as across categories. “Hear,” “Create,” and “Deliver” methods are

labeled using green, orange, and purple, respectively.
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Corr.  Method 1 Method 2

0.46 (D) Evaluate Outcomes (D) Track Indicators

0.42 (C) Find Themes (C) Extract Key Insights

0.41 (C) Storyboards (C) Role-Play

0.41 (C) Create Frameworks (C) Diagrams

0.40 (D) Evaluate Outcomes (D) Implementation Timeline
0.38 (D) The Learning Loop (D) Evaluate Outcomes

0.36  (H) Individual Interview (H) Group Interview

0.34 (C) Create Frameworks (C) Storyboards

0.33  (H) Interview Techniques (H) Interview Guide (General)
0.33  (C) Create Frameworks (C) Extract Key Insights

0.33  (C) Build On The Idea (C) Participatory Co-Design
0.33  (H) Individual Interview (H) Expert Interviews

0.33  (C) Participatory Co-Design (D) Holistic Impact Assessment
0.32 (C) Find Themes (C) Create Frameworks

0.32 (C) Find Themes (C) Empathic Design

0.31 (D) Capabilities Quick Sheet (D) Innovation 2x2

0.31 (D) Innovation 2x2 (D) Holistic Impact Assessment
0.30 (D) Try Out A Model (D) Evaluate Outcomes

0.30  (C) Find Themes (C) Diagrams

0.29  (C) Build On The Idea (D) Evaluate Outcomes

Table 4.3: The 20 highest correlated methods from Fig. 4.4; these methods likely com-
plement each other. The method's design stage within the HCD Connect toolkit is shown
in parentheses (‘H," 'C," or ‘D’ for “Hear,” “Create,” and “Deliver," respectively.

similar to each other in goal (thus having multiple activities, like interviewing, con-
stitute several possible methods).

One possible caveat to the above results is that certain cases may only focus on
certain stages, and thus the correlations could be biased toward correlations within
each stage. For example, if a certain project only covered the beginning of the design
process (e.g., the “Hear” stage), then certain complementary methods in later stages
may not correlate as frequently as they would in case studies that cover all design
stages. The next section addresses this caveat by restricting the corpus so that it only
contains cases that used at least one method from each of the three design stages.

4.3.1.2 Method comparisons across cases that use all stages

Restricting the corpus to only those cases that use methods in all three stages (~ 27%
of the 809 cases), Table 4.4 rank orders the top 20 method pairs by correlation
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Corr.  Method 1 Method 2

0.45 (H) Interview Guide (General) (C) Role-Play

0.43 (C) Storyboards (H) Interview Guide (General)
0.43 (C) Storyboards (C) Role-Play

0.37 (C) Create Frameworks (C) Diagrams

0.37  (H) Interview Techniques (H) Interview Guide (General)
0.37 (H) Extremes and Mainstreams (C) Role-Play

0.33  (C) Models (H) Expert Interviews

0.32 (D) Evaluate Outcomes (D) Track Indicators

0.32 (D) Innovation 2x2 (H) Extremes and Mainstreams
0.32  (H) Group Interview (D) Evaluate Outcomes

0.31 (H) Individual Interview (H) Expert Interviews

0.31 (H) Interview Guide (General) (H) Extremes and Mainstreams
0.31 (C) Create Frameworks (D) Innovation 2x2

0.30 (H) Community-Driven Discovery (C) Participatory Co-Design
0.30 (C) Extract Key Insights (D) Innovation 2x2

0.30  (H) Interview Techniques (C) Storyboards

0.30  (H) Individual Interview (H) Group Interview

0.29 (D) Capabilities Quick Sheet (H) Beginners Mind

0.29 (H) Individual Interview (C) Empathic Design

0.29 (C) Models (D) Try Out A Model

Table 4.4: The 20 highest correlated methods from Fig. 4.4, when filtered by cases that
use methods from across all phases. The method's design stage within the HCD Connect
toolkit is shown in parentheses (‘H,” 'C," or ‘D’ for “Hear,” “Create,” and “Deliver,”
respectively.

coefficient, similarly to Table 4.3. The two tables share many similarities, but also
important differences. In terms of similarities, they both continue to highlight strong
correlations for certain within-stage methods. For example, the previous clusters of
Interviewing methods (e.g., Individual Interview, Group Interview, etc.) and Visual
methods (e.g., Frameworks, Diagrams, etc.) remain.

In terms of differences, methods now correlate more by how the method is used
than by the stage it is used in. In Table 4.3, many visual methods from the “Create”
stage correlated together, whereas in Table 4.4 they also correlate with visual methods
from different stages. For example, Frameworks (“Create” stage) and Innovation
2x2s (“Deliver” stage) are highly correlated. Likewise, Community-Driven Discovery
(“Hear” stage) and Participatory Co-Design (“Create” stage) both heavily involve
community participation; they occur as highly correlated in Table 4.4 but not in
Table 4.3.
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The comparison between Tables 4.3 and 4.4 highlights an important assumption
about the above correlation analysis: segmenting corpora will affect the kind of corre-
lations one can expect to find. In Table 4.3 and Fig. 4.4, the clusters and correlations
uncovered temporal variation, despite the algorithms having no knowledge of the de-
sign stages. When the corpus is segmented to remove this temporal variation, factors
relating to the context of the method (e.g., Visual methods) emerge instead. When
applying this kind of technique to new domains, the purpose of the desired corre-
lations and clusters should drive the choice of corpus segmentation. In essence, the
kind of problem one wishes to solve (e.g., dividing methods by time, or how they are
used, or by user group, etc.) needs to affect how one collects and segments the data.

4.3.2 Differences in Method Usage Across Focus Areas

To answer the third research question, “Which methods are more or less useful for
different kinds of development engineering problems?”, this section partitions the
case studies by focus area (Table 4.1). It then computes independent sample t-
statistics for each method’s usage frequency in a focus area, compared with its usage
frequency across all other focus areas. Testing all these combinations results in 351
different statistical comparisons, and Fig. 4.5 plots these t-statistics as a probability
plot. As expected, most of the comparisons result in no appreciable difference (the
straight line), however, on the right and left sides, a few comparisons stand out as
unexpected—these are the methods that are particularly suited for a given focus area.

To quantify exactly which pairs substantially differ from zero, the Benjamini-
Hochberg (BH) procedure [9] can adjust the observed t-statistics. The BH pro-
cedure is a Bonferroni-like post-hoc correction to the results of multiple statistical
tests (i.e., it can correct the 351 t-statistics to account for the increased probability
of false positives). Its principle advantage is that it allows one to directly control the
False Discovery Rate—essentially Type-I error, but across multiple tests. With this,
one can filter down the comparisons in Fig. 4.5 to the reduced list in Table 4.5. This
table contains only method pairs that pass an adjusted 5% Type-I error probability
threshold, assuming independent tests. It orders each method and focus area by the
probability of the observed t-statistic, while also providing the percentage difference
in frequency (%A—essentially the percentage effect size).

The results indicate that several methods had sizable differences in percent usage
depending on the focus area: In Agriculture—Farming Interview Guide (+16%) and
Try Out A Model (+11%); in Community Development—Participatory Co-Design
(+15%) and Community-Driven Discovery (14%); and in Gender Equity—Group In-
terview (+17%). Many of the selected pairs are expected; for example, the algorithm
correctly identifies that the Farming Interview Guide is appropriate for Agriculture
problems, even though the algorithm did not have prior knowledge about what agri-
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Figure 4.5: A Normal Probability plot for focus area method t-statistics. Most methods
in each focus area are not appreciably difference from their usage overall; however, for
select methods on the left and right hand side, their usage patterns differ from other focus
areas. Table 4.5 lists the methods whose usage differs across particular focus areas.
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Prob.
5.8e-17
3.4e-08
2.6e-07
1.0e-05
6.8e-05
3.6e-04
4.9e-04
7.2e-04
8.4e-04
1.1e-03
1.1e-03
1.3e-03
1.5e-03
1.6e-03
1.7e-03
1.8e-03
2.1e-03
2.1e-03
2.3e-03
2.6e-03
2.9e-03

Table 4.5: Methods whose usage in a given Focus Area is significantly different from all
other Focus Areas. The first column lists the probability of the observed t-statistic, the
second lists the difference between the usage percentage of that method in that focus area
with respect to other focus areas, the third column lists the method, and the forth lists the
particular focus area in which method usage was different. These methods were selected
from those in Fig. 4.5 using the Benjamini-Hochberg procedure at a False Discovery Rate

% A
15.7
15.3
11.6
14.3
4.7
8.7
17.1
8.9
5.3
-11.1
-14.4
8.0
7.9
13.2
15.3
7.4
4.5
17.3
4.6
7.8
5.9

Method

Farming Interview Guide
Participatory Co-Design

Try Out A Model
Community-Driven Discovery
Mini-Pilot Worksheet
Holistic Impact Assessment
Group Interview

Storytelling With Purpose
Track Indicators

Expert Interviews

Individual Interview

Build On The Idea

Farming Interview Guide
Storytelling With Purpose
Community-Driven Discovery
Storytelling With Purpose
Health Interview Guide
Community-Driven Discovery
Innovation 2X2

Evaluate Outcomes

Holistic Impact Assessment

Focus Area

Agriculture

Community Development
Agriculture

Community Development
Agriculture

Environment

Gender Equity
Education

Agriculture

Water

Water

Community Development
Environment

Gender Equity

Gender Equity
Community Development
Health

Financial Services
Agriculture

Environment

Community Development

(FDR) of 5% assuming independent or positively correlated tests.
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culture means. This provides a unique view of methods that uses the corpus of data
to illuminate meaningful differences with respect to a problem’s focus area.

4.3.3 Differences Between IDEO and non-IDEQO users

For the last question, “How does method usage compare between professional design-
ers at IDEO and the rest of the HCD Connect community?”, this section compares
the method usage behavior between IDEO and non-IDEO affiliated users. This affil-
iation is a proxy for a particular design culture, since there was no straightforward
way to separate out professional designers and non-professional designers from the
non-IDEQO user pool.

Figure 4.6 demonstrates the differences in how IDEO and non-IDEO members
report methods. In the IDEO case, the designers place heavier emphasis on earlier
stage (Hear) methods, with method usage dropping off rapidly in later stages. More-
over, those designers did not report many case studies where they used methods from
multiple stages (e.g., Hear+Connect). This is in part due to the low percentages of
Create or Deliver methods in general, but also could be due to different reporting
styles—IDEO designers could systematically split their cases into multiple case stud-
ies over different stages, rather than a single case, or they could only be hired for
projects in the “Hear” stage of development. Another possible explanation could be
that IDEQO’s culture or the particular structure of their toolkit creates an unstated
preference or emphasis on earlier stage methods, or possibly that members selectively
report cases they believe would fit that culture.

Comparing individual methods, Fig. 4.7 confirms Fig. 4.6: IDEO users use fewer
methods overall, but have a much higher percentage usage in the initial Hear stage,
rather than in the Create or Deliver stage. In addition, Fig. 4.7 demonstrates that
IDEO designers prefer certain types of methods for each phase, compared to non-
IDEO designers who use more of a mix—for example, IDEO designers appear to prefer
methods that involve data interpretation, such as extracting insights and themes,
building frameworks and models, etc. (many of those methods complement each other
as per Table 4.3). Since this data involves only self-reported method usage from after
a completed design process, there is potential for self-selection: observed differences
between groups might be caused not only by differences in behavior, but also by
differences in what methods or projects an individual chooses to report. Also, IDEO
could be hired to perform more projects that use methods from the “Hear” stage,
leading to the differences observed in Fig. 4.7.
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Category Usage: Overall
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Figure 4.6: Method usage grouped by organizational affiliation. Combined columns, such
as “Hear+Create,” indicate cases where at least one method from each category was
used in the case. IDEO members contribute case studies that typically focus on the first
design stage (“Hear"), and rarely submit cases that combine methods across different
design stages. In contrast, non-IDEO members contribute cases that use a more even
distribution of methods from different design stages, and typically combine methods from
different stages in a single case-study.
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Method Usage:
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Figure 4.7: Differences in particular method usage between IDEO and non-IDEO mem-
bers. The methods are grouped by green, orange, and purple for “Hear,” “Create,” and
“Deliver" respectively. As noted in Fig. 4.6, IDEO members tend to use fewer methods
per case overall, and particularly focus on the first design stage (Hear).
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4.4 Using Data to Group Design Methods

The above section demonstrated how method covariance could lend insight into the
relationships between pairs of methods and how they are applied. Taking this one step
further, this section shows how that same covariance can be used to uncover global
groups among multiple methods, thus providing an automatic way of categorizing
design methods. The key technique this section uses to cluster design methods is
Spectral Clustering.

Spectral Clustering is an unsupervised learning algorithm which represents
design methods as a graph, where each method is a node, and methods are linked
to each other with weights equal to their similarity (in this case their covariance
or correlation, e.g., Table 4.3). This creates a densely connected graph where all
39 x 39 methods are connected to each other. Finding groups within the graph is
then equivalent to cutting links in the graph until the graph splits into multiple pieces.
That problem is called the discrete graph-partitioning problem, and is NP-Hard.

Spectral Clustering approximates that problem by relaxing the discrete problem
into one based on the eigenvalues of the similarity matrix between methods (e.g.,
Fig. 4.4), called spectral graph partitioning. It works by decomposing the similarity
matrix into its eigenvectors and eigenvalues, and then keeping the k-highest eigen-
value/eigenvector pairs, where k is the number of clusters one wants to partition the
data into. This projects points that were originally in a 39-dimensional space, down
onto a 3-dimensional space. The idea is that points that were similar to one another
but spatially far away in a 39-dimensional space will be projected close to one an-
other in the 3-dimensional space. Once in this smaller space, one can then run any
standard distance-based clustering algorithm, such as K-means clustering, to group
points more effectively.

To use Spectral Clustering on design methods, one needs to determine two things:
what should the similarity input matrix contain, and how many clusters should ex-
ist? For the former, a reasonable choice of similarity is the covariance matrix between
methods (seen in Fig. 4.4 above). However, the empirical covariance matrix produces
poor eigenvalue estimates (what Spectral Clustering uses), so one can use the Graph-
ical Lasso [41] instead which transforms the empirical covariance into a matrix with
less biased eigenvalue properties.

For the number of clusters (k), IDEO themselves group their methods into three
clusters (“Hear,” “Create,” and “Deliver”), so this section uses the same number
(k = 3) to compare the automatic groupings to those provided by IDEO. Using cross-
validation, Spectral Clustering produced groups that agreed with the IDEO provided
clusters to an average of 92% accuracy (36 of 39 methods) on average. Figure 4.8
shows an example of the clusters found using spectral clustering; this is similar to the
original labels seen in Fig. 4.4. This result is surprising, since the clustering algorithm
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did not have any prior information about the categories, and was able to determine
the expert-provided labels using only the method co-occurrence contained in the case
studies. This also leads to a straightforward area of future research: could these types
of automated clustering algorithms find further clusters within methods, or generate
an hierarchical taxonomy of methods?

4.5 Using Data to Recommend Design Methods

While the above sections analyzed existing case studies, this section focuses on rec-
ommendation, specifically, how does one use existing case studies to help designers
pick better methods for future problems. This section demonstrates the performance
of three types of recommender systems on the task of recommending design meth-
ods for new problems: Content-based filtering, Collaborative Filtering, and Hybrid
Filtering. It finds that Collaborative and Hybrid Filtering, which utilize the method
covariance, outperform strictly Content-based Filtering, which only uses attributes of
the problem.

4.5.1 Content-Based Filtering

Content-based Filtering for recommending design methods involves summarizing the
problem descriptions, and then using that text to predict which methods are most rel-
evant for a given problem—the intuition being that design problems that have similar
problem descriptions may use similar methods. This section uses Latent Semantic
Indexing (LSI, also referred to as Latent Semantic Analysis—LSA) to quantify that
similarity [82]. LSI employs the bag-of-words model for representing a text document,
which ignores word order and grammar, and considers only frequency of word occur-
rence. Given the 886 case study descriptions, Singular Value Decomposition (SVD)
projects the word count matrix into a latent space of 50 topics. The resulting 886 x 50
matrix M contains a row for each case study and 50 columns representing the case’s
similarity to each of the 50 topics. The algorithm then uses this topic matrix to train
a classifier, which outputs the probability that a given method m will be used in each
design case c.
This section evaluates four different Content-Based Filtering algorithms:

Random Forests: an ensemble classification technique that fits a number of decision
tree classifiers to randomized sub-samples of the dataset; it uses these subsam-
ples to rule out non-useful features and gives us a straightforward method of
discarding unimportant text topics.
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Figure 4.8: Performing spectral clustering on the 39x39 method covariance matrix reveals
groups of methods that covary together. Lighter tones represent low covariance, while
darker tones represent high covariance. The different hues denote different clusters, with
a dark grey box around each cluster of methods. The clusters found by spectral clustering
accurately reflect the expert-given categories used by IDEO in their HCD Toolkit; from
left to right, the boxes on the diagonal correspond to “Deliver,” “Hear,” and “Create”
methods, respectively.
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Support Vector Machines (SVMs): non-linear classifiers that construct a hyper-
plane in high-dimensional space; it identifies complex boundaries between topics
and their interactions.

Logistic Regression: a type of generalized linear model used for the classification;
it provides a simple method for determining important text topics (like Random
Forests), and is computationally efficient as the number of cases increases.

Naive Bayes: a probabilistic classifier that assumes feature independence across
variables and applies Bayes’ rule to label categorical data; it also provides a
simple method for determining important text topics, as well as easily scaling
to a larger number of cases.

Any algorithm hyper-parameters were optimized using randomized search with cross
validation using the Scikit-Learn library [99].

4.5.2 Collaborative Filtering

Instead of using problem content to determine which methods are most relevant for
a given problem, collaborative filtering approaches analyze the methods that com-
monly occur together. This section constructs a collaborative filtering model based
on Matrix Factorization:

fle,m) = be + b+ < Ve, Uy, > (4.1)

where f(c, m) represents the score for a particular method m when applied to case
c. b, represents a baseline score for a given case (some cases use more methods
than others), and similarly b, represents a baseline score for a given method (some
methods are more popular than others, regardless of the case).

The inner product < v,, v,, > captures the interaction between methods and cases;
v, and v, refer to latent dimensional vectors of length k, with a separate vector for
each case and method, respectively. For example, using k = 2 places each case and
method onto a 2-D plane. If the two vectors lie close to one another in the 2-D space,
they get a large positive score; if far away, a large negative score.

The algorithm determines the values for k, b., b,,, v., and v,,, by minimizing
prediction error: the mismatch between the methods that it recommends and the
methods that were actually used. This section encodes that error through a logarith-
mic loss function of the following form, where y.m) € {1, —1} represents whether or
not the case actually used the method:

‘C(f(c7 m)a y) = Z Z In (1 + eXp(_y(C,m) : f(C, m)) (42)

ceC meM
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Evaluating Eqn. (4.1) for each ¢, m pair yields the expected recommendation score,
and Eqn. (4.2) encourages that score towards 4oo for appropriate methods, and
towards —oo for unused methods. The algorithm uses quadratic (L2) regularization
to prevent the latent factors from overfitting the training data (improving performance
on future data). Combining the loss function in (4.2) with the regularization, the total
loss function across the entire dataset becomes:

A
L(fle,m)y) + 5 Do loel®+ 02+ Y llvwll? + 03, (4.3)

In the below experiments, Stochastic Gradient Descent minimizes the combined
loss function in Eqn. (4.3), although any descent-based optimizer would suffice since
the loss function is convex.

4.5.3 Hybrid Filtering

Hybrid Filtering models incorporate both content and collaborative information by
adding case-dependent “focus-area” terms into the collaborative filtering model. Fo-
cus areas (tags given by the HCD Connect community) describe which areas the case
focuses on, such as “Health,” “Education,” or “Development” among others (see the
first column of Table 4.2 for examples).

To add these content features to Collaborative Filtering, the model gives each
focus area its own k-dimensional latent vector (like the methods and cases), and then
optimizes the locations of those vectors for each focus area. This section chooses to
use focus areas as a content feature because, intuitively, the useful methods for one
focus area (e.g., Agriculture), may not be the most useful in a different focus area
(e.g., Healthcare). This adds an additional term (veent) to the Collaborative Filtering
model in Eqn. (4.1):

fle,m) = be + byt < Ve,V > + < v, Z Veont > (4.4)

contec

where Zcomec Veont Tefers to the addition of all content vectors present in the case.
The inner-product < v, veons > acts like the previous inner-product < wv.,v,, >,
measuring the similarity between the case vector and the combined content vectors.
With the exception of the added content vectors, all other aspects of the model are
identical to Collaborative Filtering.
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4.5.4 Results

On all models, the data were separated into an 80/10/10 stratified random split for
training, optimization, and testing, respectively. One hundred iterations of random-
ized search with 4-fold cross validation optimized all hyperparameters in each model.
The best performing parameter choices for each algorithm were tested on the remain-
ing unseen testing data to compute their respective performances.

A Precision-Recall curve is the standard method of comparing different recom-
mender systems [60, 132]. The curve trades off two quantities: precision and recall.
Precision is the percentage of recommended methods that were actually used in a
case—if the algorithm recommends 10 methods, but only 5 of those 10 were used in
the case study, the precision was 50%. Recall is the percentage of methods actually
used in a case that were recommended by the algorithm—if the case actually used
8 methods, and the algorithm only correctly recommended 6 of those methods, then
the recall was 75%. By changing the number of methods the algorithm was allowed to
recommend (e.g., from 0 to 39 methods), one can evaluate the system’s performance
over a range of precision and recall values—this creates a precision-recall curve, which
can be plotted to evaluate an algorithm’s performance. This curve essentially sum-
marizes how well the algorithm presented users with meaningful methods for their
design problem. (Companies such as Google use similar metrics to evaluate perfor-
mance for related tasks like web-page ranking [52].) In this use case, higher degrees
of precision are more important than higher degrees of recall. Namely, a small set
of highly relevant methods is a more valuable recommendation than a complete set
including many lower-ranked methods.

For comparative purposes, this section also tests the performance of two base-
line algorithms: randomized recommendation and popularity-based recommendation.
Randomized recommendation randomly selects & of the 39 methods for recommenda-
tion. Popularity-based recommendation rank-orders the most frequently used meth-
ods and simply recommends the first £ most popular methods, regardless of the case.

Figure 4.9 shows the precision-recall curve for each algorithm. Figure 4.10 demon-
strates the 95% confidence bounds (using bootstrap resampling) for the area under
those curves—higher area indicates better average precision, and thus better recom-
mendations. As expected, all models outperform the randomized baseline. Popularity
performs slightly below that of text-based analysis using Random Forests, while using
only a single, efficient predictor. Collaborative filtering uniformly outperforms both
the popularity baseline as well as the text-based content features; the added content
features in the Hybrid model do not discernibly improve the performance. (Future
research may uncover different content features that positively affect performance.)

In addition to general performance, one might also be more interested in how the
algorithms perform on more specific or uncommon methods. For example, a designer
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Figure 4.9: Precision plotted as a function of recall. The higher the area under the curve,
the better the algorithm’s performance.

would likely use popular methods regardless (possibly out of habit), but might only
use certain uncommon methods when particularly appropriate—a successful method
recommendation algorithm should perform well over uncommon methods, as well as
popular ones. To test this, Fig. 4.10 computes the precision-recall performance on
the ten least frequently used of the 39 methods, and integrates the area under the
precision-recall curve; this total area is called the AUC, for Area Under the Curve, and
measures overall recommendation performance (higher AUC is better). Collaborative
and Hybrid filtering still perform significantly better than the alternatives.

4.6 Implications for Design Processes

This chapter raises several points regarding the role of community-generated data
in the study of design processes, both at the level of understanding a given design
process and for recommending design methods for new problems.

4.6.1 Implications for Understanding Design Processes

Sections 4.3 and 4.4 both demonstrate how aggregating method usage across a cor-
pus of case studies can lead to insights about design methods and processes. For
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Figure 4.10: The area under the precision-recall curve (AUC) across the models. The
error bars represent the 95% empirical confidence bounds about the median AUC for each
method, calculated using bootstrap resampling. The hybrid and collaborative filtering
models perform substantially better than the popularity baseline. The Random Forest
classifier produces a detectable, but small, improvement over the popularity baseline
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example, in regards to the design for development projects, statistical analysis tech-
niques highlight the following two implications for designers: determine whether your
particular problem requires a specific type of method before diving in, and compare
the covariance between methods you use to uncover groups of methods that might
complement one another.

Determine whether your particular problem requires a specific type of method
before diving in. Figure 4.5 and Table 4.5 used techniques from large-scale hy-
pothesis testing and False Discovery Rate Control algorithms to demonstrate how
certain methods work well in particular problem types; One area open to debate lies
in determining an appropriate minimum effect size: is a 17% increase in a method’s
usage important enough? At what threshold is a focus area’s effect on a method too
large to ignore? Many methods did not differ among problem types—this points to
a dichotomy between general-purpose methods and problem specific methods that
can be illuminated by the data-driven techniques in this chapter. The analysis in
section 4.3.2 analyzed relationships between methods and a single factor: the prob-
lem focus areas. That type of analysis can easily be extended to other factors, such
as budget constraints, time requirements, or applicability to different types of users,
for example. Some research has begun to map out factors that might differentiate
methods [108] and would be a natural extension of the work in this chapter; both
quantitative and qualitative work would complement these existing results.

Compare the covariance between methods you use to uncover groups of methods
that might complement one another. Fig. 4.4 and Table 4.3 demonstrate that
methods are not independent from one another. Understanding how methods relate
to one another, whether by automatic means (such as correlation coefficients) or
through qualitative study, would allow one to make more strategic method choices.
For example, if you know that Storyboards better complement Role-Play over Group
Interviews you can make smarter user research choices and trade off breadth for
depth. Section 4.4 showed that features, such as method covariance can accurately
group related methods together—in this case replicating human-given groupings to
92% accuracy. This points to using method co-usage as a similarity criterion when
attempting to decompose methods into different types.

One limitation of Spectral Clustering is that its groupings are only single mem-
bership (i.e., methods can only belong to one group), rather than mized membership.
This assumption is good for some types of categorizations, but not for others; for
example, when methods might be exclusive across different design stages, such as the
HCD Toolkit, single membership models will be fine. Future work should certainly
explore more complex methods of clustering or grouping methods, including using a
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combination of collaborative and content features to define method similarity as well
as mixed membership clustering models.

An implication brought to light when comparing Tables 4.3 and 4.4 is the effect of
segmenting one’s data when analyzing method covariance. In that case, segmenting
the case studies by phases presented a different and complementary view of a similar
ideas: by performing clustering on covariance between methods, one can uncover
grouping that relate the methods. In the one case (Table 4.3), the methods could be
divided by design phase, which is temporal, whereas when one removes that temporal
aspect (Table 4.4), the methods instead group by how they are used (Visual methods
vs. Interviewing methods, etc.). This difference is a strength, rather than a weakness
of clustering methods, as they provide different means to understand the complex
relationships between methods beyond a single factor, such as time.

4.6.2 Implications for Recommending Desighn Methods

Section 4.5 offers up several possible implications for design method recommendation
systems. First, one should not ignore collaborative features in favor of text features,
especially when the collaborators have a reasonable level of expertise. Second, fu-
ture research needs to maximize the benefits of combining content and collaborative
features.

Collaborative features have higher predictive accuracy than text-based features.
Comparing the precision-recall performance, collaborative-based approaches perform
substantially better than the content-based approaches that relied solely on text fea-
tures. This was unexpected, given the prevalence of text-based recommendation for
ranking documents. However, given the use case, it is also understandable—the time
needed to apply a method or the people required to execute it (among many other
factors) could both affect a method’s usage in ways not discernable from the case’s
description.

One possible explanation for the fact that the content-based features offered little
improvement is that the methods and focus areas could be too general to meaningfully
distinguish themselves. For HCD Connect, the above sections demonstrated that a
small subset of methods do occur more frequently depending on the specific focus
area, so one would expect the addition of focus areas to have a meaningful effect.
That said, a more thorough description or ontology of methods that accounts for
these differences between methods or categories may improve future performance of
content-based recommender systems, and some recent work has begun to collect this
information [108]. Incorporating improved content features would be a fruitful area
of future research.
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Combinations of the features offered only marginal improvement. Combining
content features (in the form of focus areas) with collaborative filtering did not offer
a detectable improvement in performance. This could be attributed to the choice of
content features, or possibly to the choice of model in Eqn. (4.4) (although similar
models are effective in other domains [8]) More advanced collaborative filtering mod-
els, such as Bayesian Probabilistic Matrix Factorization models, could also improve
recommendation performance by incorporating prior knowledge or more sophisticated
content features [82, 109].

4.6.3 Generalizing beyond HCD Connect

Although this chapter has evaluated recommendation systems against the HCD Con-
nect dataset and its corresponding methods, the proposed algorithms do not depend
on the choice of this specific dataset; they are agnostic towards the choice of methods
and evaluate only the relationships between cases and methods. This means that de-
sign method recommendation systems (section 4.5) can be generalized beyond HCD
Connect and user research methods at the beginning of the design process. Design
practitioners can use these techniques for other classes of design methods, such as de-
sign optimization methods, mechanical design techniques, functional synthesis, and
more, so long as one can find appropriate case studies that use those methods.

Likewise, the clustering methods in section 4.4 are designed to transfer to different
types of methods or domains. When doing so, covariance will still remain important,
though the single-membership clusters assumed by Spectral Clustering might not
perform well in domains where methods can be clustering along many dimensions. In
these cases, more complex clustering models, such as Co-clustering (clustering both
methods and cases) [30] or Infinite Latent Feature Models (uncovering latent features
given method similarities) [54] could provide more insight.

4.7 Summary

This chapter covered how to use data-driven techniques to infer properties of design
processes that would be difficult to perform manually. It focused on the HCD Connect
community, which applies front-end user research methods to design for development
projects. Specifically, the chapter tackled three tasks: finding relationships between
methods and how they are applied; grouping methods into logical categories; and
recommending design methods for new problems.

Using techniques from large scale hypothesis testing, such as False Discovery Rate
Control algorithms, section 4.3 showed how community generated case studies can
shed light on how methods are applied to different problems. It identified methods
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that complement one another or those that are particularly useful in certain types of
focus areas (e.g., Agriculture, Community-Development, etc.), as well as illuminated
differences between IDEO and non-IDEQO designers.

By leveraging how methods covary with one another, section 4.4 demonstrated
how Spectral Clustering could categorize methods into groups that matched human-
given labels to within 92% accuracy. This points the way towards using community-
generated data to improve design education around different types of methods.

Lastly, section 4.5 described how to apply techniques from recommender systems
to help designers select better methods for new problems. It proposed recommender
systems that leveraged both the content of design problems and how methods covary.
Of those systems, Collaborative Filtering algorithms outperformed others, although
future research could address other content features that may improve performance
for all systems.

Beyond quantitative analysis, future work could address several complementary
qualitative questions. Further content analysis of the case studies themselves could
elaborate why particular methods were chosen, along with what worked well or poorly.
Another helpful next step would be to establish a better qualitative understanding
about why certain methods were chosen for particular types of problems (e.g., Farm-
ing Interview Guide for Agriculture versus Participatory Co-Design for Community
Development). Including a wider set of methods and cases from a dataset such as
theDesignExchange [108, 107] would broaden the above analysis to outside of design
for development methods.

With both a quantitative and qualitative picture of how user research methods are
applied in design for development projects, one can be better equipped to make the
right resource decisions when embarking on design for development projects, creating
better products and services by making sure that designs address the correct user
needs.

Thus far, the dissertation has looked at overall design communities, how they
form, and how one can understand design processes within that community. The
next chapter looks within a design process at the resulting ideas that community
members generate. It explores how to evaluate those ideas in a way that scales to the
size of typical online design communities.
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Figure 5.1: This chapter addresses the role of data at the design idea level: how does one
evaluate the creativity of thousands of ideas generated by an online community?

Chapters 3 and 4 demonstrated how online design communities form and move
through a design process to generate ideas. This chapter now moves to the individual
idea level: assuming there is a vibrant community that is generating tens of thousands
of ideas, how does one possibly evaluate all of them? Specifically, this chapter answers
the question “how does one evaluate the creativity of ideas in a way that scales to

tens of thousands of ideas?”

Portions of this chapter appear previously in [45]
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To address scalable idea creativity evaluation, the chapter describes how aspects
of creativity (e.g., Novelty, Variety, Surprise, etc.) connect to a fundamental mathe-
matical object called a submodular function that models diminishing marginal utility.
By viewing creativity through the lens of submodular functions, the chapter proposes
a type of logistic regression model that can leverage human evaluations of creativity
(e.g., “design portfolio A has more variety than design portfolio B”, or “design C is
more novel than design D”) to predict the creativity of a new idea or set of ideas.
This allows a small sample of human-given evaluations to train a model that can scale
to tens of thousands of ideas or more, combining the strengths of human experts with
the scalablity of a computer algorithm. This type of model provides an efficient way
to evaluate several orders of magnitude more ideas than was previously feasible.

To validate the model, experiments demonstrate how the algorithm accurately
recovers the existing variety metrics of Shah et al. [118] and Verhaegen et al. [131]
to an average of 97.5% accuracy after 500 binary ratings. The chapter also presents
results regarding the convergence rate of the algorithm and its robustness under
increasing signal-to-noise ratios. Throughout, this chapter will use variety metrics
as the working example, though section 5.4.1 describes how the proposed model is
extensible to any metric that depends on diminishing marginal utility.

5.1 Related Work

In addition to the background covered in chapter 2, this chapter builds upon two
additional bodies of work: 1) design creativity metrics, and 2) submodular functions.

5.1.1 Measuring Design Creativity

If the goal is to reliably and accurately evaluate the creativity of a large set of crowd-
generated ideas, this chapter first needs a concrete definition of what design creativity
is, and how one can measure it. This is not a straightforward task because researchers
have yet to reach consensus on what design creativity metrics are appropriate [13,
16, 26, 47, 18, 101]. Saunders and Gero [113] draw distinctions between what unit
creativity is being defined over, such as whether one wants to measure creative design
outcomes, design processes, people, or environments. For example,

Creative Design Outcome: people viewed the iPhone as a creative product, when
it first appeared, due to its novelty with respect to existing phones.

Creative Design Process: the design consultancy IDEO is often described as hav-
ing a creative process (or means of producing ideas), irrespective of a particular
design itself.
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Creative Design Person: famous designers, such as Jonathan Ive and Philippe
Starck, can gain reputations for being particularly creative in and of themselves.

Creative Design Environment: certain workspaces, irrespective of the designers
or products within that space, can be viewed as intrinsically promoting greater
creativity than other workspaces—for example, visitors often remark “this looks
like a creative place” upon entering the Berkeley Institute of Design.

Boden describes creativity along a different dimension: historical (H) vs psycho-
logical (P) creativity [13]. If an object possessed historical creativity, it would
be novel with respect to all previously known ideas, whereas if it possessed psycho-
logical creativity it would only be novel with respect to the particular individual
evaluating the idea. For example, the first generation iPhone might be viewed as
historically creative, since, at the time of its inception, no other phone had ever per-
mitted anything close the functionality or experience it provided; later smartphones
would seem less historically creative by comparison. However, to a seven year old,
who has lived around smartphones her entire life, the first generation iPhone may
seem antiquated, and not nearly as creative as the newest iPhone model with the
latest features; the first generation iPhone would have lower psychological creativity.

In relation to this larger body of work, this chapter considers outcome-based met-
rics (e.g., the novelty of a particular design) as judged in a P-creative sense (i.e.,
from the standpoint of an individual’s assessment) [13]. This is the primary bench-
mark that many organizations investing in online design communities care about:
will present-day individuals find this particular product or service creative and dif-
ferent? For outcome-based metrics, there have been two primary approaches that
past researchers have taken to model creativity: model-based metrics and human
judgement-based metrics.

5.1.1.1 Model-based Metrics

Outcome metrics that are model-based attempt to mathematically predict the cre-
ativity of a set of designs. These come in many kinds, with the most widely used
being hierarchical models followed by graph models.

Hierarchical models measure creativity for sets of designs by encoding the set as
levels in a genealogical tree. An outcome metric, such as variety, is then calculated by
summing over parts of the tree. For example, a founding metric of this type by Shah
et al. [118] encodes concepts into a tree of functions, and then breaks down creativity
into four additive sub-metrics: the quantity and variety of the set as a whole, and the
quality and novelty of each idea individually [118].

Several researchers have since altered Shah’s hierarchical model for various rea-
sons: Nelson et al. [87] offer a refined version that fixes several modeling errors;
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Verhaegen et al. [131] combine Shah’s metric with a tree entropy penalty, called the
Herfindahl index, to encourage “uniformness of distribution” —essentially preferring
trees that have even branching; Chakrabarti et al. [111] propose to ground Shah’s
approach in a broader set of functional categories.

Graph-based outcome metrics take a similar approach, but instead of breaking
down designs into genealogical trees they compute graph features using attributes
like similarity or cluster distances and combine weighted sums of those features. For
example, Maher [81] defines novelty as how far away a new concept is from clusters
of previous concepts, where the clusters are created using a prior concept similarity
graph.

The benefit of model-based metrics is that they are easy to compute once someone
encodes the features of the ideas, and thus scale well to large design communities. This
also makes them reproducible, given the same concepts. Their main disadvantage is
that each metric has to be custom designed for a particular domain and application;
for example, Shah et al.’s metric [118] only works for simple mechanical devices based
on hierarchical function decomposition. This makes it difficult to adapt existing work
to new types of design or different domains.

5.1.1.2 Human Judgement-based Metrics

Outcome metrics that are human judgement-based assume that the full extent
of what defines creativity cannot be captured in a mathematical model, and that
the judgement regarding what is creative is best given by humans themselves. As
a result, these approaches typically use a small set of human raters, often domain
experts, who manually rate designs on a Likert-type scale. The desired outcome met-
ric (e.g., novelty, variety, usefulness, etc.) is then computed as some combination
(typically the average) of the human ratings. Metrics that fall under this category
include Amabile’s Consensual Assessment Technique [5], Carrol et al. ’s Creativity
Support Index [22], and the Creative Product Semantic Scale [93]. Oman et al. [92]
offer a comprehensive comparison of different examples of this class of metrics: differ-
ent methods of evaluation include scale ratings, flow charts, novel models, adjective
pairings, and A/B tests. Each of these methods tests for different components of
creativity, including novelty, need satisfaction, attention to detail, functionality, and
availability of existing solutions.

While human judgement-based metrics have excellent validity (a high score, by
definition, is what real humans considered P-creative), they suffer from two funda-
mental challenges: reproducibility and expense. Even if it were possible for multiple
studies to utilize the same expert raters, differences in knowledge or attitude at the
time of rating can make the human evaluators inconsistent with prior ratings. This
makes it next to impossible to exactly reproduce findings from other studies, even
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if the concepts themselves are the same. Indeed Srivathsavai et al. [122] found that
inter-rater reliability between experts can be low, depending on which aspects of
creativity are being evaluated. More importantly, the collection of expert ratings is
expensive, requiring multiple raters for every single concept considered. This makes it
difficult to judge creativity on a large scale consistent with online design communities.

The model proposed in this chapter falls under the category of a model-based
metric. However, it differentiates itself from prior work in that it fits the model to
human judgement data automatically. This requires a small amount of expensive
human evaluation data, but then pays off with a reproducible metric that has high
external validity.

5.1.2 Submodular Functions

Thus far most of the algorithms or models this dissertation has covered are general
enough to use for any type of function or statistical learning situation. However,
what if the domain of the problem restricts the types of functions that are useful?
In this chapter, problems related to design creativity often obey a property called
diminishing marginal utility. This property states that the more you have of
something, the less each additional unit is worth to you. For example, if you are given
the choice between a piece of chocolate and an apple, you might, at first, choose to
eat the chocolate. However, eating after your tenth piece of chocolate, you might be
so tired of eating the same thing that the apple becomes a more appealing choice.

To model diminishing marginal utility, this chapter uses a particular type of math-
ematical function called a submodular function. If a function is submodular then
if one has a set of items A, and adds x to it, there will be a greater increase in value
than if one had the set {A Uz} and added 2’ to it—the more things one adds to A,
the less each addition is worth. A common example of a submodular function in one
dimension would be the logarithm (for each positive dx, dy decreases). This definition
is where submodular functions gain their usefulness: it is identical to the principle of
diminishing marginal utility. Formally, submodular functions are set-based functions
where, for a function p and two sets A, B € Q: p(A) + p(B) > p(AU B) + p(AN B).
This is similar to the behavior of the logarithm as described above, except that A
and B are sets, rather than a continuous variable x.

Recently machine learning researchers have adapted submodular functions to solve
large-scale problems involving diminishing marginal utility. Information overload on
the web opened up opportunities in webpage retrieval for developing algorithms that
recommended an optimally diverse set of relevant webpages to users (rather than just
the most relevant). This led to formally defining the idea of “coverage” for a set of
documents—the extent to which a set of items covers all possible elements. Finding
the set of documents with maximum coverage is called the Maximum Coverage
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Problem, and has been proven to be NP-Hard.

To efficiently approximate the Maximum Coverage Problem, submodular func-
tions were applied to document retrieval by El-Arini et al. [34] in order to find the op-
timal approximate solution. This approach was particularly interesting, since various
lower bounds on the performance of submodular functions [88, 70] proved that they
provide the best-possible approximation to solving the Maximum Coverage Problem.
Since that time, others have built upon the use of submodular functions for diverse
retrieval, notably the work by Ahmed et al. [2], upon which the model in section 5.2.2
is based.

Using these submodular functions, this chapter combines the advantages of both
model-based and human judgement-based approaches by using an easily computable
and expressive metric that can be automatically trained from collections of human
judgements. Specifically, it discusses how many existing model-based metrics are
based on minor variations of diminishing marginal utility, and presents a model that
ties these existing metrics together under a general theory. This creates strategies
for mitigating the two main disadvantages of model-based metrics. By training this
model on collections of human judgements, the model can provide the external validity
of human assessment with the computational friendliness and repeatability of model-
based metrics. Moreover, by generalizing many prior model-based metrics as special
cases of diminishing marginal utility, this model allows researchers to adjust existing
model-based metrics to better match human assessment.

5.2 Variety Model

This chapter’s core insights lie in the following connections:

1. Many common elements of creativity, such as variety or novelty, are naturally
expressed via the principle of diminishing marginal utility.

2. Diminishing marginal utility can be expressed in a computationally advanta-
geous way via submodular functions.

3. Submodular functions can easily utilize many of the design representations used
in current creativity metrics.

4. Given a set of designs, human experts have a hard time agreeing on real-
numbered values (i.e., interval scales) for its creativity, while it is fairly easy for
them to make binary “greater than” or “less than” (i.e., ordinal scale) judge-
ments.
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Figure 5.2:  The overall approach 1) takes in design representations of two set of con-
cepts (A and B), 2) encodes each of those sets into a vector of features describing the set,
3) transforms those features through one or more submodular functions (p(A), p(B)),
thereby introducing diminishing marginal utility, and finally 4) determines which of the in-
put sets has greater variety by using a weighted (w) difference (p(A) —p(B)) between the
submodular features of the two sets. The weight of each submodular feature (w) is opti-
mized through a logistic regression such that the model matches expert-rated comparison
data as closely as possible.

These connections drive the approach described below and shown in Fig. 5.2. A
submodular function approximates variety by using a design feature vector along with
a set of human judgements to identify how much the presence of each design feature
impacts creativity.

5.2.1 Connecting Creativity, Diminishing Marginal Utility, and
Submodular Functions

To see how creativity, diminishing marginal utility, and submodular functions are
related, return to the task of estimating variety: Using a variant of the example
presented in Shah et al. [118], suppose you have a set of student generated designs
whose purpose is to move an object from point A to point B, and you want to select
the two designs from that set which have the most variety. For simplicity, assume
that there are just three designs: 1) a small cart that propels itself forward using a
balloon filled with air, 2) a similar cart, but propelled using a fan, and 3) a small
catapult. Say that you choose the first cart as one of your two final choices, which
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of the other two design do you pick? Since you already have a balloon-propelled
cart design, it doesn’t give you much value to pick the second cart, which also uses
a form of wind propulsion. This additional value is your marginal utility, and it is
diminishing because the second cart design is not as valuable to you as the first (even
if they are equally good designs). On the other hand, selecting the catapult to go
along with the first cart would give you higher marginal utility, since it is a completely
new way of transporting the object.

Various existing metrics try to address this notion of diminishing marginal utility
in different ways. Hierarchical metrics such as Shah et al. [118] and subsequent
work [111, 87] represent this principle by assigning a higher reward for solutions at
higher functional levels. Verhaegen et al. [131] take those metrics a step further by
accounting for the entropy of the concept distribution, which is similar in purpose to
diminishing marginal utility. Maher [81] models it as a reward for greater aggregate
distance from existing cluster centers. Whether a discrete or continuous space, the
idea remains the same: if a new idea is similar to what one already has, it is less
valuable—it has a diminished marginal utility.

As described above, submodular functions are perfect surrogates for modeling
diminishing marginal utility, making them a natural choice for expressing any form of
creativity which depends on diminishing marginal utility. In order to operationalize
this new knowledge, this chapter first needs to address the following questions: 1) how,
specifically, are aspects of creativity expressed as submodular functions, 2) what does
the input to these submodular functions look like and how are real-life designs encoded
into this input, and 3) how does one use all of this to emulate human judgments?

5.2.2 Modeling Creativity with Submodular Functions

As with almost all other published creativity metrics, the fundamental model here is
a linear model where the outcome metric is modelled as a vector of weights multiplied
by a vector of features. Returning to variety as the example: variety(A) = w’ -d(A),
where A is the set of ideas, d is a vector of numbers summarizing the features of a set
of designs, and w is a vector of weights for each feature. In prior metrics the feature
weights (w) are typically set to some constant value (e.g., Shah et al. [118] choose
w = [10,6,3,1] ).

This is where this work departs from prior work, by using submodular functions
(p(x)) to transform the design features such that they obey specific forms of dimin-
ishing marginal utility: variety(A) = w” - p(d(A)). This section applies a variant of
the model of Ahmed et al. [2] for the purposes of modeling design creativity.

Formally, the submodular score for a set A is given by

f(A) =a’ - d(4) +B" - p(d(4)) (5.1)
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where the weight vector w has been broken into two parts: a and 3, representing
the modular and submodular contributions to variety, respectively. This has the
advantage of allowing the algorithm to automatically determine the extent to which
a feature obeys diminishing marginal utility. Either ax or 3 can be forced to zero to
use only the submodular or modular parts, respectively. For the example of variety,
this chapter assumes that it behaves fully sub-modularly, and sets a = 0, resulting in
f(A) = BT p(d(A)). Altering standard notation slightly, this section defines p(d(A))
to be a vector where p has been applied to each element in the vector d(A).

While any submodular function can be used for p, some useful options given by
Ahmed et al. [2] include:

Set Cover: p(z)=1ifz>0; 0ifx =0
Probabilistic Cover: p(z) =1—¢7% for § > 0
Logarithmic Cover: p(z) =log(fz + 1) for § > 0

This chapter demonstrates in the experiment section below that the metrics of Shah
et al. [118] are a special case of this chapter’s model where p = set cover, while the
metric of Verhaegen et al. [131] is well approximated by p = probabilistic cover.

5.2.3 Encoding Design Concepts

With some candidate submodular functions at hand, the next step is to define d(A),
i.e., how a specific set of designs (A) becomes a vector of numbers that can be used
by the submodular function—a process this section refers to as encoding the design
concepts. This encoding can be any set of real numbers which summarize different
aspects of a design or set of designs, so long as a consistent encoding is used across
all concepts.

For example, in Shah et al. [118] a set of designs is encoded as a functional tree
decomposition where each of four levels is summarized by the number of bifurcations
in a particular level of the tree—these form four features, summarized as four real
numbers, that describe the set. Various authors have proposed different sets of encod-
ings, but the end result is the same: designs become a feature vector of real numbers
(d(A)) that eventually get used in a linear model.

This is important for the model, because as long as one can take any given design
or set of designs and encode it as a vector of features, this chapter’s model can use
that vector to determine how each of those features impacts creativity. As Fig. 5.3
demonstrates, this approach works for linear design encoding, such as the standard
linear logit models commonly used in consumer preference models, hierarchical encod-
ings, such as Shah et al. [118] and others [111, 87, 131], and graph-based encodings,
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Figure 5.3: This model can encode more than just hierarchical creativity metrics; it can
handle graph-based creativity features, over which linear and hierarchical features are a
subset.

such as the cluster model of Maher [81] or the Function-Behavior-Structure (FBS)
model [48].

This grants the model some flexibility: by picking the appropriate encoding, one
can use this chapter’s model to measure the creativity of any aspect of design one
wants, including as a drop-in replacement for many existing metrics, or one can use
the model to compare different encodings and determine which is best for a given
problem.

5.2.4 Model Inference

Given the above model and a particular encoding, the next task is to estimate the
weights w (or for variety just 3) and any submodular hyperparameters (e.g., ) using a
dataset of human given ratings. Given perfectly aligned and consistent human raters,
this would be possible through simple linear regression by asking human judges: “on a
scale from zero to ten, how much variety does this concept set have?” Unfortunately,
this task is next to impossible to achieve in practice, since different humans have
different anchoring points or opinions about what justifies variety, making simple
numerical answers difficult to interpret.

An easier task for a human evaluator is that of comparing two sets: “Given a set
of concepts A and another set B, which set has greater variety?” This is still prone
to differences in opinion or background (as are all creativity metrics that depend
on human evaluation), but is less prone to differences in absolute measure between
individuals. A possible alternative could be ordinal ranking of more than two sets,
which is easily translated to binary greater than/less than judgements.

Given a dataset of binary judgements between various pairs of sets, standard lo-
gistic regression can determine the optimal weights w that best match the judgements
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given by human experts. Formally, the likelihood function for predicting whether a
human would rate a set A > B is given by:

-1

P(A > B|A,B) = [1 4 e UA=/(B)] (5.2)

where f(A) and f(B) are given by Eqn. (5.1). Using the entire dataset, maximum
likelihood estimation on the above likelihood function determines the optimal weights.
The value of the hyperparameters, if needed, can be determined either through grid
search or through stochastic gradient descent for certain forms of the submodular
function.

5.3 Experimental Results

To assess the validity of this approach, data is used to train the model to predict
which of two randomly generated concept sets had greater concept variety, as derived
from two different variety metrics, Shah et al. and Verhaegen et al. . These metrics
are used to simulate human judgements for the purpose of testing the model and to
make these results reproducible by others!.

This chapter uses Shah’s metric because of its broad adoption within the com-
munity and because it provides a useful example of how hierarchical metrics can be
encoded as a linear model. Verhaegen’s metric was chosen since it attempts to ac-
count for “uniformness of distribution” within the hierarchical branches using the
Herfindahl index. This is similar in spirit to modeling diminishing marginal utility,
and makes that metric a natural candidate with which to assess the utility provided
by different submodular functions.

The results in this section were generated using the following experimental pro-
cedure:

1. Select a variety metric to simulate human judgements (i.e., Shah or Verhaegen).

2. Randomly generate multiple sets of 10 concepts and calculate their variety with
respect to the chosen metric. These are stored as the ground truth variety scores

(V(X)).

3. For each set of 10 concepts, transform its feature vector using a submodular
function (set cover for Shah, probabilistic cover for Verhaegen)—this is p(X).

'Full experiment code is available here, for those who wish to replicate or extend the results:
http://www.markfuge.com/dissertation
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Metric || n=100 200 300 400 500

Shah 95.2 969 97.6 98.1 98.6
Verhaegen || 91.9 944 955 96.0 96.3

Table 5.1: In both cases, the algorithm was able to achieve 95% prediction accuracy in
less than 300 samples. Randomly guessing achieves a baseline score of 50%.

4. Use Eqn. (5.1) to determine the difference vector between two sets of concepts—x; =
{p(A)—p(B)} in the case of fully submodular features. These become the input
features for the logistic regression.

5. Recall the ground truths for each set (A & B). The decision as to whether
the variety of A is greater than B is then decided by y; = sign(V(A) + €4 >
V(B) + €g), where ¢ = N(0,0). This becomes the classification label for the
logistic regression.

6. Steps 4 & 5 are repeated for as many training samples as desired (“Number of
A /B Comparisons used in training” in Figs. 5.4-5.6 )

7. Using the matrix of noisy binary ratings from step 5 corresponding to submod-
ular difference vectors from step 4, use logistic regression to learn the optimal
weights (w). Evaluate the model on unseen test data via 30 randomized cross-
validation trials and compare the predicted decisions with the original ground
truth labels to determine prediction accuracy.

Using the above procedure, the model generated the following results:

Figures 5.4 and 5.5 demonstrate the convergence and robustness of the model
under Shah et al. 's and Verhaegen et al. ’s metrics, respectively. As Table 5.1 shows,
in both cases the algorithm converges to above 90% accuracy within the first 100
ratings, and to above 95% accuracy within the first 300 ratings.

In the presence of noise, the convergence rate is slower, as expected. In both cases,
the model ultimately is able to recover the underlying metric to high accuracy, given
sufficient training samples.

Using different submodular cover types unveils differences in the behaviour of each
metric: In the case of Shah’s metric, the usage of set cover makes the model equivalent,
and thus it captures the metric with complete accuracy. Using probabilistic cover
reduces the accuracy, since Shah’s metric does not encode diminishing marginal utility
within each level of the tree. Under Verhaegen’s metric, using set cover does not
capture the model as accurately as using probabilistic cover, since their metric does
attempt to encode diminishing marginal utility within each level of the tree. Both of
these results confirm expectations. Logarithmic cover and probabilistic cover achieve
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Results for shah variety metric
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Figure 5.4: With no error (top-most curve), the model recovers the Shah metric to within
95% by 100 ratings. As expected, when more random error is added, the algorithm's
convergence is slower. Even with substantial noise, the model can recover the true variety
score to good accuracy, given enough samples. Randomly guessing results in a prediction
accuracy of 0.5 (50%).
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Results fqr veljhaegen Variety metric
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Figure 5.5:  Similar results were seen with the Verhaegen metric. The average scores are
lower, since, unlike Shah's metric, Verhaegen's metric is not perfectly contained within
the model class. Regardless, the model still achieves 95% prediction accuracy within 300
samples. Randomly guessing results in a prediction accuracy of 0.5 (50%).
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similar results in both cases, so only probabilistic cover is shown to improve figure
clarity:.

5.4 Implications for Evaluating Design ldeas

The above results raise the following questions for discussion:

1. To what extent does this model extend to aspects of creativity other than vari-
ety?

2. How would these results fair under actual human evaluation, instead of simu-
lated sources?

3. What do these results mean for other work in Design Creativity measurement?

5.4.1 Extensions to Other Aspects of Creativity

This chapter provides two possible avenues for extending existing metrics: 1) testing
other structures and domains for variety, and 2) modeling other aspects of creativity,
such as novelty and usefulness. In each of these cases, the resulting mathematical
model and inference procedures remain unchanged, with the only change being how
design concepts are encoded. This results in a general procedure for experimenting
with various encodings and datasets.

The experiments presented in this chapter focused primarily on hierarchical variety
metrics, as these are currently the most commonly used in analyzing ideation results
in mechanical engineering design. However, as mentioned in the above sections, this
model extends to any variety description that can be expressed as a linear set of
features. This opens the door for future work to analyze both different formulations
of variety on existing domains, as well as how existing metrics transfer to different
domains. For example, a new graph-based metric could be applied to studying sets
of FBS models or patent networks to determine which features accurately predict
variety. Likewise, by training on a different set of experts, a hierarchically structured
metric similar to Shah et al. could be adapted to describe functions in a organizational
or service context, instead of purely physical functions, extending the applicability of
existing work.

The presented model can also be adapted to describe any creativity metric that
utilizes a form of diminishing marginal utility. For example, novelty metrics (e.g.,
[118, 111, 81]) or surprise (e.g.,[81]), can be recreated simply by altering which sets
are used for training.

Novelty would be the marginal utility between the current set A, and a new set
B = {xU A}, and these two sets could be rated by judges to determine what aspects
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Comparison of various metrics
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Figure 5.6: Comparing the convergence rates across the two metrics, differences in how
each model handles diminishing marginal utility become evident: Shah's metric performs
better under under set cover, where Verhaegen's performs better under probabilistic cover.
This matches expectations, since Verhaegen's metric attempts to encourage uniformity
in the branches—the same goal as maximizing marginal utility. It is also clear that the
further the variety model class is from the actual evaluator's model, the more bias there
will be in the final accuracy: Shah's metric is replicated exactly, whereas Verhaegen's
metric is only approximated by submodular functions.
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affect novelty. Coincidently, this also allows an easy way of differentiating H vs P
creativity [13]: the former uses a set containing all past designs, and the other uses a
set that contains only the designs known to a particular agent.

Unexpectedness, at least as described by Maher [81], can be formulated similarly
to novelty above. As with novelty, the marginal utility is used to measure the increase
in value for a particular design, however, unlike novelty, unexpectedness only considers
some number of the most recently seen designs. This allows the model to essentially
forget old designs over time, and become surprised if something new breaks a chain
of similar designs.

The diminishing marginal utility property of submodular functions, combined
with the binary decision ratings from experts, makes the proposed model a flexible
platform for future research in modeling different parts of creativity.

5.4.2 The Utility of Human Evaluation

The basis for the proposed model hinges on collecting sets of human judgements
comparing conceptual variety. This raises a natural concern: If the human judgement
data are noisy, or even contradictory, will this model be of any use? What if humans
are consistently poor judges of a certain aspect of creativity?

In the case of noisy observations, Fig. 5.4 and 5.5 demonstrate this exact effect:
increased noise translates to increased convergence time, but does not significantly
effect the final accuracy of the results. Even under high levels of noise (N (0, 5) for a 10
point variety metric), the model is able to combine the estimates of multiple ratings
to uncover the true underlying variety score. This offers a significant advantage when
using human evaluation: even if the raters’ assessments of variety are off from each
other by a large amount, the model handles the noise gracefully. These experimental
results assume that there is an underlying true variety metric, and that experts’
assessments are normally distributed around that true score. While that assumption
is not completely true in reality, it is a reasonable approximation that offers initial
results as to the robustness of the model.

This being said, the proposed model has a natural way of accounting for differ-
ences between individual raters, or groups of raters: By extending the score function
(Eqn. (5.1)) with a set of user or group-specific bias terms, this model can automat-
ically learn these effects given additional training data. This is a common approach
for capturing possible bias terms (e.g., [68]).

If human judgements contradict each other, or if expert judgements are consis-
tently wrong about a set of metrics, then the proposed model would suffer as well—it
would be just as useful as the inconsistent experts it is modeling. However, the
model can easily provide confidence estimates around its predictions, providing an
easy method of judging its coherence (a non-trivial task for a human evaluator).
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A relevant question is how to select an appropriate population of human judges.
Does one need domain experts or professional designers, or will students or random
people do? This question is best answered through appropriate controlled studies,
such as the one conducted by Kudrowitz and Wallace [71] who showed that Mechan-
ical Turk raters showed strong correlation with novelty but poor correlation with
feasibility. The results of those types of studies directly inform the applicably of this
chapter’s model.

Lastly, the convergence behavior tells us something about the number of rat-
ings that might be needed: both models, even under exceptionally noisy conditions,
reached or exceeded 90% accuracy within 500 samples. Given 10 raters, this amounts
to 50 ratings per person—even if actual human evaluation requires collecting an or-
der of magnitude more data, due to addition noise or other factors, this is still well
within feasible amounts. Obviously, as the complexity of the model grows to account
for additional creative factors the amount of data needed also increases, but initial
results appear promising.

5.4.3 Impact on Design Creativity Measurement

The generalizability of the proposed approach opens up many new questions and
future work opportunities for those working in design creativity measurement:

What are good ways of encoding concepts in order to detect creativity? The
difference in scores between Fig. 5.4 and Fig. 5.5 is one of modeling assumptions: In
the case of Shah et al. , the proposed model could completely replicate the original
metric, and thus was able to achieve 100% accuracy over time. Since Verhaegen
et al. use the Herfindahl index to penalize lack of variety, the proposed model was
not able to achieve 100% accuracy. The Herfindahl index does not behave exactly
like a submodular function, though the similarity is close enough that the model still
matched Verhaegen’s metric to within 96%.

This difference in accuracy provides a means to test the appropriateness of certain
design encodings, as well as the magnitude to which certain features have diminishing
marginal utility. By using the same set of human judgements, published and new
metrics can be compared against one another to assess how closely they match a
particular set of human judgements. This is essentially a form of model selection, but
applied to creativity metrics.

Are some features more important to creativity than others? In order to use
the proposed approach to evaluate how important different design attributes are for
creativity, one can do one of two things: 1) compare a large number of different
design encodings, determine one that fits human data the best, and then inspect that
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model’s weights (w) to determine importance, or 2) create a giant design encoding
with as many design features as possible and train the model using L1 regularization
in Eqn. (5.2) to encourage unimportant weights to be driven to zero. In addition,
new computational algorithms can be derived to identify important features not yet
known: algorithms that cluster ideas according to marginal utility could be given to
domain experts to uncover patterns in human evaluation.

Do different domains, experience levels, or backgrounds judge the same cre-
ativity metric differently? By using a particular design encoding and training the
model on different groups of people, future work could formalize differences in opin-
ion regarding the same metric. For example, given a Shah-like variety metric, would
architects and engineers view the importance of physical function differently? Com-
paring the learned weights of the metric for each group could provide an answer.

5.5 Summary

This chapter draws a theoretical connection between certain aspects of creativity, such
as novelty and variety, and the principle of diminishing marginal utility. By utilizing
submodular functions to express diminishing marginal utility, this chapter described
a creativity model capable of tying together many existing metrics under a common
framework. Not only can this model generalize different configurations of creativity
metrics, such as linear, hierarchical, or graph based metrics, but it can adapt to
human evaluators from different backgrounds. It does so by requiring only simple
A /B comparisons between sets of concepts, a rating task that is easily interpreted by
human evaluators, making data collection simple.

As validation, this chapter demonstrated how the proposed model can reliably
reproduce several published creativity metrics. Using simulated comparison data, it
was able to capture the variety metrics of Shah et al. [118] and Verhaegen et al. [131]
with 100% and 96.4% accuracy, respectively, in the no-noise condition. Under increas-
ingly noisy input conditions, the model is still able to recover the metric accurately,
at the cost of some convergence speed.

The use of submodular functions to model diminishing marginal utility carries
with it several advantages: 1) the model parameters can be interpreted easily, 2) the
likelihood and variety function are convex allowing for efficient optimization, and 3)
Computational Design Synthesis systems can use the model to perform optimal set
selection in an efficient way:.

Rather than claiming to provide the universal metric for creativity, this chap-
ter instead acts as a catalyst by which design creativity researchers can ask new
questions: How does human evaluation of a particular creativity metric vary across
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different conditions (disciplines, countries, professional experience, etc.)? What are
the important elements that determine creativity? To what extent can one discover
those structures given human rating data?

Thus far, the dissertation has looked at overall design communities, how they
form, how one can understand design processes within that community, and lastly
how to evaluate the ideas that the community produces. The next chapter will briefly
summarize these results and address some broader limitations of design communities,
such as what to do about the quality of the design input and some of the dangers
inherent in using statistical models. Finally, it will point to some future research
questions that arise out of this dissertation.
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Conclusion

As design becomes increasing complex, companies are turning to online design com-
munities to help solve their problems. For example, this dissertation opened with a
story about DARPA and its FANG challenges—where they used crowdsourcing to de-
sign the next generation of armored vehicles. They were not alone: General Electric,
Proctor and Gamble, IDEO, and many others leveraged online design communities
to bring innovative new products and services to market.

This thesis addressed what problems arise when these communities produce too
much data than they can effectively analyze, and how machine learning techniques
can solve those problems. It did this through applying machine learning and com-
putational models to problems across different levels of analysis: across the entire
community, within a design process, and for a particular set of ideas. This chapter
first summarizes the main results of the dissertation and then discusses some broader
implications that tie together each chapter. It concludes by pointing to future research
directions.

6.1 Dissertation Summary

This dissertation started off by introducing online design communities, in all their
shapes and sizes, and discussing why one would use those communities in the first
place. It brought up factors such as reduced cost, faster lead times, increased diversity,
and truly massive scale beyond what could be accomplished by traditional companies.
In doing so, it also highlighted the Achilles’ heel in online design communities: they
generate more data then they can effectively use. This laid the groundwork for the
main question addressed by this dissertation:

How can online design communities effectively use the design data they
generate to help manage their operations and improve their designs?
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Answering this question required background in a range of areas, from design to
crowdsourcing and online communities to machine learning. Chapter 2 reviewed these
areas, and placed this dissertation at their intersection. With respect to Quinn and
Bederson’s taxonomy of human computation [102], this dissertation sits across areas
such as crowdsourcing, social computing, and data mining. It lay separate from the
field of Human Computation itself because people within online design communities
are not typically performing computational tasks, but rather providing the input for
algorithms that might later assist designers. That chapter also discussed different
types of machine learning approaches (supervised vs. unsupervised, generative vs.
discriminative), and how those approaches have been applied in both design and
crowdsourcing domains.

After covering the requisite background, the dissertation began exploring online
design communities at the broadest unit of analysis: the community level. Chapter 3
introduced OpenIDEOQO, a real-world online design community where thousands of
people participate in design challenges for social causes. The chapter used techniques
from the field of Network Analysis to analyze the information flow and community
structure of OpenIDEQO, both on a per-challenge basis, and over time. It highlighted
how various network attributes of OpenIDEOQO, such as efficiency, clustering, and as-
sortativity influence idea generation, and what might have driven the growth of those
properties. OpenIDEO possesses a unique structure where those who collaborate
most frequently do so primarily with those who do not collaborate frequently. This
atypical network behavior has many benefits, including network robustness and ef-
ficiency for transferring ideas. The chapter also addressed possible incentives that
one might use to manage online design communities: encouraging commenting and
feedback, using designated community managers, and helping users in the center of
the network reach out to those on the periphery of the network.

Looking within design communities, chapter 4 covered the design processes that
a community uses and how data-driven techniques could help users understand and
improve them. It focused on HCD Connect, an online design community where
users uploaded case studies of design problems they faced and described which design
methods they used to address each problem. Intended as a learning resource, HCD
Connect’s large corpus of case studies can be difficult for novice designers to search
through or navigate. The chapter demonstrated how techniques from large scale
hypothesis testing, unsupervised learning, and recommender systems could ameliorate
many of those issues. For example, False Discovery Rate Control algorithms identified
which methods were relevant to particular types of problems (e.g., Agriculture or
Community-Development). The chapter highlighted the importance keeping track of
which methods were used together in each case study, as that information can help
automatically group methods (e.g., using Spectral Clustering) or recommend design
methods (e.g., using Collaborative Filtering). Leveraging data-driven techniques for
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analyzing design processes turned the wealth of design case studies into an advantage,
and provided insight that would be unavailable through strictly manual means.

Lastly, the dissertation looked within design processes at how to evaluate ideas
themselves. Specifically, chapter 5 addressed how to evaluate the creativity of a set
of ideas in a way that is both flexible (i.e., can be used in many domains), as well
as scalable (i.e., can be used on tens of thousands of submissions). It addressed
this by comparing two classes of design creativity metrics, Model-based and Human
Judgement-based, and drew an important connection between many areas of design
creativity and the principle of diminishing marginal utility. This connection drove the
application of a logistic regression model that used a small number of expert ratings to
train a repeatable and scalable model-based metric that can efficiently evaluate tens
of thousands of ideas. The key technical piece lay in applying a type of mathemati-
cal object called a submodular function that could account for diminishing marginal
utility. This allowed the chapter to generalize several previous model-based met-
rics under a single umbrella, and created a new theoretical foundation for measuring
design creativity.

6.2 Broader Implications

Herbert Simon, in Sciences of the Artificial [120], states that

“Human beings, viewed as behaving systems, are quite simple. The ap-
parent complexity of our behavior over time is largely a reflection of the
complexity of the environment in which we find ourselves.”

Online design communities are changing that environment, and researchers need
methods that can scale to the task. This dissertation demonstrated how inductive
models from Machine Learning could provide a means of scientific inquiry by using
the data generated by a community in a way that would not be possible using tra-
ditional statistical and qualitative research methods. However, this comes with its
own limitations: How can one trust the data generated by these online communities?
Will not the choice of mathematical model limit the kind of information and inter-
pretations one can draw? This section addresses some of these implications, and then
points the way to future research avenues that can address new questions.

Just because someone did it, does it mean its right? Machine learning is fun-
damentally descriptive in nature—the goal is to predict future events by matching,
as best as possible, the reality of the present. In that sense, it is not really suited
for prescribing actions far outside what we have already seen. Chapters 3, 4, and 5
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all used community generated data as the ground truth: collaborations drove net-
work analysis models, submitted case studies defined method groupings, and binary
creativity assessments trained a regression analysis. This all lied on top of inductive
reasoning’s major assumption: that the input itself is valid.

If design communities themselves might produce nonsense, then will not machine
learning methods also be susceptible to this? There are two answers to this, depending
on whether one views design research as a descriptive or prescriptive process. For
those who view design research as descriptive, then, regardless of the community,
machine learning methods can be used to introspect on the “behaving systems” that
Simon pointed to above. The spectral clustering methods in section 4.4 would locate
methods that are presently used together rather than the methods that should be
used together; it makes no prescriptive claim other than to discover how design is
performed in practice.

For those who view design research as prescriptive, one would need to be careful
as to how one sampled the human input within the community. This raises issues
such as who controls or validates community membership, or how one can make their
machine learning methods robust to noise. Quinn and Bederson [102] review some
useful insights from similar issues in the Human Computation literature, such as the
aggregation and quality control strategies.

Statistical misspecification and causality. The application of machine learning
and statistical techniques is becoming almost ubiquitous across a variety of domains,
due to their ability to, almost seemingly by magic, take complex multi-dimensional
datasets and deduce interesting hypotheses. However, this magic comes with a price:
statistical models cannot claim causality and must only claim predictive accuracy,
unless a particularly stringent set of experimental conditions are met [39].

For example, chapter 5 introduced a logistic regression model built around par-
ticular submodular functions, the purpose of which was to accurately emulate the
creative judgements given by experts. It would be a mistake to train that model and
then treat its individual coefficients as though they represented the true importance
of different measures of creativity; that would be treating the model as causally valid,
rather than as intended—solely for prediction. With that in mind, the studies herein
should be paired with both qualitative and properly controlled laboratory experiments
in the future to present a fuller picture of how design communities operate.

6.3 Future Research Avenues

This dissertation focused primarily on using learning algorithms to help existing com-
munities deal with the data they had already generated: existing collaborations (chap-
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ter 3), existing case studies (chapter 4), and existing ideas (chapter 5). However, there
is no reason why similar algorithms could not be used to help create new things: gen-
erating new communities or teams, directing online design process mentorship and
education, or inspiring designers to come up with new ideas. In that vein, this section
highlights some of future research avenues across the three levels considered in this
dissertation: community-level, process-level, and idea-level.

6.3.1 Community-Level Research

Chapter 3 demonstrated how social collaboration drives network structure, and how
certain structures were advantageous to idea generation. Given this knowledge, one
avenue for future research could dynamically adjust the collaboration network in order
to optimize for certain network structures. For example, an algorithm might recom-
mend certain ideas over others or request targeted feedback from certain members,
in order to achieve better flow of information. This is similar to the fields of Nework
Formation and Network Game Theory [65], where one tries to build up a network,
piece by piece, to achieve networks with particular properties.

6.3.2 Process-Level Research

Chapter 4 demonstrated how to leverage user-submitted case studies to help under-
stand the design process and provide important information to novice designers, such
as which methods complement one another, or which should be used for certain types
of problems. It also demonstrated how to use a recommendation system to help rec-
ommend methods for designers. A similar type of approach could be used not just
for capturing existing design processes, but for encouraging new ones, or performing
training.

For example, it would be possible to detect when a particular method was being
used out of order, or for an inappropriate problem. An algorithm could recommend
something different, to improve the design process. Or it could purposefully rec-
ommend methods as part of a training program to help novice designers recognize
specific difficulties or practice particular skills. Online design communities offer a
great opportunity to explore distributed mentoring and education, and algorithms
can play a role in customizing this learning for individuals.

6.3.3 Idea-Level Research

Chapter 5 demonstrated how small collections of expert advice could be used to
evaluate thousands of ideas. However, what about creating those ideas in the first
place? There are two future research avenues where the online communities and

105



Chapter 6. Conclusion

machine learning algorithms might help: locating inspirations and guiding the process
of creation.

In chapter 3, Fig. 3.3(a) showed how ideas could build on each other, acting as
future inspirations for new ideas. However, finding these inspirations can be like
finding a needle in a haystack; no individual is going to crawl through the thousands
of ideas generated by a community to find inspiration. This is precisely where some
kind of recommendation system (chapter 4) or variety measure (chapter 5) might be
of use. By using relationships between existing concepts, or analyzing their content,
an algorithm would be able to collect a diverse, but small, set of ideas to present to
a designer as possible inspirations.

Even once a designer has been inspired, not all designers possess the technical
skills necessary to execute a design (e.g., experience with a CAD program). Here,
intelligent design interfaces might leverage the previous designs of others to guide a
novice through simplified interface to produce a limited set of designs. Such tools are
already taking shape in computer graphics [104, 126, 124], and similar approaches
could be adapted for mechanical design.

This dissertation closes with another quote from Herbert Simon:

“The proper study of mankind has been said to be man. But I have
argued that man—or at least the intellective component of man—may
be relatively simple, that most of the complexity of his behavior may be
drawn from man’s environment, from man’s search for good designs. If I
have made my case, then we can conclude that, in large part, the proper
study of mankind is the science of design, not only as the professional
component of a technical education but as a core discipline for every
liberally educated person.”[119, pg. 82]

In this, he argues that not only is everyone a designer, but that studying design
provides a window into ourselves. This dissertation has addressed both parts of this.
For the former, it described online design communities, a new platform that can
empower the designers in all of us to produce something greater than the sum of
our parts. In the latter, it described statistical tools from machine learning that
permit us to introspect on our actions, to learn from our own collective behaviors,
and to improve upon them. Ultimately, this story is not merely about understanding
communities, but also about understanding ourselves.
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